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Structural Damage State Assessment via Neural Networks
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SUMMARY
This paper presents experiences in the implementation and use of neural networks aimed at a novel
approach for detecting and characterising faults and other nonlinear mechanisms related to defects
or damage in civil engineering structures. Fundamental aspects are addressed and discussed, such
as learning stategies, network organisation-topology, error and convergence characteristics,
normalisation procedures. While preliminary in nature, the results obtained show a considerable
potential in the neural network approach, together with a number of open problems and with
indications for future research Unes.

RÉSUMÉ
L'article traite des expériences faites par la mise en application et l'utilisation des réseaux
neuronaux, en vue d'une nouvelle approche pour la détection et la caractérisation de défauts et
d'autres mécanismes non linéaires en liaison avec des dommages dans les ouvrages de génie civil.
La discussion porte sur certains aspects fondamentaux du problème, comme les stratégies
d'apprentissage, la topologie de l'organisation des réseaux, les erreurs et les caractéristiques de
convergence ainsi que les procédures de normalisation. Les résultats obtenus jusqu'ici montrent les
énormes possibilités offertes par cette méthode, mais également un certain nombre de problèmes
restant en suspens et des indications relatives aux objectifs de la recherche future.

ZUSAMMENFASSUNG
Der Beitrag berichtet von Erfahrungen mit der Implementierung und Anwendung neuronaler
Netzwerke bei der Entdeckung und Charakterisierung von Fehlstellen und anderer nicht-linearer
Mechanismen infolge von Schäden im Ingenieurtragwerk. An grundliegenden Gesichtspunkten
werden die Lernstrategien, die Topologie der Netzwerkorganisation, Fehler- und
Konvergenzeigenschaften sowie Normierungsverfahren behandelt. Vorläufige Ergebnisse zeigen für diese
Methode beträchtliche Möglichkeiten auf, aber auch ungelöste Probleme und die Richtung
zukünftiger Forschung.
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1. INTRODUCTION

Repair and retrofitting of existing structures and infrastructures is in steady
growth in the whole world, due to their increasing service life, as well as to
the deterioration arising from accelerated loading and aggressive environments.
Procedures which can improve reliability and prediction capability in these
areas would be of major benefit to the technical community. The work presented
is part of a research project directed toward the development and application of
neural networks as a novel approach for detecting and characterising faults and
other nonlinear mechanisms related to defects or damage in civil engineering
structures. Fundamental aspects are addressed and discussed, such as learning
strategies, network organisation-topology, error and convergence characteristics,

normalisation procedures. The dynamic response of structures, comprising
artificial signals from numerical models, experimental signals from laboratory
tests and some examples on full scale structures, is adopted as network input.
Mechanisms examined are the opening-closure of gaps (cracks) and the presence of
nonviscous dissipation, including friction and hysteresis.

2. THE NEURAL NETWORK APPROACH

2.1 Generalities on Neural Networks

Without intending to provide a full discussion, well available in the many books
and papers on the subject, see e.g. [1,2], a synthetic information shall be
given for the unacquainted reader. Artificial neural networks are computational
systems, composed of elements (the artificial neurons) that perform in a manner
analogous to the most elementary functions of the biological neuron. Their birth
in the present acceptation can be indeed traced to a fundamental work of Hebb,
[3], showing how a neuron network could exhibit a learning behaviour. A neural
network amounts to a highly interconnected system of artificial neurons arranged
in layers, the first and last of which are respectively the input and output
layers, while the intermediate ones are called hidden layers, see Fig. 1. The
preliminary and fundamental phase of their use is that of training, in which a
set of input patterns, representative of a specific phenomenon, is fed in and
the processing algorithm in the hidden layers is tuned until each pattern
matches to a required accuracy a given set of outputs. Once the network is
trained, its use takes place feeding the input layer with new data, often called
test patterns, selected within the same class of phenomena of the training
phase, but different from the training ones: the output provides an estimate of
the same kind of answers aimed at in training.
Such two-step procedure exploits many positive features. In training the net
"learns" from experience, accumulates "knowledge" and it is "sensitive" to the
environment. Furthermore, its response can be, to a degree, insensitive to input
changes, resulting in "generalisation", i.e. in the capability of abstracting
the essential features of a set of inputs. They are hence ideally suited to cope
with systems affected by noise or distortion and with fuzzy problems in general.
Note that a net generalises as a result of its structure and not by use of
embedded artificial intelligence, a concept completely absent in its rationale.
For system identification, the most attractive property is the potential to
reproduce the behaviour of input-output systems, yielding non parametric black-
box representations. This implies that no knowledge of the underlying physics is
necessary, but no related information is obtained either. Such properties caused
in the last decade a burst of activities, with theoretical developments and
applications in heterogeneous fields, whenever parametric models were too demanding,

if non impossible. Despite such accomplishments, it must be borne in mind
that neural networks are simply a new curve-surface fitting algorithm, producing
no more than a powerful and flexible multi-dimensional polynomial interpolation
method. Their use should hence be strongly connected to the knowledge of the
underlying algorithms, as well as to the understanding of potential and limits.
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2.2 Fundamentals of Multi-Laver Perceotron Back-Propaaation (MLPI Networks

Multi-Layered Perceptron Back-Propagation (MLP) networks are adopted here
[1,4,5,6,7). They revealed in the last years the most reliable, becoming the
present established state—of—the—art technique in the field. Earlier per—

ceptrons were severely limited in what they could represent [13], until the
development of back—propagation [5,6,7] led to practicable MLP's with any number
of layers. The fundamental building block for an MLP is the artificial neuron,
whose scheme is shown in fig. 2. The X£ are the inputs received from the previous

layer neurons, to each of which it is assigned a weight. For each neuron a

summation produces the term NET, subsequently modified trough an activation
function F to yield the neuron output OUT. Commonly used are the sigmoidal function,

adopted here, or the hyperbolic tangent, as they both show several useful
features: i) they restrict the output between 0 and 1; ii) they have a simple
continuous derivative; iii) they add automatic gain control, as for small input
their derivative is high, while for large ones reduces progressively: this
avoids saturation and attenuation. For MLP's, the phase of training becomes a

process aimed at adjusting the neuron weights so that the application of a given
input pattern, defined as a vector, produces the desired output, also in vector
form. This is done via the already described procedure, called forward pass, and

a subsequent reverse pass, in which the weight adjustment takes actually place.

Despite their success, MLP's have serious limitations in both application and
implementation. A primary disadvantage is connected to the use of a steepest
descent procedure, ensuring convergence to a minimum, but not to the absolute one.
Second, there is no theoretical guide as to what the best stepsize should be.
The convergence proof assumes infinitesimal weight adjustments, i.e. infinite
training time: stepsizes can hence be assessed only through experience in each

application field. This may lead to the need of a very large number of iterations

to converge. On the other hand, a stepsize too large may cause solution
divergence, paralysis or instability. This explains the interest in the
development of innovative, more powerful and more reliable network concepts, to
which a large research effort is being devoted worldwide [4,8,9,10,11,12].

2.3 Scope of Work

Most industrial applications of neural networks in engineering lay within
Electronics and Control, and more recently also in Mechanical Engineering. At a

research or pre—industrial stage, some excellent proposals are concerned
with nonlinear systems identification [13,14,15,16], while fewer are devoted to
structural fault detection [17,18]. In Civil Engineering, the authors are aware

only of the rather questionable work [20], besides those within the European
Community NEWNET project [21,22], to which the present belongs. To clarify the
scope of this work, one must remeber that networks can detect, predict.
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localise, classify or quantify relevant phenomena. Cases of classification and
quantification are presented here. A second decision area concerns the type of
information to feed as input pattern, which should take the form most
appropriate to allow the extraction of significant features of the phenomena in
consideration. First, signals may derive from the raw or processed structural
response. Processing may take place in the frequency domain, with first or
higher order spectra [23], or i-n the time domain, e.g. through Hilbert transforms

[24], or even in the time-frequency space [24]. In the frequency domain
the typical input should be a sinusoidal excitation, leading to frequency
response functions (FRF). As the final goal of this approach is the use on
civil engineering structures, typically subjected to sinusoidal forces only
through external devices which might limit operation and are often unwelcome,
the practical use of FRF's is limited. Much more interesting are the free
oscillations, with impulse response functions (IRF), or the excitation through random
loads, including operational or environmental actions. This work is concerned
with IRF only, i.e. with a free oscillation response network input. Furthermore,
the free response can be represented via different variables, in the displacement

or in the force domain. Here the displacement response is considered;
however, this does not imply a preference indication, not yet mature. Within the
above, a few more aspects must be discussed. First, signals including noise,
generated via one d.o.f. numerical models, are used; this provides an assessment
of the possibility of training networks on artificial signals, easily generated
in large quantities, rather than on experimental ones. The limitations connected
with the single d.o.f. training are well understood and the extension to multi
d.o.f. systems shall be a natural prosecution of this work. Second, a very
simple input, comprising only a single oscillation wave is used for training;
also this aspect is considered of significance, as it tests the nets in conditions

in which standard identification procedures are not easily applied and
because in real applications one is often faced with scanty or short recordings.

3. MLP NETWORKS FOR PROPERTY CLASSIFICATION

3.1 Preliminary Remarks

Experiences in implementing networks as classifiers of mechanical systems
properties are presented. For classification, the typical neuron output sought
is binary: for each class it is provided one neuron, with a 1 or 0 output to
stand for positive or negative answer. Two cases shall be discussed, concerning
energy dissipation type selection and nonlinearity discrimination.

3.2 Characterising Energy Dissipation
Dissipation mechanisms considereded are: i) linear viscous damping; ii) dry
friction; iii) hysteresis, with elastic-perfectly plastic constitutive law.
Hence, the output layer comprises 3 neurons, trained to produce the 0-1 (No/Yes)
binary output. Training was carried out on single waves, described from zero to
zero through 21 time stations, resulting in a 21 neurons input layer, with
different levels of white noise added. The dissipation rate selected was such that
from 1 to 10 % of energy is lost in one cycle. Several topologies were
considered, with 1 to 3 hidden layers and 4 to 21 neurons per layer: in general the
performances were quite uniform, with a marginal improvement for larger and
multi-layer schemes. No particular difficulties were observed in training: while
a binary response was considered reliable when affected by an absolute error
below 10-2, the typical accuracy achieved was of the order of 10-4. Only aspect
worth mentioning is the necessity, to avoid excessive training time, of an
analyst-monitored tuning of the back-propagation step. The real test of the
reliability and generalising capabilities of a net is not a successful training,
but its performance on other signals, not used in learning and hence "unknown".
Once trained, the nets were used on a large set of test patterns, including
i) signals belonging to the training classes (i.e. viscous damping, friction or
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hysteresis) and inside the training range (i.e. 1 to 10 % energy loss per
cycle); ii) signals within the training class, but outside the training range
(from 0 to 1 % or from 10 to 20 % energy loss per cycle); iii) signals of other
nature, not belonging at all to the training mechanisms. The latter comprised
white noises, oscillations to which a large noise was superimposed, multi-
d.o.f. systems and other functions, among which to notice also elastic undamped

oscillations. The results are summarised in Table 1, for some of the nets
considered. A response was defined "true" when only the correct neuron was

activated, with an error on the binary output below 0.02 (twice the accepted
training error). On the contrary, it was defined as -uncertain" if more than one

neuron was activated or if the error was over 0.02, and finally -false- if only
one wrong neuron was activated, with an error below 0.02. First useful outcome,
the network classification was always 100 % correct for patterns within the
training classes and range (A rows in Table 1). When applied to signals within
the training classes, but outside the training range (B rows), the results were

still favourable, with a true response average of 70 %. For other signals (C

rows), an unfavourable aspect showed: a majority of false answers. This stresses
a trend, typical of simpler neural networks, to yield an answer anyhow, even for
meaningless input. One must note that while an uncertain answer is acceptable,
as it introduces a doubt element in the identification, nothing is worse than a

clear, sharp, wrong response, specially dangerous when the class and range of
the signals analysed is not easily determined in advance. To cope with such

false answers, for the training classes the best measure is to extend, within
reason, the training range, while for "other signals" one should use networks
capable of their exclusion. As this is at present beyond the possibilities of
existing algorithms, a chance lies in adding in training samples of signals to
be refused, activating an -else" neuron. This was done appending 15 further such

inputs, with the results shown in Table 2: the improvement is evident, with a

massive decrease of false answers, despite the comparatively small training set.
This underlines a potential in the approach, but industrial—professional use
would require a larger and improved training, seeking a greater reliability. To

note that in this case training small single-layer nets was unsuccessful and,
even when achieved, two-layer ones performed better.

3.3 Damage Detection in a Coupled Mechanism

This example is concerned with the capability to discriminate a linear from a

nonlinear response. The second is represented by a bi—linear stiffness constitutive

law, typical of a gap or crack opening-closure phenomenon in a structural
element. To make the identification more challenging, the nonlinearity level
adopted was quite mild, with a stiffness variation from 0 to 10 %, and both the
linear and nonlinear cases were coupled to a rather large viscous damping, with
critical ratio from 0 to 0.1. The results obtained with a single-layer, 5 hidden
nodes net were even more accurate than in the previous case. Not only the binary
test patterns classification was 100 % correct within the training range, but
also well outside, for damping ratios up to 0.2 and stiffness reduction up to
20 %. Beyond, the response deteriorated progressively but slowly, keeping a

large percentage of true answers. This is specially interesting as, with the
poor information provided, standard methods would not achieve the same, in
particular for high damping, small nonlinearity cases, where the dissipation
"cancels- most of the bi-linear oscillator response features.

4. MLP NETWORKS FOR PARAMETER QUANTIFICATION

4.1 Preliminary Remarks

In a first stage, it was attempted to implement quantifiers as an extension of
classifiers, replacing the yes/no output with a numerical one. This line did not
fail completely, but showed not very effective. After some effort, it was con-
oncluded that quantification could be accurate only if carried out on its own.
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Network output(*)
True Une. False

A 100 0 0
21-4-3 B 73 18 9

C 0 49 51
A 100 0 0

21-6-3 B 64 12 12
C 0 48 52
A 100 0 0

21-10-3 B 72 17 11
C 0 53 47
A 100 0 0

21-21-3 B 75 16 9
C 0 42 58
A 100 0 0

21-4-4-3 B 67 12 11
C 0 2 98
A 100 0 0

21-8-8-3 B 74 16 10
C 0 36 64
A 100 0 0

21-12-12-3 B 76 16 8
C 0 46 54

Network Topology
Network output(*)
True Une. False

A 100 0 0
21-10-4 B 67 26 7

C 49 37 14
A 100 0 0

21-4-4-4 B 72 15 13
C 75 10 15

A 100 0 0
21-12-12-4 B 73 21 6

C 75 19 6

Table 1 Response for test patterns
of energy dissipation classifiers
without "other signals" option

A Test patterns within training
class and training range

B Test patterns within training
class but outside training range

C Test patterns outside training
class and range (unknown signals)

Table 2 Response for test patterns
of energy dissipation classifiers
with "other signals" option

I I I I I I I I I I I I I I I I I I

0.9 0.92 0.94 0.96 0.98 1

STIFFNESS RATIO

(INPUT PATTERNS)

I I I i I~r [~v ni I I r i | i i i

0.0 0.04 0.08 0.12 0.16 0.2
FRICTION COEFFICIENT

(INPUT PATTERNS)

Fig. 3 Rating stiffness nonlinearity Fig. 4 Rating friction coefficient

aiming at one parameter at a time. Hence, the nets adopted have only one output
neuron, yielding the scaled parameter value. As to topology, small single-layer
nets proved effective; all the results presented were obtained with 21-S-l
schemes. An other general conclusion reached was that quantification might be
effective only within the training range, while the distortion outside causes
large errors, with lesser generalisation capabilities.

4.2 Rating Stiffness Nonlinearity
Reaching a high accuracy is here much more important than in quantification and
proved correspondingly harder. This first example quantifies the stiffness
variation from the response of the bi-linear oscillator treated in 3.3. The
variation range is 0-10 %, with the net output indicating the stiffness ratio,
from 1 to 0.9, and the training set comprising only 5 patterns.
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1.0

Fla.

CRITICAL DAMPING RATIO
(INPUT PATTERNS)

5 Rating critical damping
ratios in the 0-1 range

I I I I I I I I I I I I I

0.0 0.02 0.04 0.06 0.08 0.1

CRITICAL DAMPING RATIO
(INPUT PATTERNS)

Fig. 6 Rating critical damping
ratios in the 0-0.1 range

The results are shown in fig. 3: the boxes represent points in a correct
response-net response plane for the test patterns, hence with a perfect output
producing a straight line with ir/4 slope. The error for each case is also
superimposed in a solid line, while vertical dots indicate the training patterns
locations. Reaching in training quite good accuracy, with absolute errors of
the order of 1x10"^ proved not too difficult, but when the net was applied to
test patterns the errors were one order of magnitude larger, with typical peaks
at the training range edges. To improve the results, a first direction followed
was the improvement of the training accuracy: consequences are shown with the
next examples, aimed at energy dissipation mechanisms rating.
4.3 Rating Energy Dissipation Mechanisms

The first case shown concerns the quantification of the dry friction coefficient,

treated with a net scheme analogous to the previous one. As anticipated,
a better training accuracy was sought. This proved quite difficult, requiring
higher weight momenta [4], sharper activation functions and careful supervising
of back-propagation step, with greater instability liability. Nevertheless,
accuracy was improved, with errors form 10~ to 10 Though, this proved a

failure, yielding the results exemplified in fig. 4, with even lower accuracy
for test patterns and characteristic error peaks between training points. Such
behaviour is well known to be peculiar of neural networks, as very accurate
reproduction of training points might imply a more uneven solution in terms of
the polynomial approximation in the neuron output space. This underlines an
aspect which is fundamental in network applications: the real and challenging
target is not just to obtain an excellent training, but to generalise, keeping
an elevate accuracy for unknown signals in the training class. From this point
of view the guidance given by the theory, scarce also within the training procedure,

is virtually absent and only experience might help. To improve the performances,

an obvious measure is the increase of the training patterns number, as
exemplified in fig. 5 with a network which quantifies viscous damping ratios in
the 0-1 range, for which 20 patterns were used. The error is satisfactorily low
for most of the range, but the peaks at the edges. Further improvements might be
obtained specialising the net in narrower ranges, e.g. for 0 to 0.1 damping
ratios, as in fig. 6, but error peaks are still present. Better result were
achieved optimising the training pointB location and, more important, seeking
training strategies yielding uniform error levels. This was successfully
achieved with smooth activation functions and comparatively short steps, yielding

very slow training. The quality attained is shown in fig. 7, for the
quantification of yield ratios in elastic-perfectly plastic oscillators, where with
only five training patterns the accuracy is uniformly of the order of 10
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5. PERFORMANCES FOR EXPERIMENTAL
SIGNALS

5.1 Laboratory Testa
To progress towards site applications,it has been started an experimental
laboratory program, whose first
specimen is a simply supported, 5 m

long I steel beam, set with horizontal
web and ballasted to obtain the

desired frequency range, fig. 8. IRF
responses have been recorded in some
of the conditions examined previously,

i.e.: i) linear oscillations;
ii) friction, obtained by purposeful
tightening of one support roller;
iii) bi-linear stiffness, obtained
trough an artificial crack at midspan.
Several probes were placed on the
specimen; the results presented refer
to displacement transducers response.

<
ce

^ £ 0.7 -o
s ^
y uj
>- z

0.5 -
0.5 0.7 1

YIELD LIMIT RATIO

(INPUT PATTERNS)

Fig. 7 Rating yield limit ratios

For the nonlinearity aspect, the net performances were satisfactory, considered
its early development stage: the classification network described in 3.3
discriminated correctly the damaged-undamaged beam oscillations, while the
quantification network of which in 4.2 rated the stiffness ratio of the bilinear
constitutive law in 0.94. The theoretical design value, obtained through f.e.
analyses, was 0.96, with an experimental value from static test, considered the
most reliable, of 0.95. Further identifications from the dynamic response, via
time domain Hilbert transforms [24], yielded values between 0.95 and 0.97.
Somewhat inferior were the results for the energy quantification field. The
classifier indicated always correctly the presence of linear damping only, while
its quantification was poorer, due to its very low value. The net rating was
0.0059, with exact values from envelope curves via Hilbert transforms of 0.0029.
Note that the latter were obtained from a much richer information, i.e. the full
recorded signal and not just a single wave. In fact, improvements, not reported
as they are outside the scope of this paper, have already been obtained training
the net on longer signals. When applied to friction identification, the
classification was less reliable, though with a majority of true answers, and also
inaccurate resulted the quantification. This is still being studied: a possible
cause is considered the lack of symmetry of friction forces, introduced in one
support only, with significant introduction of higher modes contribution.
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5.2 Full Scale Structures
For the sake of completeness, also
some preliminary applications on real
structures are presented, regarding a
number of multi-span (31 m), simply
supported, prestressed concrete
viaducts, with the cross section shown
in fig. 9, located on the A3 motorway
in southern Italy. The dynamic tests,
carried out during operation, were
part of a retrofitting program.

9.50

Fig. 9 Bridges cross-section

As the recording had been already analysed via standard identification methods,
it was known that the response was characterised by the coupling of flexural and
torsional modes and a modal filter had already been developed [24], to obtain
single mode contributions for the treatment via Hilbert transforms, that were
fed to the nets, aiming at linear damping quantification only. The critical
ratios obtained from the networks for five recording samples were 0.015, 0.019,
0.016, 0.017, 0.048; standard processing procedures indicated for the same cases
values of 0.018, 0.020, 0.013, 0.017, 0.047, with a very satisfactory correspondence,

also considering the scattering of the original signals.

6. CONCLUSIONS

The experiences presented, though preliminary in nature and limited in scope,
have shown a considerable potential in the neural network approach, which proved
reliabile within the training range and capable of extracting information from
limited signals. Classification and quantification should take place separately,
outlining the development of concepts in which neural networks arrays, coupled
for performance fusion to conventional procedures, classify a phenomenon first,
to proceed subsequently to quantitative identification. Limited but promising
results have also been obtained on experimental test cases. Such favourable
aspects should not shadow the open problems encountered, in the first place the
achievement of adequate solution quality, avoiding not only the known problem of
convergence to local minima, but, far more substantial, providing reliable
guidelines for strategies and topologies ensuring generalisation and accuracy on
"unknown" signals. Specifically, future developments shall address training
based on processed signals, treatment of multi d.o.f. systems and coupled
mechanisms, together with a comprehensive laboratory and site tests program.
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