
Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 68 (1993)

Rubrik: Session 5: Validation, integration, and technical tools

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


A 371

SESSION 5

VALIDATION INTEGRATION, AND TECHNICAL TOOLS





/A 373

Integration of Building CAD/CAE Systems
Intégration des systèmes de CAO/IAO dans le bâtiment

Integration von CAD/CAE-Systemen im Hochbau

A. RECUERO
Dr. Eng.
I.C.C.E.T.
Madrid, Spain

Alfonso Recuero, born
1944, has been working for
the past 20 years in
computer methods for structural
analysis. He leads a
research project on the CAD
Systems in construction.
Alfonso Recuero became
blind in 1974.

0.RIO
Dr. Eng.
1.C.C.E.T.
Madrid,Spain

Olga Rio, born 1955,
obtained her doctorate in Civil
Engineering at the
University of Madrid. She
has been working in
structural analysis at the
Torroja Institute for the past
10 years.

J.P. GUTIERREZ
Dr. Eng.
I.C.C.E.T.
Madrid, Spain

J.P. Gutiérrez, born 1950,
has been working for the
past 16 years in computer
methods for structural
analysis. He leads a
research project on the
Residual Life of Structures.

SUMMARY
CAD/CAE systems are an essential tool in the building design process. Although offering powerful
mathematical models and sophisticated graphical capabilities to the designer they are not actually
improving the design process model itself and the diffusion on expertise throughout the industry. It
is necessary to create an integration environment developed around an open and expandable data
base able to handle the building design conceptual objects and its data structure and organization.
The objectives of this research project are presented in this paper.

RÉSUMÉ
Les systèmes de conception et ingénierie assistées par ordinateur constituent un outil devenu
indispensable dans l'établissement des projets de bâtiments. Bien qu'ils fournissent au concepteur un
modèle mathématique superpuissant et des possibilités graphiques des plus sophistiquées, ils ne sont
pas encore à même d'améliorer le processus d'étude et la propagation des connaissances dans la
branche concernée. Afin de développer une banque de données ouverte et extensible, il est
nécessaire de créer un environnement d'intégration qui puisse permettre de faire fonctionner les
objets conceptionnels du bâtiment, tout comme leur structure et organisation des données. Cet
article présente un projet actuel de recherche dans cette direction, dont les objectifs sont largement
explicités.

ZUSAMMENFASSUNG
CAD/CAE-Systeme sind ein unverzichtbares Werkzeug im Gebäudeentwurf. Obwohl sie dem
Architekten leistungsstarke mathematische Modelle und ausgefeilte graphische Möglichkeiten an
die Hand geben, verbessern sie nicht wirklich den Entwurfsprozess und die WissensVerbreitung in
der Branche. Es ist nötig, um eine offene und ausbaufähige Datenbank eine Integrationsumgebung
zu schaffen, die die konzeptionellen Gebäudeentwurfsobjekte, ihre Datenstruktur und -organisation
handzuhaben gestattet. Der Beitrag behandelt ein Forschungsprojekt in dieser Richtung, dessen
Ziele erläutert werden.



374 INTEGRATION OF BUILDING CAD/CAE SYSTEMS

1 INTRODUCTION

Construction projects are developed in three consecutive parts: design,
planning and construction. The first phase, that of design, represents only
10% of the total project cost but it decides on the remaining 90%. It is
therefore critical to improve the performance on the construction design
cycle, not only to reduce its direct costs but also, and more important, to
enhance the quality of the decisions made in this phase which affect the
construction itself and its life-time performance.

Computer aided design (CAD) and computer aided engineering (CAE). Although
offering powerful mathematical models and sophisticated graphical capabilities
to the designer they are not actually improving the design process model
itself and the diffusion of expertise throughout the industry. They are a
reflection of the fragmentation of many building design disciplines and their
specialization. An architectural system does not communicate with a structural
system and vice versa, which means that at least 50% of the information and
other work has to be done again. This results in poor decisions and down grade
performance of the final construction.

It is necessary to create an integration environment developed around an open
and expandable database, able to handle the building design conceptual objects
and its data structure and organization. The current research is directed to
this integration, stating that the low and declining productivity of
construction industry compared with that of manufacturing industry is due to
the lack of coordination among the different experts who serve the building
design process. This project will cover buildings as well as prestressed
bridge construction, although the present paper will only deal with building
construction. The aim is to create an open integration environment for
computer aided building design consisting of a well documented building design
process model; a reliable conceptual model of the building entity clearly
defining the building objects hierarchically and the corresponding data
structures; a database management system reflecting the conceptual models and
dealing with objects rather than data; and common principles for user
interface which meet the specific needs of building design.

This should improve the quality of the decision-making of the building
designer, the overall productivity of the building design process, the
management of the building construction, the cost performance ratio, the cost
of the actual construction and the building maintenance and repair cycles.

2 THE BUILDING DESIGN (BD) PROCESS

Construction of Buildings has attracted the attention of mankind since the
beginning of civilization. Regardless of the status of science and technology
throughout history, man constructed various buildings, some of which are still
standing, as witness to the wisdom, the will and the power of the ancients.

In every case and without any exception, three main phases were applied in the
construction of a building. There was always, first, a Design Phase where the
needs, the form f.nd the materials of the construction were defined. Then, a

construction Planning Phase had to be accomplished, in order to manage the
available resources, the design requirements and the time limits. Finally,
there followed the actual Construction Phase to materialize the Building
according to the design and the resources. The only difference, throughout the
ages, has been the supporting technology.



A. RECUERO - O. RIO - J.P. GUTIERREZ 375

The Egyptian Pyramids were designed by inspired, "empty-handed" engineers and
were constructed by people, rock and some primitive tools and mechanics,
taking many years, for each one, to be completed. Today's New York
Skyscrapers are designed and scheduled by computerized engineers and
constructed by people using sophisticated materials and Robots, taking only a
few months to build.

There is a close interaction between the three phases of the construction
process. The Construction Planning may alter the designer's decisions and
always imposes minor or major modifications to the initial plan. The
construction of the Building provides the designer with feedback information
which may cause him to alter minor design details or update the initial design
with last-minute, on-site changes. The latter is extremely important for the
maintenance cycle and the repair program of the Building, and it would be a
great benefit if the documentation of the final construction could be stored
in detail, integrated, updated, easily accessible and retrievable.

The BD process can be divided into 10 main, distinct phases, each one of
which is served by completely different traditions, sciences, methodologies,
disciplines, expertise and practices. A listing of the BD activities, in a
reasonable sequence can be :

1. Building Specifications
2. Landscape Architecture
3. Urban/Environmental Design
4. Architectural Design
5. Civil Engineering

Structural Design
Structural Analysis

6. Energy Engineering
Insulation
Heating
Air Conditioning

7. Facility Engineering
Electrical
Plumbing
Piping
Under-Piping

8. Sound Engineering
9. Interior space design / Decoration

10.Material selection and Bill of Materials

The BD process is basically sequential but also includes a lot of iterations
and interactions between its various activities. Being sequential means that
an activity has to be completed first, before the next activity can be
developed. Although iterations may occur, the model has to follow the
sequential path and run, every time, from top to bottom, in order to pass the
changes made to the next activity.

3 PROBLEMS OF THE BD PROCESS

The previously mentioned list of BD activities could be shorter or longer,
depending on the view and the emphasis placed by the given approach to the
subject. But, short or long, the items are sequentially developed and
successively processed. This results in a set of problems.

One serious problem arising from this sequential nature of the BD activities



376 INTEGRATION OF BUILDING CAD/CAE SYSTEMS

is that the decisions taken in one activity impose serious limitations on the
next, in such a way, that there is little or no room for decision- making in
the last stages of the BD process.

Usually supported by independent computer systems, this sequential hierarchy
of activities faces serious limitations from the conflicting decisions and/or
from the non-compatibility of the supporting systems.

A second problem is lack of sensitivity. In everyday practice, the BD process
is more or less a one-way process. The iterations and the interactions may
occur only when facing dead-ends.

It is common to see an Architect who disregards some critical client's
requirements in favour of the aesthetic, a Civil Engineer who ignores the
functionality of the interior space in favour of the stability of the
buildings, or a Facility Engineer who constrained limited by the previous two,
"reconstructs" the building in order to find the "critical path" for the
piping.

The cost, the time and the effort required to review any previous design step,
in order to improve the performance of the next steps, is rarely undertaken.
On the other hand, this "one-way" of the process is strongly fostered by the
wide distribution and fragmentation of the expertise throughout the Building
Design industry. The cost of coordinating individual experts who are trying to
maximize their own performance, is always against the optimization of the
final result. And all these without referring to the degree of the competition
between the experts, that reduces even more the quality of the final design.

Even when supported by computer systems, a true sensitivity analysis
(recurring "what if" capability) is rarely found in DB systems. Computers may
improve the decision review capabilities of a designer, but in reflecting the
fragmentation of the expertise, they too are specialized as well. The systems,
being dedicated, cannot communicate, thus causing a lot of re-creation and
re-processing of common information.

Being sequential, the BD process deals with common extended information which,
in most cases, is recreated in each step. It is estimated that an Architect
needs at least 25% of the Civil Engineer's information, while the Civil
Engineer uses 50% of the Architectural information for his/her design,
information that already lies in the blueprints of the Architect and the
Structural Designer. Another problem is that the wide experience gained from
the numerous construction projects by the many experts of the industry is
presently stored in the personal memory of the experts who may comunicate and
deliver a part of it to newcomer experts, in the form of on the job or on-site
advices or University courses. This is not the best way of saving information.

A lot of expertise "dies" because there is no way for it to be stored
permanently. Finding a way of storing this expertise will be a blessing.

4 STATE-OF-THE-ART

Architectural, Civil Engineering and Construction (AEC) computer applications,
are among the oldest and represent a major application area because of the
sheer size of the projects involved. (Approx. 478 billion ECUs were invested
in construction during 1990, in Europe).

As previously stated, the Building Design process is performed today by a



4%. A. RECUERO - O. RIO - J.P. GUTIERREZ 377

multi-disciplinary and rather sequential set of highly fragmented and
specialized expert activities. The existing computer applications imitate, in
general, the same fragmented scheme, satisfying particular expert needs but
ignoring the high degree of work duplication, cumulatively generated along the
sequence of the successive Building Design activities.

The CAD (D for Drafting not for Design) Systems available, being general
purpose drafting tools, though impressive with their capabilities in visual
outputs (3D shading models, plots,etc.), cannot deal with the features of the
building objects (walls, columns, pipes, etc), while the mathematical
modelling and simulation applications (FEM, BEM, etc.) are too specialized and
poor in drawing capabilities to provide the final construction blueprints.

The existing integration of AEC systems is mainly based on the data exchanges
between systems, used by the different Building Design actors, using either
standard neutral file-formats or conversion schemes translating data from one
system to another. Still, this technology deals only with graphics which,
though essential, cover only a small part of the Building object.

An acceptable degree of integration of Building Design disciplines is provided
only by specialized, private, closed architecture and rather expensive
integrated environments, on Minis or on Workstations (ex. INTERGRAPH AEC

family of applications on VAX and PC based MicroStation).

Considering that the low and declining productivity of the construction
industry, compared to that of Manufacturing industry, is due to the lack of
coordination (read : integration) between the "islands of expertise" that
serve the Building Design process, current rese, rch is re-directed towards
open integration of AEC applications.

There are already some initiatives that promote the idea of open integration
in the AEC industry worth mention, such as CIFE (Center for Integrated
Facility Engineering) of Stanford University (USA), CIB Working Commission 78
(Conseil International du Bâtiment), the RATAS project from VTT (Finland),
the CAD/CAM Data Exchange Technology Centre, Leeds (UK), the AEC Systems
series of conferences, and the work done at the Instituto Eduardo Torroja,
Madrid (Spain), to mention a few.

5 ADVANTAGES OF INTEGRATION

Open Integration is defined as the act or process of making different
complementary systems behave, though modular, as one.

Integration is not the merging of systems but rather a cooperation and
coordination of systems directed towards a synergetic result.

Integration may overcome most of the previously mentioned problems of the BD

process improving not only the performance of the process itself but also the
quality of the final construction with considerable tangible and non-tangible
benefits.

Through Integration, and without violating the basic flow of the BD process,
the decisions taken in any stage could be evaluated in a very short time under
multiple-criteria incorporated, at the beginning of the process, by the
different actors. Integration then will play the role of the "manager" who

is now absent among the many "islands of expertise" of a BD project.



378 INTEGRATION OF BUILDING CAD/CAE SYSTEMS

The cost of revising the decision will be more cost effective, compared to the
benefits of improving the cost and the quality of the Building. The iterations
and the interactions will be feasible, as the systems communicate
automatically, transferring the required data from one system to another, in a
very short time. The "what if" analysis and the design alternatives may become

every day practice, while the experts will recognize their own potentials
and drawbacks on the "mirror" of the display, looking at or reading the
combined results of their decisions.

All Building data would be kept in the same format and in some cases in the
same mass storage. The information would be passed from one expert to another
through a diskette, if they were independently, or through an access call, if
the experts are linked together on a Network or a Multi-User system. The time
saved may then be invested in exploring better construction alternatives and
in more-timely responses to deadlines and bids.

Integration alone cannot ensure intelligent storage of information, but it can
lead the way to achieving this. Integrated environments can and should be
linked with AI and Expert systems to analyze the information gathered and
transform it into rules, statistic and case studies, for the benefit of the
younger experts.

There may be many alternative solutions applicable to the BD process
productivity problems.

We think that integration should be promoted through their research effort
rather than Segmentation (Specialization), as the first appears to be a more
justifiable and challenging solution for the BD process problems. In our
opinion, integration respects and absorbs, from each individual system, its
unique view, while it coordinates and directs all the outcome to one final,
multi-aspect concept or result. Through systems integration thé designer could
run up and down, among any group of activities, even from top to bottom and
bottom-up, as much as he/she feels it is necessary in order to spot a more
efficient and less conflicting resolution before any final, no-way-back
decision. With integration "What if ..." would then be feasible, while "What's
best ..." would sound a lower-risk adventure.

6 INTEGRATION STEPS

Training of a company's staff in multi-disciplinary systems is not at all a

productive investment, due to the increased turnover, especially in expert
jobs. Trusting human ability not to make errors in transferring information
from one system to another often proves to be an unforgivable mistake. On the
other hand, independent experts are always too busy to learn to use more than
one system.

A "first degree of integration" is based upon data exchange techniques that
may export data from one application and input them to another. This method is
more or less the common practice of the software industry.

By-passing the particularities of the different data structures of each
application, these data - exchange files transfer limited and essential
information only. IGES, STEP and DXF-files are some of the methodologies used
for the exchange of graphics data between CAD systems. Any possible logic or
feature of the object described cannot be transferred to another CAD

environment through this method.



1 A. RECUERO - O. RIO - J.P. GUTIERREZ 379

Developing a special data-exchange file format, for the building entity, would
overcome this restriction. This methodology is already applied in well-known
products such as Moldflow, ANSYS etc. The problem of such methods is the
flexibility and upgradability in case of incorporating new systems using
different data structures.

A second step to integration consists of making the systems talk the same
language through a common database, in this case, the "key" to integration is
a common database containing virtually all building-object data structures.
Every distinct system joining this database will create, store and retrieve
only a part of the multi-dimensional features of the Building objects, the
information the system is made to deal with. For example, a CADrafting system
could create and display only the geometric data of a column or a wall, while
a mathematical modeling system could calculate and attach the stress applied
on these elements.

At present, the Instituto E. Torroja is carrying out a research program which
is aimed at establishing the basic principles of a data model to describe
construction, using concepts such as objects, attributes and relations
focusing on the design phase and proposing a model for the design process as
well. Different existing data base systems such as relational D.B. and
hypermedia will be studied, paying special attention to object oriented D.B.
which is considered to be the best solution on future.

The third step should be adding a comprehensive user interface. The question
to be discussed here is wheter the users, already accustomed to certain
systems or environments, would prefer a new special purpose user interface
instead of their own good old shell and change their habits in favour of the
integration.

The answer is "no, not yet". We have concluded that the users are not ready to
accept any changes in their habits, unless someone could prove that
substantial benefits could be derived from a possible integration of their
systems.

A common user interface will not substantially improve the overall performance
of the BD process because the different systems are used by different experts.
Unification of user interfaces could benefit only integrated environments
(ex. Large companies covering a wide range of BD activities) but again, only
in terms of common know-how, training and maintenance. Even in these
environments the different disciplines are also carried out by different
experts.

7 CONCLUSIONS

AEC CADesign systems, using "real-object" concepts, features and parametrics
are not yet found in the market. The Design phase, also called the Concept
phase, is where most of the major decisions about style, materials performance
and energy consumption takes place. These decisions have the greatest impact
on overall Building cost and marketability, and require the most
sophisticated design tools. During this phase a variety of alternatives may be
explored with the aid of performance simulation and cost-estimating models.

Most CADrafting systems are not well suited to conceptual design tasks.
However, given enough support, one may be able to overcome the tools' inherent
clumsiness, and turn them into cost-effective aids, by integrating the various



380 INTEGRATION OF BUILDING CAD/CAE SYSTEMS

disciplines and technologies able to support the conceptual design phase.

This requires the involvement of databases dealing with objects and cost-
estimating databases, Spreadsheet programs to analyze cost data, critical
path scheduling programs to develop and redefine schedules and decision
milestones, solid-modelling dealing with Building object attributes, surface-
modelling tools for the definition of complex plate surface, finite element
analysis tools to evaluate stress and heat transfer, personal modelling aids
which let Engineers develop "quick and dirty" mathematical models of
engineering systems, drafting and animation tools for development of layouts
and interior details and many other technologies capable to enhancing the
decisions made by the Building designers.

Such systems are being developed separately or are increasingly migrating from
mainframes to the Workstation and Personal Computer levels, driven by a major
downward trend in the cost of desk-top intelligence and a corresponding upward
trend in performance. At the same time as the Workstation CAD revolution is
progressing, AI and Expert Systems technologies are changing the expectations
of users in AEC area.

If future conceptual CADesign systems can combine the visual glamour which
only graphics can achieve, with the intelligence of the decision support
systems, then they will ultimately offer the greatest potential in both
Building Design productivity and actual construction improvement. Making the
right decision in selecting design and construction alternatives, the designer
could save considerable design time and results in more durable, marketable
and cost-effective construction.

The next maturity step of the Building Design systems' integration will allow
a higher degree of integration with the actual Construction systems, that is
integration of Application Software, NC machines and Construction Robots.

Now, one of the first objectives should be to create an Integration
Environment for Computer Aided Building Design (BD) systems, consisting of:

- a well documented Building Design process Model.

- a reliable conceptual Model of the Building entity, clearly defining
the building objects' hierarchy and the corresponding data
structures.

- a database management system reflecting the conceptual Model, dealing
with objects rather than data.

- common principles for an industrial user interface, meeting the
specific needs of the Building designer.

This should improve :

- the quality of the decision-making of the Building designers

- the overall productivity of the BD process

- the management of the BD projects

- the cost/performance ratio and the quality of the actual construction

the Building maintenance and repair cycles.



A. RECUERO - O. RIO - J.P. GUTIERREZ 381

8 REFERENCES

1) KORNEL, K., NOWACK, H. (1988) - Exchange of model presentation information
between CAD systems - Computer & Graphics, vol 12, pp. 173-180.

2) BOURDEAU, M. (1989) - Structuration des donnes pour una conception
technique integree - Proceedings of XI*-^ International Congress CIB 89,
Paris, Theme III, Vol 1, PP 325-341.

3) RECUERO, A. (1989) - Integrated CAD for Buildings - Proceedings of XIe*1

International Congress CIB 89, Paris, Theme III, Vol 2, pp. 485-491.

4) RECUERO, A. & PR0K0PI0US, A. Integration of Building Design Computer
Systems. Management, Quality and Economies in Building. Edited by E&FN

Spon. GB. pp. 1549-1557

5) TSOU, J; TURNER, J & BORKIN, H. RDBM vs 00DBM in Support of Integrated Data
Bases for Computer Aided Building Design. CIB W78 workshop on Computer-
Integrated Construction, Montreal, Canada. 1992

6) BJÖRK, B. The Topology of Spaces, Space Boundaries and Enclosing Structures
in Building Product Data Models. CIB W78 workshop on Computer-Integrated
Construction, Montreal, Canada. 1992.





/A 383

Developing Engineering Knowledge Bases

Evolution des bases de données en génie civil
Entwicklung wissensbasierter Datenbanken im Ingenieurwesen

Xiaofeng YANG
Software Eng.
Shanghai Maritime Univ.
Shanghai, China

Kanghen SHEN
President, Prof.
Shanghai Maritime Univ.
Shanghai, China

Yang Xiaofeng, born 1966. got
his MS in Computer Science at
Shanghai Maritime Univ. His
research work is focused on
object oriented methodology,
knowledge-based systems and
Programming Environment

SUMMARY
Engineering standards are widely used in the process of engineering design and manufacture. They
are the records of collective and mature knowledge of the profession. The article reports on various
software packages developped for application of such knowledge-based systems.

RÉSUMÉ
Les normes du génie civil font l'objet d'un usage très large dans le projet et la construction de

structures. Elles reflètent l'ensemble collectif des connaissances de la profession. Le présent
article décrit différents logiciels développés pour l'application de tels systèmes à bases de
connaissances.

ZUSAMMENFASSUNG
Die Baunormen werden im Bauprozess vom Entwurf bis zur Ausführung vielseitig verwendet. Sie

wiederspiegeln das kollektive Wissen des Berufs. Im Artikel werden verschiedene
Datenbankprogramme beschrieben, welche entwickelt worden sind, um die Anwendung dieser
wissensbasierten Systeme zu erleichtern und damit ihren Wirkungsgrad zu erhöhen.



384 DEVELOPING ENGINEERING KNOWLEDGE BASES

1 INTRODUCTION

1.1 Engineering codes and KECOMS

Engineering standards or codes are widely used in the process of
engineering design and manufacture. They are the records of collective

and mature knowledge of the professions. A volume of engineering
standards or codes is actually a knowledge base of the engineering
profession in a concise literal form.
By now, various engineering codes have been used in CAD/CAM. in (1)
(2), engineering codes have been successfully treated as knowledge
bases and a knowledge based codes management system, KECOMS was
developed.

1.2 The function and composition of KECOMS

KECOMS is a software package which supports engineers to acquire,
translate and manage the defined knowledge forms of .engineering
codes, and therefore to build engineering knowledge bases. With
these knowledge bases users can inquire the contents of codes when
giving a subject of the request, determine the engineering design
constraints according to the design requirements, and verify the
conformance of engineering activities according to the related set
of codes.
The implemented KECOMS includes following components;
(1) a text editor; (2) a graphic editor; (3) a translator of a code
knowledge input language - T0L;i(4) an information network manager;
(5) a classifying tree manager; (6) a data dictionary manager; (7)
the inquiry and reasoning system.

1 .3 Knowledge representation structures in KECOMS

Various knowledge representation techniques are introduced in KECOMS

to represent and prcess the codes knowledge, including decision
tables, production rules, classifying trees, frames and procedures. A
multi-level codes knowledge structure is adopted. Based on this
structure, knowledges in the codes knowledge base are classified into
four kinds; the data knowledge, the provision knowledge, the organization

knowledge and the application knowledge. Different knowledge
takes the different representation structure; the provision knowledge
is represented by the decision table structure, the organization
knowledge by the semantic network and classifying tree structure and
the application knowledge by production rules.
The code processing technique was founded by S.J. Fenves (3)(4).
Using decision tables arid information networks, he proposed a model
as the basis of the standard'processing, in KEC0M3, the decision
tables and information networks are seperated from the code processing.

A relevant representation language for decision table, called
TOL, .was invented. The following is a TOL represented decision table
example from a knowledge base of the case "The Tentative Specification

of Harbour Work".
Ex.1 ; a*decision table which is represented as a TOL program

code jtj22087 5-1-32;
datum L5 1_32 is logical for result;
datum ReTnConc(c,1),BiaPull(c,1),Ring(c,1),Tangent(c,1)

is character*20 for els;
datum DSC0N(c,1) is character*20 for input;

datum Nz(a,1), Agl(a,1),e0(a,1),rg(a,1) is float for input



X.F. YANG - K.H. SHEN 385

datum Kl(a,1) is float for refer ta 3-2-2__t1 ;

datum Betae(a,-1) is float for refer dt 5-1-32_1;
ccondition 1; ReinConc=="T";

ccondition 5: DSC0N=="dscon3";
action 1 : (y,y,y,y,y)=>L5_1_32=Kl*K2*Nz<=Rgl*Agl*Betae/(1+eO/rg) ;
end

1.4 The coming of OOKSDE

For the complexity of problems in reality, KECOMS takes a mixed
knowledge representation structure. It is really a complex task for
a system to manage so many kinds of different knowledge structures
efficiently. As a result, the knowledge and the processing was not
seperated well and some structures took their simple forms in the
implemented system. It also results in the limited usage of KECOrfö.
To solve the problems, OOKSDE (an Object Oriented Knowledge base
System Development Environment) is developed.
The initial goal of OOKSDE is to succeed the functions of KECOMS.
However, the ultimate goal of OOKSDE is to expand the processing
techniques to various engineering professional knowledge processing.
The result of our recent researches includes following achievement:
an object-oriented knowledge representation method (OOKRM); an object
knowledge base design method; an 00 knowledge representation language
(.S3YKJLA) and an object knowledge base system development environment
(OOKSDE) (being developed).

2. THE OVERVIEW OF OOKSDE

2.1 The structure and composition of OOKSDE

OOKSDE is a knowledge object base system development environment. The
system developed by OOKSDE is a knowledge based system, which contains
a collection of various kinds of objects. When combined with the
object codes interpreter and the object manager, the system can be on
executing. It can perform the operations, such asinquiring code
provision content, verifying the engineering design and creating the
engineering design constraints etc.. What the developed system may
do is determined by the characteristics of the knowledge objects
created and developed by the user.
OOKSDE is an integrated environment. It is composed of the following
related parts:
(1) a full-screen object editor. It provides the convenient creating,
editing and modifying of text contents of knowledge objects.
(2) a knowledge object base manager. It gives the routine processing
of objects, such as retrieving, storing, copying and deleting of
objects. It also provides mechanism to retrieve and store the data about
relations between objects in the object base.
(3) an object inference controller, it performs the operations to
control and monitor object evaluating.
(4) a running code interpreter, it performs the real-time interpreting

of executable programmed. codes in objects. Operating with the
object inference controller, it implements the knowledge objects
inference. They both make the core of inference in the knowledge'
object bas,e system.
(5) a user interface generator. It helps to generate the user inters
face objects for the knowledge base system being developed. The inter-



386 DEVELOPING ENGINEERING KNOWLEDGE BASES A
face objects need to be interpreted by the running code interpreter
before going on operation.
(6) a user-friendly interface of environment. It is the interface
through which user can do operations on objects and activate the
functions provided by the environment.
Figure 1 reveals the components of OOKSDE and their relation in the
environment.

2.2 The user interface of OOKSDE

Figure 2 provides the first-stage user interface of OOKSDE.

OOKSDE is designed for developing one and only one knowledge base system

during a particular period. More than one knowledge base system
can exist at the same time, but only one of them can be active. The
process of developing a knowledge base system is a long period task.
It is supposed that user with OOKSDE can define the class object of
knowledge, input the actual knowledge body objects and modify the
text content of objects through selecting and entering the (Edit) icon.
By selecting the (Compile) icon, objects entered are translated into
inner represented forms. Through the (Browser) icon, user can browse
the objects stored in system, and can inquire the relation between
them. By selecting and entering the (Debug) icon, user can execute
and debug the system already built up. The environment also provides
the on-line help facilities to give the help information for the system

operationf errors and language etc..

3. SMJLA, THE KNOWLEDGE REPRESENTATION LANGUAGE IN OOKSDE

3.1 The overview of SMÖLA

Based on our researching experience in KECOMS, OOKSDE is supposed to
be different from other knowledge base system development environments
and expert: system shells. It provides powerful facilities to handle
the engineering knowledge, especially for engineering codes. SMJLA,
is the knowledge representation and processing language in OOKSDE. mits design and implementation, the following features have considered:
(1) the C-PASCAL based language structure is adapted; (2) to represent

the special engineering knowledge characteristics, several unique

super types are introduced; (3) for processing large scale
knowledge bases and introducing reusablity of knowledge object compiling,

template technique and the technique for long period task are
introduced in.
A SMJLA program can be seperated into two parts, class definition and
object instancing. The class definition is for the definition of
knowledge object structure. It is'composed of two parts. The object instancing

is for acquiring actual knowledge body, it is different from each
other for the four kinds of objects. See Figure 3.

- field definition
class definition—

SMJLA —
— method specification
— Interface object
— Main objectI- object instancing
— Knowledge objectI— Enumerate object

{Figure 3) The program structure of SMJLA



4 X.F. YANG - K.H. SHEN 387

3.2 Some important features of SMULA

Ex.2 : Definition of class object DECISION TABLE. It is the SMULA
represented decision table structure. ""

CLASS DECISION TABLE of STRUCT

/* STRUCT is tïïe super class in OOKSDE' */
(1) def PNO : string [10) ;
(2) def TEXT_ID : IDENT ;
(.3) def TEXT V : text;
(4) def C

(5) C_begin
(6) C expr : EXPR;
(7; C ericT /* condition parts of decision table */
(8) def- A
(9) A begin
(10) action_condition : array [1. .*] of char;
(11) action expr : EXPR;
(12) A end /* action parts of decision table */

/* ofher method are omitted here */
#•••*•
method- get_dt result() ; value set;
/* evaluate tKe value of decisTon table */

var_beginint i,J,succ,k;
var_end; /* declaration of inner variables */
for (i=1;i<=STRUCT<-number_of :A;i++) {

succ 1 ;
for (J=1;J<=STRUCT<-number of;C;J++) {

if (action_condition(i) t3j •'= 'I') {
k=C expr J <-Object value;if Tk 0) {if (action_condition[i)[J] 'Y') {

succ 0;
exit;

i
>

else {
if (action_condition i J 'N') {

succ =0;
exit ;

/* for J */if (succ) return(action expr - Object value);
} /* for i */
return(nul);

method ObJect_value() : value_set;
^

self - get_dt_result;

} /* DEC ISI0N_TABLE End */
3.2.1 super types
There are several super types pre-defined in SMULA. They are the
expression, the variable and the object statement.
An object of an expression type (EXPR, see Ex.2, (6) (11) is a
string which conform the grammar and semantic structure defined in



388 DEVELOPING ENGINEERING KNOWLEDGE BASES i%

OOKSDE. It is needed frequently in processing engineering codes
knowledge to represent the mathematical formula. The adoption of
expression type makes the acquiring of mathematical formula much
conveniently.
An object of a name appears in an expression is treated as an object
of a variable type (VARIDENT). The type (VARIDEOT) can be re-defined
as an object class. This mechanism implements the variable with
user defined features.
The object statement type (OBJ_STAT) is also a string. But it must
conform the grammar of object activating statement in SMULA. The
actual effect is achieved when the name of (OBJ STAT) type is replaced

by its value - the executable object activating statement, and
when the statement is interpreted. This operation is called macro
substitude in SMULA.

With these super types pre-defined in environment, it becomes a
simple task to input the knowledge body objects. Ex.3 presents an
actual decision table in SMULA.

Ex.3 : Following is a provision represented as a decision table.
The provision c5s1p32 is selected from "The Tentative Specification
of Harbour Work". It is instanced according to the object class
defined in Ex.2.

KB c5s1p32 of DECISION_TABLE

(1) PNO "c5s1p32";
(2) TEXT ID "TXT c5s1p32";
f3) C Rëinconc ==~'T ' ;
(4j • • • • •
(5) C DSCON "dscon3";
(6) A (Y,Y,Y,Y,Y) ,Kl*K2*Nz<=Rgl*Agl*Betae/(1+eO/rg) ;
>

3.2.2 Template technique
Template is a special date abstrction mechanism, with three different

forms; simple, multiple and nested. Statement (1)-(3) in Ex.2
are simple template. Statement (4)-(7) and (8)-(l2) in Ex.2 are
multiple template.
The different between simple and multiple template is that the
simple one can be instanced just one time but the multiple one can
be instanced more than one time. See Ex.3, (1) (2) are the instanced
fields of simple template and (3)-(5) are the instanced fields of
multiple ones.
With other features, such as repeated definition and default mechanism,
template technique greatly simplifies the processing of data abstraction.

The language TOL in KECOMS is now in OOKSDE replaced by the
class object definitions. Comparing with Ex.1, code provision c5s1p32
in Ex.3 is much more concisely defined.
Reference (6)(7) gives some more examples showing the representation
ability of SMULA. Most of commonly used knowledge representation
structures can be represented by SMULA.

3.2.3 Object compiling and long period task technique
In OOKSDE, the compilation is based on a single object. The processof building a knowledge base system is treated as a long period task
with all temperary statuses are recorded. This makes the developing
a knowledge base system can be implemented step by step during a



X.F. YANG - K.H. SHEN 389

period of fairly long time.

4. THE PROCESS OF INFERENCE IN KNCWLEDGE OBJECT BASE

The inference of knowledge object base system is the process of
evaluating objects. The "sailing" from object to object implements the
process of inference. During the process of verifying the comformance
of engineering design, the main operation is to evaluate relevant
code provisions. In another word, it is to evaluate the objects of
relevant decision tables. For short, we consider the evaluating of
the object in Ex.3, c5s1p32. To be understood clearly, Ex.4 gives
another object represented in SMJLA.

Ex.4 Following is an instanced data table object represented by
3MJLA. The data table is attached to provision c3s2p2.

KB C3s2p2_t1 of STATIC_TABLE
^

PNO "c3s2p2 t1";t data (1.55,1.45,1.65,1.50,1.65,1.50);
CÖL (AxPull=='T ' (Crook—'T ')) & (ReinConc=='T')Î

COL ((Axpull=='T') (Crook=='T')) & (PressConc=='T')>
LINE Ladcomb=="design";

j
LINE Ladcomb=="proof";

When all needed objects are available in the knowledge base, the
following relation is automatically built up in the knowledge base
system or in OOKSDE. In Figure 4,[<—3 means the left one can be
evaluated after the right ones have been evaluated.

c5s1p32<— ReinConc (input)
<— (input)
<— K1 <— c3s2p2_t1 <— PresConc (input)

<— (input)
<— K2 <— c3s2p2_t2 <— Chocond (input)

• •••••<— Betae <— c5s1p32_1 <— eO (input)
<— (input)

(Figure 4) The relation built up around provision c5s1p32
Suppose the following values are input:

ReinConc 'T'; D3C0N "dscon3"; Ladcomb "proof; chocond
"chocond2"; eO 5; Agi 14.5;

The evaluation begins with the object c5s1p32. The following is
the evaluating chain during inference.
The goal of inference : the value of c5s1p32;
1-1)activate the method Object_value in c5s1p32,
1-2)executing the method in class DECISION TABLE.

2-1)evaluate field C, the result is (YpYJYfY,Y),
2-2) evaluate field A, that is to evaluate the expression

Kl*K2*Nz<=Rgl*Agl*Betae/(1 +eO/rg)
2-3)activate the method (expr_value) to get the value of the

expression,
3-1)evaluate the variable Kl,
3-2)activate the method (Object_value) in VARIDENT.
3-3)activate the method (Object value) in c3s2p2_t1,

4-1) evaluate COL field, get tïïe result COL LU true,
4-2)evaluate LINE field, get the result-LINE[21= true,



390 DEVELOPING ENGINEERING KNOWLEDGE BASES

4-3)get the data t_data[1,2] 1.45,
4-4)return the value 1.45,

3-4)get the value, K1=1.45,
3-5) /* evaluate following variables */
3-i;get the value, K2=1.05, Rgl=550,

input value, Nz=4000, e0=5,
2-4)the result is 1, return the value,

1-3)get the value of c5s1p32, the inference process ends.

5. CONCLUSION

OOKSDE is a development environment for developing common-purposed
and large-scaled knowledge base systems. For its unique features of
processing code knowledge, it is also an efficient tool to develop
engineering knowledge base system. For early development of OOKSDE,

it is being implemented using C++.

REFERENCES

1. SHEN KANGCHEN etc, Knowledge Based Engineering Code K&nagement
System - KECOMS and Its interface to Engineering Databases,
Proceedings of the international Conference on Expert Systems
in Engineering Application,Oct. 1989.

2. SHEN KANGCHEN, etc., ECOIVB : A Good Aid for Building Engineering
Knowledge Bases, IV-ICCCBE, Tokyo, July 1991.

3. FENVES S.J., Software for Analysis of Standards, computing in
Civil Engineering, New York, 1979.

4. FENVES S.J., Representation of the Computer-Aided Design
Process by a Network of Decision Tables. Computer & Structures,
Vol.3, p.1099-1107, 1973.

5. YANG XIAOFENG, LI HONG, The Study of 00 Knowledge Representation
Method and 00 Knowledge Bases, Proceedings of CAÂI-7, April 1992.

6. YANG XIAOFENG, LI HONG, The Study of Representation of Engineering
Code Knowledge, Proceedings of CAAI-7, April 1992.

7. YANG XIAOFENG, SHEN KANGCHEN, SMULA - the Knowledge Representa¬
tion Language in OOKSDE, To be published on Proceedings of IEEE
TENCON'93, Beijing, Oct. 1993.



X.F. YANG - K.H. SHEN 391

User

(Figure 1) The structure of OOKSDE

Edit Compile Debug Browser Option

Operation Window

OOKSDE
developed by

S M U

Infornât ion Window

OOKSDE is anObject-Oriented Knowledge Base System Development Environnent

It is developed bu computing center of Shanghai Maritine University.

Introduce SMUIA System Help Error Info Examples

(Figure 2) The first-stage user interface of OOKSDE





393

Integrated Case-Based Design Systems
Systèmes d'étude intégrée rapportés au cas spécifique

Integrierte fallbezogene Entwurfssysteme

Kefeng HUA
Research Assistant, AI Lab.
Swiss Fed. Inst. Technol.
Lausanne, Switzerland

Ian SMITH
Adj. Dir., AI Lab.
Swiss Fed. Inst. Technol.
Lausanne, Switzerland

Boi FALTINGS
Dir., AI Lab.
Swiss Fed. Inst. Technol.
Lausanne, Switzerland

Kefent Hua received a Msc in
computer science at the Beijing
Inst, of Technology in 1985.
Currently, he is a doctoral student
at the Artificial Intelligence Labo-
rator, EPFL.

Ian Smith received a Civil Eng. Boi Faltings received a diploma
degree from the Univ. of from the ETH Zurich and aPhD
Waterloo, Canada, and a PhD from the Univ. of Illinois, both in
from Cambridge Univ., UK, in Electrical Eng. Prof. Faltings
1982. In 1988, he started the founded the Artificial Intel-
knowledge systems group at ligence Laboratory at EPFL in
ICOM and in 1991, he joined the 1987.
AI Lab.

SUMMARY
A design problem can be viewed from different abstractions. An architect e.g. sees a building as a
collection of rooms with particular properties, while a civil engineer sees a structure of load-bearing
elements. For design, it is important to combine these viewpoints into a single coherent object.
Difficulties associated with combining viewpoints lead to the so called integration problem. Case-
based design (CBD) is a recently developed knowledge-bas "d technique for knowldege-based
design systems. This paper describes how integration problems may be solved. Cases of previous
design solutions provide the basics for the integration of several abstractions into a single object.
When novel designs are created by adapting cases, integrity can be maintained through careful
formulation of the adaption procedures. A prototype design system is described.

II est possible d'envisager un projet sous différents aspects d'abstraction. Un architecte voit p.ex. un
bâtiment en tant qu'assemblage de locaux ayant diverses propriétés, tandis qu'un ingénieur perçoit
une structure porteuse constituée d'éléments constructifs. Pour la conception du projet il est
important que les deux points de vue se rejoignent en un objet cohérent. C'est ce qu'on entend sous
la notion de problèmes d'intégration. Les auteurs montrent comment la technique opératoire
récemment développée pour les systèmes experts peut venir en aide dans les problèmes
d'intégration. Les résultats d'études de cas spécifiques mis en mémoire mettent en évidence les
possibilités de combinaison pour l'intégration de diverses abstractions. En développant de nouvelles
études à partir de l'adaptation de cas précédents, il est alors possible de conserver l'intégrité par une
formulation soignée des phases successives d'adaptation. L'article décrit un système prototype.

Ein Entwurfsproblem kann aus unterschiedlichen Abstraktionsrichtungen angesehen werden. Ein
Architekt z.B sieht eiirGebäude als Ansammlung von Räumen unterschiedlicher Eigenschaften, wo
der Ingenieur ein Tragwerk aus diversen Bauteilen wahrnimmt. Für den Entwurf ist wichtig, beide
Auffassungen zu einem kohärenten Objekt zu vereinen. Dies versteht man unter dem Begriff des
Integrationsproblems. Es wird gezeigt, wie die jüngst für Expertensysteme entwickelte Methodik
des fallbezogenen Entwerfens bei der Lösung des Integrationsproblems helfen kann. Gespeicherte
Ergebnisse von Fallstudien zeigen Kombinationsmöglichkeiten unterschiedlicher Abstraktionen auf.
Wenn neue Entwürfe aus der Anpassung früherer entwickelt werden, kann die Integrität durch
sorgfältige Formulierung der Adaptationsschritte bewahrt werden. Ein Prototypsystem wird gezeigt.

RESUME

ZUSAMMENFASSUNG



394 INTEGRATED CASE-BASED DESIGN SYSTEMS

Structure Spaces Circulation

LUL iUJ4
liiiiim f?-

Figure 1: A building represents an integration of many different abstractions, including structure,
spaces and circulation pattern.

1 The Integration Problem

Any physical artifact can be viewed according to many different abstractions. For example, a building
can be:

• an ingenious civil engineering structure of beams and columns.

• a magnificent way of creating architectural spaces.

• a practical arrangement of functions for its occupants.

Designing a building is difficult because it has to integrate satisfactory solutions in each abstraction:
the structure designed by the civil engineer, the spaces laid out by the architect, and the circulation
pattern desired by the user are part of one single structure (Fig. 1).

Disagreements and misunderstandings between architects and civil engineers are recognized as

sources of many problems in construction1. Producing and documenting designs on a CAD system,
preferably an intelligent CAD system, help detect problems during the design phase through checking
consistency between the designs produced by different people. Research efforts such as IBDE [9] have

already proposed computer tools for integrating designs generated in different abstractions.
In IBDE, seven different modules correspond to different abstractions and communicate via a

common data representation called a blackboard. Inconsistencies are detected by critics and cause
reactivation of certain modules in order to eliminate the problem. Since corrections are constructed
locally, this process may well cycle or even diverge, as illustrated by Figure 2: correcting the
discrepancies by locally adjusting either PI to satisfy CI or P2 to fall onto C2 leads to a cycle
which diverges from the solution. Only through simultaneous consideration of all abstractions can
such problems be avoided.

1 Disagreements involving occupants are probably even more frequent, but rarely communicated to the designers.



A K.F. HUA - I. SMITH - B. FALTINGS 395

P2

/ CI

O PI

Figure 2: Pl/Cl and P2/C2 represent parameters and constraints in two different but interacting
abstractions: the correct choice of the parameter is on the constraint curve. When discrepancies in
each abstraction are corrected in isolation, the process may diverge as indicated by the arrows.

Achieving integration in a classical knowledge-based system framework is in principle possible,
but extremely difficult because there are few general principles which hold over all abstractions.
Attempts to formulate knowledge in an integrated way exist. For example, Alexander [1] has produced
a handbook which defines principles of good design that consider several abstractions simultaneously.
A striking fact about his work is that the rules he defines are actually prescriptions for particular
buildings in particular environments, with little generality. The lesson from this observation is:

Integrating design knowledge from many abstractions amounts to formulating particular
cases of good design.

This observation leads to the formulation of design knowledge as prototypes [3] which are generalized
versions of particular structures. However, since prototypes still require tedious formulations of the
generalizations that apply, design by reusing previous cases is of interest. In this paper, we show
how this paradigm of case-based reasoning can be applied to solve the integration problem in building
design.

2 Integration through Case Adaptation
Case-based reasoning From the beginning of AI, cases have been regarded as an important source
of knowledge. For example, the checker player of Samuel[6] used a library of some 53000 cases of
positions and demonstrated a performance of a better-than-average novice. Learning from examples
is a fundamental strategy of knowledge acquisition, and could be applied to design cases. The main
difference between learning from examples and case-based reasoning is that instead of generalizing
cases during knowledge acquisition, they are generalized with respect to a specific problem during the
problem solving process itself.

Case-based reasoning originates from psychological models of human memory structure [8]. A case-
based problem solver consists of two processes: indexing to find a suitable precedent, and adaptation to
use it in the new problem context. Although the indexing problem has been studied in the literature,
known schemes rely on symbolic features which are hard to define in design. The adaptation problem
has only been addressed in very simple domains. For case-based design, adaptation is essential; no



396 INTEGRATED CASE-BASED DESIGN SYSTEMS A
two design problems are ever identical. Since indexing can be carried out by user interaction, we bave
focussed our research on the adaptation of cases to new problems.

Design cases Design requires knowledge in order to synthesize structures. For building design
problems of realistic size, formulating such synthesis knowledge is very tedious, since conflicting goals
lead to many tradeoffs. This knowledge is more easily accessible in the form of cases of existing
buildings, and each case incorporates a large amount of synthesis knowledge.

A case-based design system can be characterized by its dependence on cases as an exclusive
knowledge source. We define a shallow case as a model of an existing building without any further
information about how it was obtained. In contrast, a deep case is augmented by a trace of the
process which devised the design. Although additional information in a deep case can be used to
guide indexing and adaptation processes, its interpretation would require a design knowledge base

which is sufficiently complete to generate the design. Since the main point of using cases for design is

to avoid having to formulate this knowledge, we attempt to limit our research to cases which are as

shallow as possible in order to test how far this approach is applicable.

What is a case? A shallow case defines an actual artifact, represented for example as a CAD
model of the actual building. In our implementation, we use AutoCAD as a tool for representing and

rendering this information.
Buildings are examples of integrating functions2 according to different abstractions. Our prototype

considers spaces, circulation and structures as examples. These functions are modeled by a symbolic
vocabulary appropriate to the corresponding abstraction, and mapped to constraints formulated on the
common CAD model. The CAD model thus serves as a basis for integrating different abstractions.
A case defines a set of "good" ways of achieving functions in different abstractions, and a way to
integrate them into a single building.

Case adaptation Applying a case to a new problem requires changing the structure while
maintaining the integration of the abstractions that has been achieved in the case. The fundamental
assumption underlying case-based design is that adaptation is easier than generation. There are three
reasons why this assumption is reasonable:

• It is often impossible to formulate explicitly the knowledge required to generate designs involving
complex tradeoffs.

• If the case is sufficiently close to a solution to the new problem, only few changes are required.

• Many details of the case, such as the type of windows, can be carried over to the new solution.

Case-based design is a successful paradigm for solving the integration problem only as long as these

reasons are valid. For example, dimensioning of simple elements and other tasks found in routine
design activities may not contain requirements which are necessary for effective implementation of
case-based design strategies.

In the methodology we developed, adaptation consists of the following processes in order to ensure
that such advantages are exploited:

1. Insertion of the case into the new environment.

2. Determination of the discrepancies: functions which are no longer satisfied due to the new
specifications.

3. Parameterization of the relevant parts of the case in order to eliminate the discrepancies.
Parameterization is understood in a general sense, covering both dimensional and topological
aspects.

2We use the term function to denote any feature; structural stability is also a function.



A K.F. HUA - I. SMITH - B. FALTINGS 397

4. Modification of the case into a new solution.

Insertion is the process of determining a match between the original environment of the case and
the environment of the new problem. Finding the match is often a difficult and ambiguous problem,
and is achieved with interactive help from the user. Discrepancies occur when differences between
the specifications of the case and the new problem cause certain functions to disappear. An example
of a discrepancy is that the building exceeds restrictions imposed by the new site, or that it provides
too little floor space.

The parts of the case involved in discrepancies are those which need modification in the new
solution. Parameterization of the case collects those parameters which are part of the discrepancies
or which are related to them by constraints. Topological adaptation might be achieved by representing
the topology as a grammatical structure when elements can be exchanged. Dimensional modification
of a case consists of finding parameter values which give a feasible solution for the new environment.
Topological modification is the addition, suppression or rearrangement of parts, and is always followed
by renewed parameterization of the new structure. Modification is the process where the integration
between the different abstractions must be maintained.

Maintaining integration through dimensionality reduction In dimensional modification, the
different abstractions are represented as parameters and constraints between them. Constraints can
be definitions, such as

floor-space width * length

or restrictions, such as

width > 1.5m

All constraints can be mapped to parameters defined in the CAD model. Maintaining the integration
during adaptation means that any modification should leave all constraints which are currently
achieved intact; the modification must remain within the subspace of the parameters defined by the
constraints. This subspace can be explicitly constructed and parameterized using a dimensionality
reduction [7] process illustrated in Figure 3.

Figure 3: Pl/Cl, P2/C2 and P3 represent parameters and constraints of three different abstractions.
By defining a new parameter, P*, which maps to positions on the intersection curve of the two
constraints CI and C2, solutions can be found without unstable iterations through selecting a suitable
value for P*.

P2 '

O
PI



398 INTEGRATED CASE-BASED DESIGN SYSTEMS

Case Adaptation of the case

Figure 4: Example of case adaptation

Modifications using the reduced set of parameters can never create any contradictions between
different abstractions, and thus cycling or diverging behaviors common to blackboard systems (illustrated
in Figure 2) do not occur.

Dimensionality reduction only applies to equalities. Among inequalities, we can distinguish two
types: critical inequalities which are limitations exploited to the maximum and just satisfied in the

case, and non-critical ones which are satisfied by a large margin. If the case is sufficiently close to the
new solution, critical-constraint sets can be assumed to remain the same in spite of the adaptation.
Thus, critical inequalities can be replaced by equalities to which dimensionality reduction applies. Non-
critical inequalities are constraints on the parameter values to be chosen for the modified instantiation
and are handled by constraint propagation mechanism.

Topological changes For topological changes, we have not yet succeeded in defining an analog
to dimensionality reduction; in fact, such an analog may not exist. Thus, we cannot ensure that
integration is maintained throughout a topological modification. However, case adaptation still offers

advantages over generation; if the case is sufficiently close to a feasible solution, the number of
topological changes that are required, and may destroy the integration, is much smaller than what
would be entailed by generating the building from scratch.

Currently, topological adaptation proceeds in the same way as other design systems, e.g. IBDE
[9]. Different knowledge sources act on different abstractions. The user re-establishes constraints
in the new topology through constraint posting in order to follow this step with a new dimensional
adaptation, thereby ensuring that the new topology meets dimensional requirements. The solution is

subsequently checked for consistency with non-critical constraints originating from all abstractions. If
this check fails, the current proposal for topological adaptation is rejected and the system returns to
the relevant knowledge sources for another proposal.

3 CADRE, A Prototype Design System

In order to explore the adaptation of cases in design, we have implemented a CAse-based building
design system through Dimensionality REduction(CADRE) [4, 5]. One example treated by CADRE is

shown in Figure 4. It is a U-shaped building (the Felder House in Lugano, Switzerland, [2]) adapted
to a slightly different site. CADRE modified both the dimensions and the topology of the case in
order to obtain a solution that preserves the functionalities and tradeoffs in the case.

Computationally, the processes in CADRE can be divided into two layers: a symbolic layer and

a numerical layer. They correspond to the topological and dimensional models of the case. CADRE
focuses on case adaptation, and leaves case selection to the user. The adaptation is conducted with
the following procedure:



K.F. HUA - I. SMITH - B. FALTINGS 399

1. Evaluation of the existing case in the original and new environments in order to find discrepancies.
Insertion of the case into the new design context so that a maximum coincidence is achieved,
subject to constraints posted by the user.

2. If there are dimensional discrepancies, identify the violated constraints and the parameters which
are involved in them. Complete the set of applicable parameters and constraints with all those
which are related to the original ones through links in the constraint network. This defines the
complete base set of parameters and constraints related to the discrepancies.

3. Apply dimensionality reduction to the base set of parameters and constraints to define an
adaptation parameterization which is guaranteed to avoid conflicts.

4. Modify the dimensions using the parameters resulting from dimensionality reduction. The user
controls the process by asserting additional constraints or manually identifying suitable values.

5. Check the validity of the adaptation by verifying inequality constraints in the base set that were
not critical and thus not treated by the dimensionality reduction.

6. If there is no solution at the dimensional level for the new design problem, trigger topological
transformation rules which relax constraints in the related constraint set. If there is a transformation

which preserves design features of the case, go back to step 1, otherwise the case is not
suitable.

The next section gives an example of how this procedure has been implemented in CADRE. Tests

on several real examples, along with discussions with practising engineers and architects lead us to
believe that the procedure described above is complementary to their activities.

4 Example - Adaptation of a Building
In order to illustrate CADRE, a part of the Computer Science building group, the INR building,
at the Swiss Federal Institute of Technology will be used, see Fig. 5. This building was designed
to be a multi-purpose research building so that it can accommodate any technical research activity.
The architect and the engineer re-used a design employed for a similar building on the same site.
Construction was completed in 1992.

-lz Coordination of the adapted case with respect to all abstractions was not entirely successful.
More specifically, some rooms which were laboratories in the original design were changed into



400 INTEGRATED CASE-BASED DESIGN SYSTEMS £A

Figure 6: A partial second floor plan of an earlier building. The hatched area indicates the laboratory
space which is used as a classroom in the INR building, recently finished. The blackboard is positioned
along the wall on the left hand side of the building.

classrooms for the INR. building. Such change in use modified functional requirements for these rooms.
Column positions which were acceptable in the free space of laboratories became design faults in the
new case when these rooms became classrooms - students require unobstructed views of blackboards.
This is not an unusual situation; such functionality defects are common in nearly every building. They
represent most clearly the effects of poor communication between engineers and architects.

For this example, it is assumed that the case as stored is the as-built structure conforming to the

original design (tolerating columns in laboratories). Part of the second floor configuration is shown in
Fig. 6. Column positions are indicated as small squares. Load carrying frames are oriented vertically
and are spaced at every second office position, corresponding to every second window bay. Thus, the
exterior upper and lower sides of the building contain twice as many columns as a parallel line of
interior columns. Interior columns are positioned along one side of the hall and within laboratory
spaces.

The room in the upper left position was originally designed to be a laboratory and is stored as

such in the case base. The new environment where this case must be inserted is the same as the
original except that the functions of some rooms have been changed from laboratory use to classroom
use. Therefore, the discrepancy detected upon insertion of the case into the new environment is the
requirement that columns are no longer allowed in rooms susceptible to be changed into classrooms.

The program proceeds by selecting all constraints (stored in the base parameterization with the
case) that are related to this discrepancy. These constraints are then combined with the new constraint
requiring columns to be placed in walls in order to begin dimensionality reduction. This process is a

problem-specific parameterization performed at run time. Once complete, dimensional adaptation is

attempted in order to find a solution which does not involve changes in overall room layout. However,
a restriction on the minimum size of the classroom causes this step to fail. Without such a constraint,
a solution involving a classroom equal to the frame spacing (every two offices) would have been

proposed. Note that such a proposal would have already been consistent with constraints in both
structural and architectural abstractions. This is the advantage of dimensionality reduction using
constraints originating from different abstractions; divergent looping is avoided.

The next step involves triggering topological transformations in order to relax the constraints
included in the dimensionality reduction. A structural topological adaptation module, driven by rules

governing acceptable topological changes, proposes a solution involving a load carry frame every three
window bays rather than every two in the original case. This new configuration is placed back into
the base parameterisation module and a new dimensionality reduction is determined. This time,



K.F. HUA - I. SMITH - B. FALTINGS 401

classroom

lab

y
hall equipment

\J VJ

office office office office office office

Figure 7: The new configuration for the second floor of the INR building after structural topological
adaptation and after an additional cycle of dimensionality reduction and dimensional adaptation.
Constraints related to both architectural and structural abstractions are satisfied.

dimensional adaptation succeeds; dimensions for elements such, as floor slabs and column sizes are
adapted to the new span length between frames. The new configuration is shown on Fig. 7.

This adaptation creates a new discrepancy on the first floor, where a column is now in the center
of a room. Unfortunately, there is not enough space in this paper to complete this example with
the figures necessary to illustrate subsequent steps. Briefly, architectural topological adaptation is

triggered on the first floor to solve this discrepancy and a new parameterization and dimensionality
reduction adjusts dimensions and ensures that all constraints are satisfied.

CADRE terminated by proposing a workable alternative for all floors without placing columns in
rooms susceptible to becoming classrooms. We believe that had there been a tool similar to CADRE
available to the engineers and architects during the design process, this building would have been built
according to the configuration proposed in Fig. 7.

5 Conclusions

We have argued that case-based reasoning offers assistance for the problem of integrating different
abstractions in design. Our prototype system, CADRE, illustrates the usefulness of the approach for
practically interesting designs. The paradigm of case-based design fits very well with the observation
that human designers like to work by reusing cases of previous designs. The considerations we have
presented in this paper may be an explanation for why this is the case: integration of abstractions
may be the main reason for designers to reuse previous cases. Adaptation of single cases is suitable
for routine design. For innovation, we have to address the combination of cases; this is the topic of
our current research.

Acknowledgements

This work is a result of collaborative research with CAAD(Computer-Aided Architectural Design),
ETH Ziirich, and ICOM(Steel Structures), EPF Lausanne. Discussions and collaboration with Professor

Gerhard Schmitt (CAAD) have been most valuable. We would also like to thank the collaborators
Shen-Guan Shih and Simon Bailey for their work on implementation of the ideas described herein,
and to whom the credit for many of the details of the work is due. We also thank the Swiss National
Science Foundation for funding this research as part of the National Research Program 23 on Artificial
Intelligence and Robotics.



402 INTEGRATED CASE-BASED DESIGN SYSTEMS

References

[1] ALEXANDER, C. "Notes on the Synthesis of Form" Harvard University Press, Cambridge, Mass,
1964

[2] MARIO CAMPI - FRANCO PESSINA Architects, Rizzoli International Publications, New

York, 1987

[3] BALACHANDRAN, M., GERO, J. "Role of Prototypes in Integrated Expert Systems and
CAD Systems" International Conference on Artificial Intelligence in Engineering, Boston, 1990

[4] FALTINGS, B. "Case-Based Representation of Architectural Design Knowledge" Computational
Intelligence 2, North-Holland, 1991

[5] HUA, K., SMITH, I., FALTINGS, B., SHI, S. and SCHMITT, G. "Adaptation of
Spatial Design Cases" Second International Conference on Artificial Intelligence in Design CMU,
Pittsburgh, USA, June 1992, pp559-575

[6] SAMUEL, A.L. "Studies in Machine Learning Using the Game of Checkers" IBM J. Research
and Development 3:210-229

[7] SAUND, E. "Configurations of Shape Primitives Specified by Dimensionality-Reduction Through
Energy Minimization" IEEE Spring Symposium on Physical and Biological Approaches to
Computational Vision, Stanford, March 1988

[8] SCHANK, R. "Reminding and Memory" Chapter 2 in: Dynamic Memory - A Theory of
Reminding and Learning in Computers and People, Cambridge University Press, 1982

[9] SCHMITT, G. "IBDE, VIKA, ARCHPLAN: Architectures for Design Knowledge Representation,
Acquisition and Application" in H. Yoshikawa, T. Holden (Eds.): Intelligent CAD II, North Holland,
1990


	Session 5: Validation, integration, and technical tools
	Integration of building CAD/CAE systems
	Developing engineering knowledge bases
	Integrated case-based design systems


