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Spatial Analysis and Reasoning for Design Railway Location
Analyse et raisonnement spatial pour les études ferroviaires
Réiumliche Analyse und Folgerungen bei Eisenbahnprojektstudien
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Ph.D. Candidate Assoc. Professor Professor
Northem Joatong Univ. Northern Jaotong Univ. Northern Jiaotong Univ.
Beijing, China Beijing, China Beijing, China
SUMMARY

The paper describes a new system for designing railway location applying the theories and technics
of information and knowledge processing. It has some object - oriented characteristics which are
data abstraction, behaviour sharing, evolution and correctness, wherein the objects are the basic
processing units. Every object is divided in two parts: physical and logical. The Materialization
Operator and Dematerialization Operator can realize the transformations between the physical
objects and logical objects. The concepts and operators used form an algebra system of objects. All
of these make the system have the capability of spatial analysis and spatial reasoning. Finally the
paper gives the construction graph of the system and an example analysis and its processing.

RESUME

Cet article décrit un nouveau systéme appliquant des théories et des techniques relatives au
traitement de l'information ainsi que de la connaissance dans le tracé des voies de chemin de fer. Le
systéme en question comporte des caractéristiques A orientation objet, tels qu'abstraction de
données, partage du comportement, évolution et exactitude; chacun des objets, tout comme les
unités de traitement de base, sont scindés selon leurs deux parties constituantes physiques et
logiques. Un opérateur de matérialisation et un opérateur de dématérialisation accomplissent les
transformations entre les objets physiques et les objets logiques. La forme d'un systéme algébrique
d'objets qui en résulte est apte & permettre aussi bien l'analyse spatiale que le raisonnement spatial.
Pour terminer, les auteurs exposent la construction graphique du systéme et le traitement d'un
exemple d'analyse.

ZUSAMMENFASSUNG

Der Beitrag beschreibt den Einsatz von Theorien und Techniken der Informations- und
Wissensverarbeitung in der Trassierung von Eisenbahnlinien. Im vorgestellten System, das
bestimmte objektorientierte Merkmale wie Datenabstraktion, Verhaltensteilung, usw. enthilt, sind
die Objekte als die zu verarbeitenden Grundbausteine in ihren physischen und logischen Bestandteil
aufgetrennt. Die Transformation zwischen dem physischen und dem logischen Objekt wird durch
einen Materialisierungs- bzw. einen Dematerialisierungsoperator bewerkstelligt. Es entsteht die
Form eines algebraischen Systems von Objekten, das die rdumliche Analyse und rdumliches
Schliessen zulisst. Der Graph des Systemaufbaus und die Verarbeitung eines Beispiels runden den
Beitrag ab.
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1. INTRODUCTION

The design of railway location is an important part in the whole railway civil engineering.
There are many facts to influence it. such as economics, hydrography,
geology. geomorphology. topography, and so on. Planning basic railway direction, de-
termining the spatial position of railway and distributing some railway buildings, for ex-
ample, stations, bridges and channels are its main tasks according to the. requirements
combining with the natural resource and the economic development of regions through

which the railway will pass.

In the past, the design of railway location mainly relied on a lot of data from point to point
measured by human beings. Railway engineers repeatedly discussed the merits
and demerits among different frames and designed the railway locations according to
certain technical standards and some requirements. It was apperently that this design.
method cost much time and labour and its ability to adapt to new environment was not
strong. When a new railway engineering started to be designed, all of designs had to be-
gin from the start again. Much repetition work had to be done to adapt to new require-
ments and new data, so the design time of the old method was very long and the cost of
design was very high.

In the recent years computers have been developed rapidly, especially, the theories and
technics of information and knowledge processing have been applied in many areas
successfully, so it is necessary and possible to use artificial intelligence in the design of
railway location and improve design effectiveness more reasonably.

This paper gives a full discription of a new system for designing railway location. The
system combines all sorts of data, information, rules and knowledge applying some theo-
ries and technics of information and knowledge processing. processes many
complex facts with computers and has the capability of spatial analysis and spatial rea-
soning substituting engineers. At first, we segment regions according to the pictures
taken from airplanes combining with the other data and information and determine
rivers, mountains, cities, towns, villages and roads. Every region has many attributes and
their values which can represent its typical features, such as mines, oil fields, forests, en-
terprises, agricutures and populations, etc. All of regions are classified and abstracted
to form the basic processing units——objects. Each object includes two parts: physical
and logical. The physical objects mainly not only come from the primitive images trans-
formed through the pictures, but also are visualized after processing. The logical objects
are logical representation of the objects and are obtained with abstracting operations at
diverse levels and take part in all kinds of logical operation and reasoning. Thus the rela-
tions among the objects can be formed a net of semantic description, and every object is
a node of semantic net. Certainly the semantic net is dynamic changeable
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at different abstraction levels, so the objects and their properties and attribute values can
be queried and indexed. The attributes at higher level are the abstraction of data and in-
formation of the objects at lower level, and the objects at lower level can inherit the

usefu! data and information of the objects at higher level.

In the system, there are two kinds of design strategies of railway location. One is from
bottom to top. which firstly begins at the start point and the terminal point and goes
into deeper levels step by step. The other is from top to bottom, which starts at two ba-
sic object nodes and extends outer levels and ends at the start point and the terminal
point. Of course the distinction between two strategies is not extrict.

In a word, the system for designing railway location can combine with some theories and
technics of information and knowledge processing and improve intelligent level of rail-
way civil engineering. During designing this system, some new concepts, such as pure
object and algebra svetem of object are put forward so that the complete design theory
can be formed.

2. SOME BASIC CONCEPTS

In the introduction, we know that the system for designing railway location is based on
objects. All sorts of computation and reasoning in the system are carried out through the
attributes of objects. As follow some basic concepts are defined.

2.1 Objects

An objectis an encapsulation of a set of operations or methods which can be invoked ex-
ternally and of a state which remembers the effect of the methods.

The system for designing railway location supporting objects is characterised by the fol-
lowing features:

1.modularisation———all details of an object are brought together in one place.

2.information hiding————access to an object is controlied through a well—defined
interface; all other details of the objects are hidden from the user of that object.

3.behavioural-——the behaviour of an object is captured by the full operational in-

terface presented by that object.

4.object interaction—-——a mechanism is provided to allow an object to invoke meth-
ods on another object.

b.self reference————local operations are accessed in the same way as remote opera-
tions by invoking a method on self. .
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2.2 Physical Objects

Physical objects are real physical meaning of objects. They not only refer to the primitive

images transformed through the pictures taken, but also can be synthesized and visual-

ized if necessary. The three dimensional objects such as geography and geomorphology
' can be shown on sreens of computers.

3.3 Logical objects

Logical objects are abstraction forms of objects and semantic description's of physical ob-
jects. They represent the logical relations of objects and show the properties and attribute
values of physical objects. The attribute values take part in all kinds of computation and
analysis in the system.

3.4 Classes

After the concepts of objects, physical objects and logical objects have been defined,
they should be classified based on certain rules. A class is a template from which objects
may be created. It contains a definition of the state desciptors and methods for the object.
The class template therefore provides a complete description of a class in terms of its ex-
ternal interface and internal algorithems and data structures.

2.5 inheritance

The classifications of objects are made at different levels. The new class is said to be a
subclass of the old class. Similarly, the old class is the super class of the new class. The
new class therefore shares the behaviour of the old class but has modified or additional
behaviour. This sharing of behaviour is the essential feature of inheritance. Inheritance is
the incorporation of the behaviour of one class into another. A class which inherits from
anather class inherits all the methods and attributes of that class.

3.THE ALGEBRA SYSTEM OF OBJECTS

In the system for designing railway location, the concepts, the transformations between
physical objects and logical objects and a series of operations on objects can be formed
an algebra system. of objects which has the capability of spatial analysis and spatial rea-
soning. Its representation formalized is:
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G (V,V,,8.%,,R)

wherein:

V, istheset of logical objects.

Vv, is the set of physical objects.

S is the limited non—null set of object names.

X, isan element of S and represents the set of
object names which is head.

R is the mapping from S to2vLUS xV,

and is the object rules transformed from all kinds of
technical standards of railway tocation design.

Two—element representation of objects is (A _,A.) , whereinA is logical objects andA,
is physical objects. Every operator of the system is divided two parts also. OP _is logical
operator and QP is physical operator, so the operator can be written as:

OP= (OP_,OP)

When an operator acts on two objects X (X_,X,) andY (Y _,Y.) ,itiswritten as:

OP (X,Y) = (OP_ (X)Y) ,0P, (X,Y) )

IfOP _is independent of X and Y and OP, is independent of X andY ., then

OP (X,Y) = (OP_ (X _,Y ) ,0P, (X,Y))

Among the operators MOP(Materialization Operators) and DMOP(Dematerialization
Operator) are extremely important, because they can realige the transformations between
fogicat objects A _and physical o'bjects A,. If there is an object X= (X_,X.) in which
logical part X and physical part X, are fully transformed each other, ie. { X =}

=DMOP {X,} and {X.} =MOP {X_1 . this objectis called the pure object being use-
ful in the system.

Besides above two kinds of basic operators MOPand DMOP, following other operators
are necessary to be introduced.
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3.1 Combining Operator  COM

COM ((A_,A) , (B_,B))
= (CONCEPT -~ MERGE (A_,B )

. SUPERPOSE (A,,B)) )
Explanation: physical objects A, and B, add to form a new physical object whose corre-
sponding logical meaning combines two concepts of logical objects A_and B . for ex-
ample, COM (City A, Station B) = (Station B in City A)

3.2 Subtracting Operator  SUB

suB ( (A_,A), (B_,B))
= (CONCEPT-DIEF (Am,Bm) .REMOVE (A ,B) ) .
Explanation: when physical object Bi is removed from A‘l . the logical meaning of A will
change and form a new concept, for example, SUB (Town A having bridge B, Bridge
B) = {(Town A without bridge B)

3.3 Inverting Operator  INV

INV (A _,A)

= (CONCEPT—INV (A_) .INVERT (A) )
Explanation: this operator is used to transform objects which are under grouna and above
surface.

3.4 Marking Gperator MAR

MAR ( (A_A), (B ,B))

= (CONCEPT-MARKING (A_.B_ ) .MARK (A,.B)))
Explanation: marking refers to the important feature of objects. Object B is a feature of ob-
ject A, for example,B represents mountains, A is a city, MAR (A,B) = (City A with
mountains)

3.5 Enhancing ENH

ENH ( (A_,A), (B_,B) )

= (CONCEPT-ENH (A_.B_) .A))
Explanation: this operator add some attributes of object B to object A, so the meaning of
A will expand.
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3.6 Indexing Operator IDX

IDX (A _,A))
= (CONCEPT-REDUCE (A ) .IMAGE-REDUCE (A)))
Explanation: the meanings and images of objects acted by IDXare reduced so that the
simple features of objects are represented.

3.7 Clustering Operator  CLU

CLU ((c,,e),..(c,e)({},p ) )-u({}p )
= {c,pl<ismil<gj<nl

Explanation: (c,.e) represents physical object without any concept, and ({ },pi) repre-
sents logical object which has pure meaning or concept. Clustering Operator makes phys-
ical objects have adequate logical meaning and concept.

3.8 Similar Operator SIM

SIM (X,Y)

= (SIM_ (X,_,Y.) ,SIM, (X,Y)))

Explanation: this operator can compare the similarity between two objects X and Y which
include the similarity between two physical objects X,and Y, and the similarity between
two logical objectsX andY . '

3.9 Existing Operator  EXI|

EXI (X,Y)
= (EXI_ (X_,Y_ ) EXI. (X,Y))

Explanation: this operator can tell us if there exists X in Y:

4. THESYSTEM CONSTRUCTION

The old design method of railway location required that the engineers be imaginative and
familiar with all sorts of technical standard. Now computers can substitute the engineers
to design railway location based on above concepts and operators. When the decision to
build a railway between city A and B has been made, first of all, the pictures of geography
and geomorphology taken from airplanes are inputed into computer with an image scan-
ner. The equal height map of the entensive area between A and B is established com-
bining with other measure data, as shown in Fig 1.
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Fig.1 The map of an example processing.

Besides cities A and B, there are other seven cities (C, D, E, F, G, H, 1), eleven towns, five
planes, eleven mountains, two rivers and reservoir N, etc. According to typical features of
regions, the area shown in Fig.1 is classified and segménted to form several regions. Each
region is nominated with the most typical charateristics, and other features, such as geol-
ogy coordinates, areas, natural resources, population, geology constructions and the
product values of industry and agriculture, and so on, are its attributes. Thus we can use
one point to represent one region éegmented. The relations of points and regions are
one—to—one mapping. The points are the corresponding abstraction form of the regions.
If we think the regions as physical objects, the points are logical 'objects and the relations
of the points represent the semantic descriptions of the regions. Foilowihg an example is

given,

Region F is nominated as the name of city F after segmentea, pecause city F is the impor-
tant feature of region F. In the region F there are two mines (Mine 3 and Mine 4) , Moun-
tain 3, Plane 5 and River 2. They are the attributes of point F, shown in Fig. 3 and Fig.4.



///A : W. WEN - L.Z. WANG - B.Z. YUAN 119
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Region F
Name: F
Attributes: .
Average Latitude: 40

Average Longitude:35
Average Height:400
(above see level)
Area:100 sq.km
Population:100,000

Mines: a coal and an iron

industry: a steel factory

Mountain: a forest

Fig.4 The attributes representations

Fig.3 The detailed map of region F in Fig.1 at deeper level. of region F.

At certain abstraction level, the points form a semantic net in which every point is a node.
The net can change dynamically based on the different levels. The attributes of subclasses
at deeper level inherit the ones of superclasses at the fore level automatically and aug-
ment some if neccessary at the same time. The semantic nets take part in spatial analysis
and sapatial reasoning and caluculate the meaning value to build a railway at one node
and determine technical difficulty of building and engineering cost.

Fig.5 shows the construction of the system for designing railway location. The system
consists of a large system knowledge—base which coliects all kinds of information, such
as geometry, graphy, hydrography and economy. Every kind of information has relative
independence and completeness. In the system there are the capabilities of index and
query. Under certain environment, we obtain information stored in'the system
knowledge—base, space constructions and logical relations and semantic descriptions of
objects. The system realizes on SUN / 386 in C language. SUN CGI graphic interface sys-
tem makes the system knowledge—base have the graphic information base.
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Elg§ The construction graphy of the system.

5. CONCLUSION

We have described a new system for designing railway location. The system has some ob-
ject—oriented characteristics which data abstrction, behaviour sharing, evolution and
correctness. The semantic nets whose nodes represent objects are the system framework.

The techniques introduced in the system are encapsulation, classification, flexible sharing

and interpretation. The new system improves the old methods whose measuring, charting

and reasoning mainly rely on human beings and decreases designing cost and labour

power greatly. The theory and method of the system can be applied to other engineerings.
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and reliability analysis.

SUMMARY

The combinatorial searching, an essence of Artificial Intelligence Technology, plays an important
role in structural decision problems including the present failure load analysis of frame systems.
Both generation of a combined failure mode and test of a failure load factor should be completed
over all combinations between elementary failure modes with a result of explosive increase of bur-
den on computer which can be, herein, improved effectively by means of a heuristic rule of the
similarity index. Thus, the present method becomes a powerful tool when the mode approach is
applied to reliability analysis or design.

RESUME

La recherche combinatoire est une partie essentielle de la technologie de l'intelligence artificielle et
joue un rdle important dans les problémes impliquant des choix déterminants dans les ouvrages, par
exemple dans la détermination de la charge de rupture des cadres. Il faudrait prendre en compte
toutes les combinaisons possibles de mécanismes élémentaires, aussi bien dans la:génération d'un
mécanisme de rupture combinée que dans I'essai d'un facteur de charge ultime; ceci entrainerait un
accroissement de type explosif du volume des calculs & l'ordinateur. Une régle heuristique de
l'indice de similitude est plus efficace, grice auquel la méthode des mécanismes devient plus
performante dans 'analyse de fiabilité et dans le dimensionnement.

ZUSAMMENFASSUNG

Wesentlicher Bestandteil in der Technologie der kiinstlichen Intelligenz ist das kombinatorische
Suchen. Es spielt auch eine wesentliche Rolle bei Entscheidungen im konstruktiven Ingenieurbau,
etwa bei der Bestimmung der Grenztragfihigkeit von Rahmensystemen. Sowohl bei der
Generierung eines kombinierten Versagensmechanismus als auch beim Test eines Grenzlastfaktors
sollten alle denkbaren Kombinationen der Elementarmechanismen einbezogen werden, wodurch
der Rechenaufwand explosionsartig grisser wiirde. Als effizientes Mittel hat sich eine heuristische
Regel des Aehnlichkeitsindex erwiesen, mit der die Mechanismusmethode in der
Zuverlissigkeitsanalyse und Bemessung sehr leistungsstark wird.
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1. INTRODUCTION

The development of Al technology was triggered by Dartmouth Summer Conference in 1956
where the role of computer in the future was emphatically discussed. Subsequently, the impor-
tant idea was realized such as GPS, LISP language and the frame theory. Furthermore, expert
systems were developed such as Dendral at Stanford, MYCIN and Prospector which could
get their successful position because of dealing with specified subjects though under enormous
consumption of man power. The fifth generation project in Japan has aimed at high perfor-
mance of inference of knowledge base. Through the development of Al technology the effective
searching technique in an enormous database theoretically and practically was obviously a main
subject to approach. Particularly, when the database consists of combination of elements, its
space becomes growing so exponentially that search for optimality becomes significantly labo-
rious and frequently almost impossible because of its nondifferentiability(Polak[1987]). Such
combinatorial searching subject as the traveling salesman problem(Kernighan[1973]) can be
found not only in application field of Al technology but many structural engineering analyses
including the present failure load analysis. Many searching techniques for the combinatorial
optimality are developed(Padberg[1987], Lin[1973], Johnson{1989]), among which the branch-
and-bound method that is closely related to the dynamic programming is a generalized tech-
nique(Ibaraki[1991]). A large class of structural engineering design problems is also transcribed
into the form of a nondifferentiable optimization problem with inequality constraints involving
maximum function. When dealt with such nondifferentiable optimal problems(discrete opti-
mization), the exhaustive enumeration including the generate-and-test procedure should be
inevitably required. This is partly due to a lack of information of extrapolation on a searching
space which is explosively enormous practically. It is laborious to describe algorithm of ex-
haustive enumeration in procedural language such as FORTRAN. On the contrary, declarative
languages including Prolog(Clocksin[1984]) can handle it directly. Some important properties
of Prolog are backtracking and nondeterminism to search for prescribed goal. The transitivity
and inheritance inferences extend the searching efficiency so to large extent that combinato-
rial problems are more practically approached(Corkill[1983], Fennell[1977]). Thus, regarding
nondifferentiable combinatorial optimality problem to accomplish an effective searching for an
appropriate goal is equivalent to establishment of the pruning-futile-alternative technique in-
cluding the branch-and-bound method, the heuristic approach and the qualitative reasoning
that can realize sub-dimensionalization of searching space with a result of its rapid shrinkage.
Frequently they are applied interactively. Unfortunately such pruning technique depends heav-
ily upon particularity of the problem. Thus, an attempt of its generalization tends to lose
sharpness of their efficiency as a result. Herein, the heuristics implies in wide sense a prun-
ing technique to reduce the amount of generate-and-test drastically. Furthermore, the fact is
that the rigorous goal cannot be necessarily attained even by the laborious generate-and-test
method unless certain problem-oriented pruning technique is applied or unless the problem is
relaxed into searching feasible goals. In general, the branch-and-bound method that belongs to
exhaustive enumeration methods is applied with the aid of effective algorithms such as depth-
first, best-bound and heuristic algorithm. Since the problem-oriented technique or the heuristic
algorithm that can prune futile alternatives depends largely upon particularity of the problem
and hence incidental human flair, the systematic development of heuristic algorithm becomes
almost impossible. Recent conspicuous approaches such as the simulated annealing and neural
network technique are mooted with considerable success(Hopfield[1985]).

Failure load analysis of structural systems from kinematically admissible field belongs to a
typical combinatorial searching problem. Watwood[1979] proposes the generation of elemen-
tary mechanisms and their linear combinations of frames by the linear programming technique.
Gorman[1981] presents an automatic method to generate the failure mode equations for all pos-
sible failure modes. Systematic generation of failure modes is important, because to add further
constraints such as minimum weight criteria and reliability threshold(Henley[5]) more realistic
description of structural design can be attained(Ditlevsen[1984], Melchers[1985]). The present
study deals with the failure load analysis of rigid-plastic frames by the upper bound theorem
which shows a combinatorial problem. When a kinematically admissible mode is assumed, the
virtual work equation provides the corresponding failure load factor, 4. After generation of
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elementary failure modes from kinematically admissible displacement fields by topology and
geometry(Onodera[1967]) their linear combinations produce successively the remaining failure
modes whose predominance should be tested. Thus, the present optimal problem can be de-
scribed by minimization of the objective function or the virtual work equation of possible failure
modes.

2. ESSENCE OF AI TECHNOLOGY - COMBINATORIAL OPTIMALITY

Practical implementation of discrete optimality requires any of enumeration approaches such as
the dynamic programming technique(DP), the branch-and-bound method and the exhaustive
enumeration. DP has limitation to combination problem to some extent(Miyamura[1992]).
The branch-and-bound method is applicable to widely diversified problems. It is accepted as a
method to transform the combinatorial problem, which is difficult to solve directly by recursive
decomposing, into partial problems until a set of more simplified problems. These partial
problems have less large number of parameters while the number of problems to solve demand
large amount of computing time due to explosive increase of combination. The branch-and-
bound method can be summarized as follows: First, initialization of both the tentative value
of evaluation function equal to infinitive, z = co, and the active partial problem the original
problem, P,, to solve. Second, searching for a new active partial problem, F;, or ending for no
more active partial problem. Third, testing P, and a new z is obtained for a upper bound of
feasible solution, {z}. Lastly, branching of descendent partial problems to add the active space
and searching.

Thus, the branch-and-bound method tells that when fail occurs by test for any solution gen-
erated from an active partial problem, then further branch operation is not required with a
result of decrease of combinatorial generate-and-test. Regarding searching for a new partial
problem, P, this can be attained by the following two criteria: First, when the optimal solution
is obtained from a partial problem, F,, it is not necessary to deploy further branch operation.
Second, if a partial problem cannot provide optimal solution of the original problem, it is not
necessary to extend further branch operation.

These two criteria to halt further branch operation is the bound operation that thus can ter-
minate the partial problem, P;. Practical implementation of the bound operation can be made
by either the lower bound test based upon relationship between optimal solutions from relaxed
problems and admissible solutions or the dominance test based upon binary relationship of the
evaluation function and constraint between two partial problems, P, and P,. The conventional
exhaustive enumeration or blind searching corresponds to the case that the evaluation fuction,
f({z}) can be calculated after completion of branch operations and a set of feasible solutions
are obtained from parameter vector including the optimal solution.

The present failure load analysis relates closely to the combinatorial optimality problem in the
sense that a minimum load factor should be searched between possible kinematically admissible
fields or failure modes including linear combination modes of elementary modes. Conventional
LP(linear programming method) requires combination of & elementary modes to determine
mode weighting coeflicient, C;, to optimize an evaluation function, where C; # 0 for N active
modes and C; = 0 for non-active modes. Thus, combinatorial searching is accomplished for any N
modes from & modes, and a memory size of combination defined by numbers of both elementary
mode and member become practically enormous. On the contrary, the branch-and-bound
method does not necessarily require a large memory size for searching optimality, when effective
rules, frequently from heuristic knowledge, can bound non-active searching trees or descent futile
alternatives. Herein;-two bounding rules or heuristics are applied: generation of complete failure
mode with one degree-of-freedom by the recursive expression of combination and pruning by
the similarity index, 8;;, that can estimate similarity of plastic hinge distribution between two
failure modes. Between the present generate-and-test technique and the conventional branch-
and-bound method there is a significant difference: the evaluation function from virtual work
equation cannot guarantee monotony. This suggests necessity of exhaustive enumeration of
a larger combination space. However, any even higher order combination requires at least to
possess a common plastic hinge between combined modes. This becomes less possible for the
higher order combinations, which is empirically recognized from numerical simulations.
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3. COMBINED MODE AND HEURISTICS

The present generate-and-test consists of both generation of failure mode and test of failure load
factor. Thus, the generate process is classified into two categories: generation of elementary
failure modes and their linear combinations. When a rigid-plastic plane frame with m-members,
n-nodes and =,-fixed supports collapses with plastic hinges subject to nodal loading, elementary
failure modes, whose number is (3n — m), can be expressed as follows:

{n} = [CHuimp} (1)

where {r,} means the plastic hinge rotation vector at ends of member, {;7,}, the corresponding
independent hinge rotation vector of tree members, respectively. The displacements at nodal
point can be expressed by means of the path matrix, [H]:

{D:} = [H]|[HL)[Hmi]{7pe}
{Dy} = —[HIMIL]Hme){7p}

where {D.} and {D,} mean nodal displacement vectors in z- and y-directions, respectively. After
generation of elementary failure modes a combined mode is expressed by their linear combina-
tion. To implement the generate-and-test effectively it is preferable to describe the combination
process in recursive form. When both the hinge rotation vector and nodal displacement vector
of the i-th elementary mode is expressed by {V;} = {{n}{,{D}!}, the combination of any two
elementary modes, {¥;} and {Y;}, becomes:

(2)

1l

C:({Yi}, {ViHmp,s) = A{¥i} + A4;{Y;} 3
A,‘TP,',, + Aijj,s =0 (4)

where 7, , and 7,;, mean hinge rotations common to both the i- and j-th modes at the critical
section, S. The lefthandside of Eq.(3) means the resulting mode combined {¥;} with {¥;}, which
are not plastic at the critical section. Extending Eq.(3) to combination of the other modes, the
following recursive expression can be obtained:

Ck({yk}’ {Yk—l}, sy {}’].}Irp,k—l,"'p,k—% ey Tp,l) -
ArCi_ 1 ({Vee1 ) (Vizh oo AV Hrp ks Tp k=310 ooy Tp1 )+ (5)
AIIC{{I({YE]W {]/k—2}1 ey {Yl}lTp,k—Za Tp,k=31-+-1 Tp,l)

A]T;,k_l + AIIT;,i—l = 0 (6)

where 7/, , and 711 _, are the hinge rotations at the (k - 1)-th critical section common to the
(k—1)-th combined failure modes, ¢{_,(-) and C{I (-). Eq.(5) shows that the k-th combined mode
can be decomposed into two (k- 1)-th modes each of which has the same tail of minus-one order
but different head. The recursive expression thus generalized ensures both easy composition
and decomposition of failure modes by a simple algorithm. Subsequently, the test procedure
should be implemented by evaluation of a failure load factor, +;, which is given by the following

virtual work equation for a generated failure mode:

v= 3 Clm¥ M} > C{De}{P}— min (7)

k=1,2,-n k=1,2,-\n

where C, means a weighing coefficient of the k-th mode from » elementary failure modes
(0 € ¢ < 1). Summation is implemented for any number of combinations less than that of
n elementary modes. {7,:} means the hinge rotation vector, {M,}, the member yielding resis-
tance vector, {D;}, the nodal displacement vector, and {P}, the external nodal loading ratio
vector, respectively. Eq.(7) shows that the goal failure load factor, +.,, is the lowest factor
derived from possible failure modes given by both elementary failure modes and their linear
combinations. This implies that for a number of elementary failure modes their combinations
become exponentially increasing, which is subjected to a combinatorial searching technique.
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In order to implement effective generation-and-test of failure modes it is necessary to develop
certain heuristic rules which can prune futile alternatives. In the following the similarity index
is used as a heuristic rule. It is difficult to implement effective search of predominant modes
either by the exhaustive enumeration method with the generate-and-test or the conventional
approximate searching approaches with reduced search space by the depth-first or the breadth-
first. This depends upon the fact that the more test of predominance is necessary for the larger
number of generation of modes. Thus, if an approximate estimation of effective combination
is implemented before actual combination procedure the amount of calculation decreases dras-
tically even for a large sized structural systems. A combination of the smaller internal virtual
‘work to the external one becomes predominant. Hence, when plastic hinge rotations decrease
by the combination of appropriate modes the corresponding internal work decreases. This
can be more accomplished for two candidate modes whose common hinges become larger in
number, in other words, whose hinge distribution becomes more similar. Thus, pruning of the
futile searching space is attained if it is possible to evaluate an extent of similarity of hinge
distribution with less burden. Such evaluation is established by enumeration of both common
and non-common plastic hinges between the i- and j-th modes, and satisfied to some extent by
the following similarity index, 5;;:

Sij = D min(his, ki)Y mazlhis, hi); 3 =1,....k (8)

where A;, is a binary parameter given by:

0, if ri,=0;
hiy = 3 pis =Y 9
' {1, otherwise. (%)

Eq.(8) provides the ratio of the numbers of common and non-common hinges between any two
modes. Thus, A;; = 1 corresponds to a plastic hinge at the s section in the i-th failure mode.
Furthermore, 0 < S;; < 1 is valid. Applying Eq.(8) to all of k¥ elementary failure modes the
plastic similarity index matrix, & x k, can be obtained which is reflexive and symmetric but
not transitive like of the fuzzy similarity. Consequently the present heuristics becomes: First,
before implementation of the conventional generate-and-test for the exhaustive enumeration
the similarity index, $;;, by Eq.(8) should be firstly evaluated and pruned if not tolerable.
Empirically, 0.3 ~ 0.4 < §;; is preferable. This is applicable to further higher order combination
modes whose similarity indices are easily evaluated by Eq.(8) recursively with substitution of
both i =n and j = n—1. Second, whenever there exists no common plastic hinge for combination
of more than three modes by Eqgs.(5) and (6), further searching can bound even with §;; # 0.

4. NUMERICAL SIMULATION

A 12 story, 3 bay rectangular frame with 120 members subjected to vertical and horizontal
proportional loading(Fig.1) is analyzed by the present method that is described in Prolog lan-
guage on PC9801 personal computer. Prolog predicate has non-determinism by its backtrack-
ing ability which easily generate combination modes and automatically implement branching
operation subject to generation rule. As a side-effect due to non-determinism a number of
futile alternatives(combinations) appear, and should be pruned. It is advantageous to avoid
floating calculation as far as possible. Furthermore, Prolog predicates of recursive rule with
non-determinism can play role of both the generate and the test, which is significantly effective.
Fig. 1 shows a typical combinatorial searching from 132 elementary modes around the optimal
combination with +,,, = 3.176. However, generation of elementary modes is irrelevant to loading
condition which can change order of 4 corresponding to the elementary modes. This implies
that the elementary mode that provides the lowest load factor between elementary modes is
expected to participate combinations which include 4,,, or its vicinities. The present heuristic
bounding by §;; limitation can effectively prune futile alternatives(modes) although it does
not guarantee optimality. Thus, this heuristics provides an upper bound, and is effective for
lower order combinations such as two-mode combination. $;; becomes smaller with higher order
combination with an elementary mode. The heuristic bounding by Eq.(5) prune combination
that has not at least a common hinge even with S;; # 0 (Note that the combination of ele-
mentary modes, [1+49+55], becomes fail in Fig.1). This becomes more prominent when the
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order of combination becomes higher. Numerical results suggest superiority of the depth-first
combination from elementary modes in order of ascent of 4.

5. CONCLUDING REMARKS

The failure load analysis based on statically admissible field is a typical combinatorial optimality
problem, which can be approached by the generate-and-test with heuristics in Al technology.
Hence, the following concluding remarks are obtained:

a) The present searching is implemented on a multi-branch tree so that the corresponding
generate-and-test can be accomplished by parallel procedure. Consequently, such declara-
tive language as PARALOG is expected more drastic acceleration of searching for practical
system.

b) Practically LP requires a larger memory size. While the present method can generate
predominant modes (smaller 4} with a smaller memory size that are applicable to reliability
analysis by the mode approach.

c) Although the present evaluation function by Eq.(7) does not guarantee monotony after
recursive combination by Eq.(5), its pruning can realize significant decrease of searching
space.

d) It is expected that topological measurement of frames can accelerate further pruning of
futile alternatives.

e) Si;; = 0 corresponds to the exhaustive enumeration that can provide the optimal solution or
the lowest load factor. Practically, to save computing time a tolerable value is taken with
a result of upper bound.
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APPENDIX

Egs.(1) and (2) can be derived by topology and geometry of a frame as follows: Any member
in a frame corresponds to an oriented edge and by introduction of an imaginary member at
supports connecting to the fixed point, O, resulting in an oriented graph. The compatibility
condition of rigid body displacements of each member at a failure state becomes the closing
condition that the sum of rigid body rotations at a circuit in an oriented graph should be zero:

3 dw; = Y mivik; = 0

circutt circust

(a)
> du; = ) Mdily =0
circust circust

where du;; and dv;; mean displacements of a member, i-j, in z- and y-directions due to rigid rota-
tion, #;. A; and u; are the z- and y-direction cosines and I;, the member length, respectively.
For all independent circuits the following relations are obtained:.

(R][ul[L]{+}
[RIP[LI{#}

where {y} means the rigid body rotation vector and [g], [\] and [L], the diagonal matrices with
elements, u;;, A; and /;, respectively. A fundamental circuit matrix, {R], has the following
elements:

(5)

1, when a fundamental circuit, ¢, includes an edge, e, negatively, (¢)

1, when a fundamental circuit, c, includes an edge, e, positively,
ER(c,e) = -
0, otherwise.

In Eq.(b) the rigid body rotations of imaginary members are assumed zero. The number of
fundamental circuits becomes (m - «), and the size of [R], (m ~ =) x (m + =,). The plastic hinge
rotations at the ends of a member, i-j, correspond to r,; = 6; — 4, and 7,;; = ¢, —4;. By applying
the connection matrix, [D,], of the expanded graph with introduction of a new node at the
middle of an edge this rotation vector becomes:

{5} = Dal {0}, (9)') @

where {6} means the nodal rotation vector. The connection matrix, [D,] has the following
elements:

: 1, when an edge, e, leaves a node, v,
(vie) = 4 -1, when an edge, e, enters a node, v, (e)
0, otherwise.

Since the orthogonality, [R.][D.]* = [0], is valid for thé circuit and connection matrices, by
premultiplying the fundamental circuit matrix to Eq.(d) the following expression is derived:

[Brnl{r} = {0} ()

Eq.(f) implies thus the compatibility of the vector, {r,}, the closing condition that the sum
of rotation at plastic hinges in a fundamental circuit becomes zero. When a set of edges
of the expanded graph are separated into those of trees and cotrees, the path matrix, [H,],
can be derived. Since a fundamental circuit consists of the tree and cotrees, the relatlon
[Hyi)[Dn]* = [E], where [E] means a unit matrix, is defined. Thus, by premultlplymg [Homi) to
Eq.(d), the following equation is obtained:

_ [6Had] [
o = [0y < { 0] ”

where [;H,..] and [ H,.] mean the path matrices from the fixed point to a node and to a middle
point of an edge on the tree of the expanded graph, respectively. {r,} = {{7},{%:}}, {%:} and
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{7z} mean plastic hinge rotation vectors corresponding to the tree and the cotree, respectively.
Substitution of Eq.(g) into Eq.(b) describes that Eq.(b) has (3 — m) independent solutions.
Gaussian elimination provides the following relation:

{o7} = [Cil{i7p} (k)

where {r} = {{p7p:}% {17 }'}'. Furthermore, when partitioned such [R,] = [[Rmi); [Rmil] =
[[Rme), [E]] and [Rui] = [[p Rmils [ Rma]], Eqs.(f) and (h) give:
[CI]} {15} = [CHimpe} (1)

{Tpt_ }
{n} = {p7pe} =
{r Tpt} (E]

The size of [C] is 2m x (3 ~ m), whose column vector, {C;}, means the corresponding hinge
rotations to 7 = 1. Eq.(1) implies that the number of hinges with non-zero rotation cannot
exceed 3(m—n)+1, which is equal to the degree of redundancy plus one. The column elements of
[C] are independent of each other, and deformation elements thus expressed contribute directly
to an elementary failure modes. The displacements at nodal points can be expressed by means

of the path matrix, [H]:
{D:} = [H|dILHmd{7p}
{Dy} = —[H|DL][cHmil{rpt }

where {D,} and {D,} mean nodal displacement vectors in z- and y-directions, respectively.

~[pReni){Cr} — [ Bm4]

(2)
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SUMMARY

Machine learning paradigms in the recent decade have made considerable strides in the area of Artificia
Intelligence. Eventhough structural engineering domain is a fertile ground for using these paradigms to
improve engineering process, the literature in this area are only a few. This paper describes appropriate
machine learning strageties for implementation in an integrated engineering system for knowledge
based engineering of steel structures.

RESUME

Au cours de la derniére décennie, une évolution paradigmatique considérable a eu lieu dans la concep-
tion de l'apprentissage automatique relatif au domaine de l'intelligence artificielle. Bien que la
technique de la construction soit un milieu fertile pour utiliser ces paradigmes en vue de perfectionner
les processus d'études, la littérature sur ce sujet reste limitée. Cet article décrit des stratégies adéquates
d'apprentissage automatique pour €tre appliquées dans un systeme d'études intégrées destiné a la
construction métallique.

ZUSAMMENFASSUNG

In Gestalt des Maschinen-Lernens hat sich im letzten Jahrzehnt mit grossen Schritten ein
Paradigmenwechsel auf dem Gebiet der kiinstlichen Intelligenz vollzogen. Obwohl der konstruktive
Ingenieurbau sich fiir Verbesserungen im Entwurfsprozess durch derlei Konzepte anbietet, gibt es nur
wenig Literatur dariiber. Der Beitrag beschreibt geeignete Strategien des Maschinen-Lernens zur
Implementierung in ein integriertes Entwurfssystem fiir Stahlbauten.
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1. INTRODUCTION

Machine learning enables a system to perform the same task or a task drawn from the
same population more efficiently and effectively the next time [1]. Objectives of research
on machine learning may be one of the following: i) simulate and thereby understand
and improve human learning process, ii} develop natural language processing capabilities
to serve as interface between man and machine, iii) improve problem solving skills of
computing and iv) enhance learning from discovery.

The motivation for research which forms the basis for this paper, is to improve the prob-
lem solving capability of computer aided engineering systems by machine learning. Un-
derstanding the role and the application of machine learning strategies would facilitate
acquisition of new knowledge, efficient reorganization of the existing knowledge, faster and
better solution, expansion of the problem solving capabilities, learning of control knowl-
edge, simulation of creative problem solving, and efficient solution even under uncertain
and incomplete problem specification.

This paper deals with the machine learning strategies for computer aided engineering
of steel structures in an extended blackboard system developed in a project on knowl-
edge based expert system for integrated engineering of steel structures. Initially, generic
paradigms in Al for machine learning are briefly reviewed in order to introduce the state
of the art. Subsequently literature on the application of machine learning techniques in
the civil engineering domain are discussed. It is shown that both the Machine learning
techniques and applications are yet to deal with the needs of a large engineering domain.
Finally the opportunities for and issues in machine learning in the engineering of steel
structures are discussed and appropriate learning strategies are evolved for such a system.
The discussion is illustrated with a few examples.

2. MACHINE LEARNING

Al research on machine learning over the past few decades has led to four well accepted ma-
chine learning paradigms, namely, inductive learning, analytic learning, genetic algorithms
(classifier systems) and connectionist learning methods [2].

2.1 Inductive Learning

Formulation of plausible general assertion that explain given facts and prediction of new
facts based on these general assertions is induction. Induction is an essential component
of human learning. We induce a concept from a series of observations of a process or a
phenomenon. Thus inductive learning involves the formation of a concept from examples
and counter examples. In general induction can be either a single-shot process based on
initial training examples or an incremental one. Induction is by far the most widely studied
paradigm [3,4,5]. Gennari et al. [6] have identified the common features in induction
learning such as unsupervised learning, incremental learning, integrated with performance,
top down classification and incremental hill climbing.

The programs based on induction can handle inputs represented in a specific manner, such
as attribute value pairs. This requires large scale structuring of the knowledge and hence
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limits the scope of the learning task. Moreover the learning is highly empirical, which
constrains the extent of knowledge that can be learnt.

2.2  Analytic Learning

Analytic learning methods are deductive in nature and use the past experience in problem
solving to arrive at the solution. These methods are superior to inductive methods as they
can provide explanation for the classification of instances. The major contributions to this
paradigm are in the areas of analogical reasoning {7,8,9], case based reasoning [10,11} and
explanation based learning [12,13].

Analogical reasoning [14] consists of transferring knowledge from past problem solving
episodes to new problems that share significant aspects with corresponding old experience
and using it to construct solutions to the new problems. Case based reasoning also involves
drawing conclusions from problems solved in the past to use in new problems. This kind
of reminding of old experience [10] in the form of explanation can be processed by an EBL
mechanism to generate new solutions. Explanation based learning involves generalizing
the explanation obtained from an instance. Thus EBL produces a description of a concept
based on the domain theory, which explains a particular instance of that concept.

2.3 Classifier Learning

Classifier systems are massively parallel, message passing, rule based systems that learn
through credit assignment and rule discovery {15,16]. The algorithm used for rule discovery
is analogous to the biological mutation process and hence the name genetic algorithm is also
used for these systems. The learning process is closely similar to the inductive mechanisms
and the connectionist methods. Although the nature of learning is highly empirical, under
complex environments characterized by noisy and incomplete data this methods offers a
viable alternative for learning. '

2.4 Connectionist Learning

Connectionist methods, (also known as neural networks) emulate the function of mam-
malian brain. Typically a neural network [17, 18] consists of three different layers namely,
the input layer, the hidden layer and the output layer. Each layer consist of a group
of processing elements characterised by their weights. These processing elements enable
the network to map the internal representation of a problem by suitably modifying their
weights to match the input-output patterns. A concept can be represented over the entire
network (distributed representation) or represented at a local level (localised represen-
tation). Once the network is trained with sufficiently large number of examples, it can
generate solution to new problems. This method is highly suitable for parallel processing
and is promising for future computing requirements. However, the requirement of large
number of examples for training and the slow rate of convergence [17] for complex problems
makes it unsuitable for many real world applications at this time.

In addition to these four major paradigms there are other sub paradigms such as learning
by discovery [20] learning by experimentation [21], and learning by instruction [22], which
are not studied extensively to derive-useful applications. A more detailed treatment of the
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various machine learning paradigms is presented by Carbonell [2] and in the other papers
(6, 9, 11, 15, 17| in the particular special issue of the journal. Carbonell concludes that
connectionist paradigms are appropriate for learning in unstructured continuous domains
with many training examples. Analytical paradigms at the other end are best suited in
domains with rich structured knowledge even if only a few examples are available. Inductive
and classifier systems bridge the gap between these two extremes.

3. CIVIL ENGINEERING APPLICATIONS

Literature on the application of machine learning in the civil engineering domain problem
are very few. Rooney and Smith [22] discussed a feed back mechanism based model to
two case studies covering the design of single span simply supported wide flange beams.
Similarly many researchers have resorted to storing non-synthesized data from past expe-
riences in a database for future reference. Such techniques are practically useless when the
past experience is not much and becomes computationally inefficient when the number of
stored examples increase.

Maher and Li [23] have demonstrated learning of default values, ranges for variables, rela-
tionship among numerical valued variables and patterns among nominal valued variables,
using dependency network of earlier problem solving experience. However, the problem
of when and how the decisions are made to perform the learning is not addressed in the

paper.

Navinchandra et al. [24] have illustrated the role of analogues, heuristic rules, observed
effects and engineering principles in problem solving through an example of a lever problem.
The learning algorithm illustrated in the paper is conceptual and can not be extended to
serious engineering application readily. Zhao et al. [25] used transformational analogy
and similarity metric to retrieve solution to new problems from closely matching building
examples in database. Murlidharan et al. |[26] have used learning algorithms based on
induction and analogical reasoning. These strategies create only a database that reduces
the subsequent search space used to generate alternate configuration.

Arciszewski and Ziarko [27] have presented rough sets approach to inductive learning
in civil engineering. The system extracts decision rules which can be used to acquire
knowledge for problem solving to develop shallow model, to identify governing rules in a
domain and to develop learning expert systems. Yeh et al. [28] have used the ID3 inductive
learning algorithm to acquire diagnostic knowledge about the damage to PC plles while
driving. '

Adeli and Yeh [29] have demonstrated perceptron learning model for simple engineering
design.  This algorithm works for very simple tasks, which are trivial in engineering design,
whereas this algorithm can not learn complex tasks since there are no hidden layers.
Kamarthi et al. [30] have demonstrated a neural network learning system for vertical
formwork selection. The paper discusses the merits and demerits of the neural network
system when compared to rule based system and demonstrates that the difficulty of eliciting
knowledge for rule based system can be overcome by the neural network learning system.
Moselhi et al. {31] have illustrated neural network applications in the field of bidding for
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construction projects.

The examples of application of machine learning in the civil engineering domain clearly
illustrate growing capability and complexity. Inductive learning methods are the most
frequently used. Applications using neural network methods are being explored more
recently. Applications in analytical methods and classifier systems are least explored,
probably due to their computational complexity and application interface problems. It is
also clear that applications so far discussed deal with only narrow domains of engineering
problems.

4. MACHINE LEARNING IN ENGINEERING OF STEEL STRUCTURES

According to Simon [1] large knowledge based Al systems, particulariy systems that can

~ be expected to continue to grow and accumulate over a period of years of use, are fertile
areas of application of machine learning. Engineering of steel stru¢tures is a large problem
domain involving conceptual design, structural system planning, preliminary sizing, de-
tailed analysis, design, document preparation and construction planning. The attributes
in the domain represent the solution at various levels of a abstraction. Furthermore, the
development of CAD system in the domain is incremental involving group effort. The sys-
tem should model and accommodate the cooperative problem solving behaviour of domain
experts working together. The machine learning in such an environment should be able
to handle the varied requirements of the large domain. An integrated engineering system
(IES) for the knowledge based engineering of steel structures has been already developed
[32] under an ongoing project. The development and implementation of machine learning
strategy in this system is currently under progress. The details of machine learning in this
system are discussed in the following sections.

4.1 TES: Integrated Engineering System

IES uses an extended blackboard shell. Before discussing the machine learning imple-
mentation on this system, basic features of the systems are briefly reviewed [32]. Fig.1
shows the architecture of IES. The knowledge represent various functional activities of the
engineering process, are compiled as production rules in independent knowledge sources.
The knowledge sources generally do not interact directly but only through the global data
referred to as blackboard. The blackboard has two panels namely solution blackboard and
Control blackboard. The solution blackboard contains hierarchy of objects of the solution
space with named links for inheritance. Objects and their attributes are represented as
frames. Instances of the objects are stored in a relational database with links to black-
board objects. The control blackboard contains the status of the abstracted events of
the solution process. Since the engineering process involves a large number of compu-
tations which is more efficiently carried out using algorithmic programs, C functions are
used for such procedural programs. These function can be called from production rules
in the knowledge sources. Generation of dependency network which is used in knowledge
based backtracking, domain specific knowledge based control, opportunistic scheduling of
knowledge sources are the other features of the system. More details about the system are
presented by Sakthivel et al. [32].
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4.2 Scope for Machine Learning

In large systems it is neither desirable nor feasible to consider machine learning as the
backbone of the system. In engineering domain whenever problem solving steps and the
engineering fundamentals that form the basis of the problem are well understood, it is
efficient to represent such knowledge algorithmically in procedural programs. These are
segments where governing knowledge is clearly defined or is easily acquired. However, the
sequence of application of the knowledge during problem solving may be either not clear
or has to be flexible. Knowledge based approach is more appropriate under such circum-
stances wherein the knowledge may be represented in production rules, frames, semantic
networks, etc. Trying to acquire such knowledge for problem solving through machine
learning is devious, unproductive and inefficient. However, scope exists for machine learn-
ing in engineering problem solving. Frequently knowledge or expertise is difficult to acquire
‘and codify in which case machine learning from earlier problem solving experience can be of
immense help. Besides, adaptation and modification of theory and practice is a continuing
process in engineering problem solving. Engineering solution is affected by temporal, geo-
graphical and economic factors in non-obvious ways. Machine learning capabilities could
synthesize such knowledge from past experience and help the system to adapt to changes
in the theory and practice.

4.2.1 Engineering Tasks and Learning Strategies

In this section we discuss specific machine learning strategies that are being tried at var-
ious stages of engineering problem solving using IES. The preliminary specification of a
structural engineering problem is brief open ended and ill-structured. Conceptual design
based on this problem statement leads to an appropriate structural system, such as the
type of bridge appropriate for a given specification being a cable stayed bridge or a truss
bridge, etc. Decisions made at this stage have probably the greatest impact on the final
economy of the engineering solution. However, the knowledge that drives the conceptual
design and the application of the knowledge to arrive at appropriate decisions are not well
understood. It is usually difficult to acquire the conceptual design knowledge. Analytic
paradigms, such as case based learning or derivational analogy, are appropriate strategies
for learning conceptual design. A few learning examples along with rich underlying do-
main theory support the learning task. Conceptual design is highly sensitive to temporal
and geographical conditions. Hence a continuous learning system which could pursue mul-
tiple solution path and learn from each problem solving episode would be more robust.
The frame based representation of objects, the dynamic instantiation of the objects in the
solution space and events in the control blackboard, as well as knowledge based control
strategy are the features of the IES system, which readily support the analytic learning
strategy. :

Having decided on the structural system, planning and configuring the structural sub-
systems is the next step in the engineering process, which offers opportunities for the
machine learning process. Maher and Li [23] have demonstrated conceptually, a learn-
ing system for configuring cable stayed bridges based on the dependency network of the
design experience. Inductive paradigms such as conceptual clustering using a sequence
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of known examples and counter examples from previous problem solving sessions support
this process. This paradigm is being tried for the structural configuring activity in IES.

Let us consider the task of learning the configuration generation of a cable stayed bridge
from a number of cases already engineered. The attributes that define the configuration
of a cable stayed bridge may be subdivided into problem specification attributes and con-
figuration attributes to be generated by the system. The specification attributes are the
total length of bridge, number of lanes of traffic, geotechnical details of the site, navi-
gational requirements under the bridge, wind and earthquake load at the site, approach
alignment, and aesthetic requirements. The configuration attributes are the number of
cable stayed spans, maximum span length, side span length, drop span, tower type, tower
height, number of cable planes, inclination of cable planes, number of cables per span,
cable arrangement, girder type, girder depth, and foundation type. Cases of cable stayed
bridges are available in the literature [35] which could be used as learning examples in in-
duction. Inductive paradigms based on concept acquisition [6] require tutoring and would
not serve the requirements. Conceptional clustering CLUSTER/2 [36] and other similar
algorithms can generate only a hierarchical organisation of objects classified by conjunc-
tive statements. The learning process in the configuration generation should be able to
represent many to many relationship between objects derived using operators expressing
other logical implication in addition to conjunction. An induction algorithm which can
create a network structure between attributes of the domain. This would involve creation
and use of fuzzy definition of attribute values.

Decisions regarding trial shapes and sizes for members are made at the stage of preliminary
sizing. Past experience plays a major role at this stage. Maher and Li [23] and Adeli
and Yeh [24] have demonstrated machine learning in this domain using induction and
perceptron, respectively. Neural network with hidden layers could learn from earlier design
experience and thus enhance preliminary design capability.

Detailed design is the iterative process of checking the adequacy of trial sections to meet all
the constraints of the design. This falls under the category of routine design. The detailed
design has to be repeated for many member in the structural system such as tension and
compression members of the truss bridge as well as their connections. Knowledge chunking
algorithm helps in speeding up this process [33].

Time and cost overrun in large projects are frequently due to the difficulty in planning and
managing such construction projects. Technical, social and environmental uncertainties
influence the construction process. Construction planners and managers learn to tackle
these activities under uncertainties, based on their past experience on similar projects.
Cause effect relationship in these activities is not well documented. Neural network system
can be trained using past cases to learn the implicit knowledge associated with the process.
The trained neural network serves as the transfer function relating inputs and outputs of
the construction planning process. The self organisation, generalisation, fault tolerance,
and massively parallel processing properties of the neural network systems are useful in
this activity.

The process of solving any major engineering problems is an open ended problem. Many
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agents cooperating opportunistically, and interacting in a non-deterministic and non-trivial
way contribute to the solution in an incremental but non-monotonic fashion. Computing
systems such as DICE [34], attempt to facilitate such a cooperative problem solving process
in real time. IES based on opportunistic knowledge scheduling, models such a problem
solving strategy. In IES without learning capabilities, the choice of one rule from among
many competing rules or one knowledge source from among the competing knowledge
sources is predetermined by the priorities set in advance, based on the experience of the
developer. In IES with learning capabilities such priorities can be continually updated
based on the past problem solving experience. The process and not the product of the
past experience is used in learning. Induction paradigms provide algorithms for learning
problem solving process.

IES also has a rich user interaction facility. Control is given to the user whenever a new
input is required or a new knowledge source is to be scheduled in addition to pauses at
pre-defined points depending upon the domain requirements. "During such interruptions
the user can review the solution and make mec. “fcations to any value already inferred
or change the event to be pursued which may be different from that dictated by control
knowledge. Such user inputs serve as a rich source for learning the problem solving process.
An abstraction of the entire problem solving trace is stored in IES as a dependency network.
The dependency network also serves as a source for learning the problem solving process.
An induction learning algorithm could be used to achieve this learning. IES handles
the non-monotonic problem solving process in engineering, using the dependency network
and the consistency maintenance mechanism. Whenever a design failure or a constraint
violation occurs, the knowledge based backtracking mechanism takes over and restarts
from an earlier state after appropriate modifications to the solution state and dependency
network. The knowledge for the backtracking may be available in the knowledge base, if

" the episode has been already envisaged. Otherwise the advice is obtained from the user.
Such backtracking knowledge with accompanying explanation is to be used to minimize or
eliminate unnecessary problem solving cycles in the subsequent sessions in the IES, using
an explanation based learning algorithm.

5. SUMMARY AND CONCLUSIONS

It is seen that no single strategy could effectively serve the machine learning requirements
of large applications. IES requires implementation of different learning strategies and the
engineering application developer can make a choice depending upon the domain require-
ments. The opportunistic knowledge scheduling and maintenance of dependency network
in the IES system based on extended blackboard architecture are features which aid the
implementation of the learning strategies. The learning strategies as discussed are being
currently implemented and tested in the IES system. For brevity, implementation details
are not presented in this paper.
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SUMMARY

Design synthesis is defined to be the generation of alternative design solutions. Domain knowledge
provides design principles and performance theoretical guidance, design episodes serve as resources
in the design synthesis process because they record experience and reasoning steps. The main aim of
our research is to explore a design process model incorporating both episode-based design situations
and generalized domain knowledge for design synthesis. This paper presents an approach to
combining case-based reasoning and decomposition to derive a new design solution by the
transformation of previous design situations. The issues of the representation of realistic structural
designs in a case base and the transformation of previous design situations are addressed in the paper.

RESUME

On entend par synthése d'études la génération de solutions de rechange dans I'établissement des
projets. Un modele de processus d'études, en cours d'évaluation, combine un domaine de
connaissances, englobant des régles d'études et des caractéristiques de performance, avec des
situations d'études épisodiques, dans lesqueHes sont mémorisées les expériences et les conclusions de
raisonnements déductifs. Les auteurs présentent une méthode qui, 4 partir d'études mises en archives,
permet d'effectuer des analyses et des déductions et, de la sorte, conduit a de nouvelles solutions par
transformation de situations d'études précédentes. L'article développe d'une part les questions de la
représentation d'études spécifiques de batiments et d'autre part, le processus de transformation des
situations d'études précédentes.

ZUSAMMENFASSUNG

Unter Entwurfssynthese wird die Generierung alternativer Losungen der Entwurfsaufgabe
verstanden. Es wird an einem Entwurfsprozessmodell geforscht, das ein Wissensgebiet aus
Entwurfsregeln und Leistungsmerkmalen mit episodischen Entwurfssituationen kombiniert, in denen
Erfahrungen und Schlussfolgerungen gespeichert sind. Der Beitrag stellt eine Methode vor, wonach
aufgrund archivierter Entwiirfe Schliisse und Analysen ermdoglicht, und durch Transformation
frilherer Entwurfssituationen neue Losungen gefunden werden. Dabei wird auf Fragen der
Darstellung realistischer Gebiudeentwiirfe in einer Fallsammlung und des Transformationsprozesses
niher eingegangen.
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1 INTRODUCTION

Design is a process in which the experience and knowledge of designers and the design specifications
are combined, during which a design description is generated to satisfy the design intentions. In the
synthesis of design solutions, alternative configurations are generated and evaluated. During design
synthesis, domain knowledge provides design principles and performance theoretical guidance,
design episodes serve as resources because they record experience and reasoning steps.

There is no standard method of synthesis suitable for all design problems. The case-based reasoning
(CBR) paradigm provides a model for applying prior experience to new problems. It involves
retrieving relevant previous cases, adapting the solution from a previous case to solve new problems,
and storing the current episode as a new case to be used in the future. CBR as a process model of
design synthesis is appealing intuitively because much of design knowledge comes through
experience of multiple, individual design situations. For many domains where design knowledge is
difficult to acquire and may not be objectively applicable, the case-based paradigm presents a model
for the acquisition, organization and reuse of specific design knowledge. Using CBR as a design
process model raises the following issues: the identification of what is in a design episode in order to
reason about its applicability in a different design context, and the transformation of previous design
situations from an original context to a new context.

For design, what is stored in a case reflects the characteristics of design knowledge, as design case
retrieval and transformation are based not just on surface features such as the description of design
solution, but also on the causal relations between function, behavior, and performance etc. This
increases the complexity of the representation and organization of design cases. Whether to include
the relational knowledge and governing constraints for a design case within the case or to represent
this knowledge outside case memory is still an open research question.

Transformation of a case plays a crucial problem solving role in the CBR paradigm. Transformation
includes identifying the difference between the retrieved cases and the new problem and modifying
the solution stored in the retrieved case to take those differences into account. The issues raised by
transformation are: the representation of domain knowledge about transformation; the maintenance of
consistent modification; and the verification of a feasible solution. Previous designs can not be reused
without substantial changes. A previous design is either proprietary or customized for a specific
context. Proprietary designs (such as Xerox copier) can not be used again without violating laws.
Customized designs (such as buildings) can not be used again because the exact context will rarely
arise again.

As a result of many efforts toward using CBR for design problem solving, it is found that certain
generalized or compiled domain knowledge are essential to address some of the issues in the case-
based design model. A hybrid model, therefore, becomes a common approach in many
implementations of case-based designs.

In recent years many CBR computer models have used the idea of hybrid systems, and have been
developed in engineering design domains. In Wang and Howard's [1988] integrated system for
structural engineering design, case-based and rule-based reasonings are combined. A past design can
be applied to a similar design problem by replaying its previous design plans. A conventional rule-
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based module applies design codes and analysis procedures to create the design solutions when case-
based design actions are not available. In Faltings et al's [1991] case-based architectural design, the
representation of a case involves specific design knowledge and domain dependent knowledge
including transformation rules. Case transformation deals with dimensional and topological
discrepancies in which a specific design is treated as a starting point of a new design.

As another typical range of case-based designs, some integrated design systems combine model-based
reasoning with case-based reasoning. KRITIK [Goel and Chandrasekaran 1989] is an example of this
method for the design of small mechanical assemblies. Causal understanding of structure, function
and behavior about a device resides in a design model as a functional representation schema, whereas
individual mechanical devices are represented an instance of relevant design models. In [Sycara et al
1988], a design case is a graph-based behavior model about a particular device. Case-based reasoning
in this approach is viewed as a methodology for selecting and applying various design models rather
than specific episodes. |

2 CADSYN : COMBINING CBR & DECOMPOSITION

CADSYN [Maher and Zhang 1991, 1993] provides a process model for design in which case-based
reasoning is combined with a generalized decomposition approach, where the CBR and
decomposition approaches complement each other to provide a flexible and comprehensive model of
design. In this paper, we will focus on the approach where CBR is adapted to provide a model for
selecting and transforming previous design situations to fit a new context using decomposition and
constraints knowledge. The process model integrates three distinct types of knowledge: specific
design situations, generalized decomposition of a design domain into systems and components, and
design constraints. The components of knowledge and main processes for the CBR approach are
illustrated in Fig.1.

New design specifications  Design subproblems

N 7

New design (sub)problem

v

CASE Case
( SELECTION ) 4 memory

CASE Generalized Design Knowledge
TRANSFORMATION %

« Decomposition
+ Constraints

New solution

Fig.1 The overall architecture of CADSYN

The problem solving process in CADSYN is primarily divided into case selection and case
transformation. Given a new design problem or subproblems, a case or. subcase which was designed
for a similar context is selected from case memory. The selected case or subcase is then transformed
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to the new context through modifications which resolve the conflicts caused by difference between the
original and the new contexts. A solution, thus, is derived based on (1) the most relevant previous
design situation being selected, i.e a close match is found; and (2) transforming the potential solution
to fit the new design situation using a domain specific constraint satisfaction approach.

Case selection The selection of the most similar 'design case consists of two steps, retrieval and
selection, as illustrated in Fig.2. The retriever traverses the case memory according to the new
problem definition, and identifies the similarities between cases and the new problem. The selector
then compares the similar design cases to choose the most relevant one. Case selection involves
assessing not only how close the past cases are to the new problem, but also the relative importance of
the relevant similarities and differences. To model this selection process, a weighted count of

matching features is applied.
case

Case Similarity
memory metric

Similar previous Most relevant
designs or subcase

Fig.2 Design case selection

Case transformation Transformation in CADSYN forms the essence of design synthesis, using a
holistic approach to design by starting with a solution and adapting it to fit a new context.
Transformation in our model assumes that case selection provides a description of a specific design
solution that is close to the acceptable final solutipn, and transforms those aspects of the design
solution that are inconsistent. Transformation can be divided into three logical phases: adapt, verify,
and repatr, as shown in Fig.3. First, a potential solution to a new problem is proposed as the solution
from the selected cases. This potential solution is adapted to change the difference in specifications
and the design description, which introduces some inconsistencies between the design specifications
and the design description. This step is then followed by verification, the process of evaluating the
new solution by checking design constraints, and modification, the process of fixing an inconsistent
design to satisfy the violated constraints. Once the solution has been revised, it is verified again. This
process proceeds until all constraints are satisfied and a feasible solution is found.

Maw  Constraint Satisfaction Feasible :
design design |
problem solution ;
Design situations & Design Decomposition

heuristic rules - constraints knowledge

Fig.3 Design case transformation



////A D.M. ZHANG - M.L. MAHER 147

To expfore the case-based reasoning approach for design synthesis, CADSYN addresses two major
issues: the representation of design cases and the transformation of a design case. A design case is a
description of the design problem and design solution, in which there are no causal relations to
support a design decision. The transformation processuses generalized decomposition knowledge and
design constraints as the causal relations that justify and verify design decisions.

3 REPRESENTATION OF DESIGN CASES

‘The formulation of design cases is a prerequisite for a CBR approach to design. In our project, design
cases are collected with the cooperation of Acer Wargon Chapman Associates, an engineering
consulting firm in Sydney. We were given access to the drawings for the structural design of their
building projects. For each building project, there is a set of drawings produced for documentation
purposes, primarily for the purpose of communicating the information needed to construct the
building. This means, for example, it can be seen on the drawings how much reinforcement each
beam has, however, no or very little design information such as lateral load resistance or system
design reside on the drawings. To acquire design cases, we augmented the information found on the
drawings with interviews with the engineers involved the project. We chose not to put drawings in
case memory but to capture the essential design information.

In CADSYN, a design case is represented in a case hierarchy in the form of attribute-value pairs. A
design case consists of a supercase part and multiple levels of subcases. This case representation
provides the process model with a means to use subcases independently of the entire case. The
supercase of a case provides the overall design episode context and general description. Each subcase
describes the local context and the solution of a design subsystem. Subcases are indexed individually
along with links that can be used to construct the whole case.

As both specific design cases and generalized decomposition knowledge are incorporated to derive a
new design solution, a correspondence between them is established as follows: the design description
of a particular design case is associated with a set of subsystems from the decomposition knowledge,
where each subcase matches a generalized subsystem. This ensures that subsystems and their
attributes can be recognized during case transformation for constraint checking and repair.

A design case in CADSYN is the description of a design context comprised of design specifications
and a design solution, in which there are no causal relations to support a design decision. In structural
design, the content of a design case is constructed in three layers: problem specifications as a global
context; a grid representation for each function of building as the geometric context; and structural
systems as a design solution for each grid level. The problem specifications of a design case include
general architectural specifications and loading information, such as the number of stories, the
intended use of the building, etc. The grid representation contains bay numbers and sizes in the two
principle orthogonal directions, and other functional and geometric information. A design case of a
particular building is illustrated in Fig.4. This office provides four functional spaces: parking, retail,
office, and service-core. GEN-CASE shows a overall problem description of the building. The local
design context for the office space is shown in the GRID3, and the structural design description
associated with GRID3 is illustrated in terms of lateral-systems, gravity-system, transfer etc. The
attributes in the structural design description are categorized as requirements (req) and design
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decisions (des).

GRID1

2D-LATERAL-X-SYS

GEN-CASE
bldg-type office
stories 18
str-material RC
length 40m
width 28m

height
use-above-grade
(retail office)
| ues-below-grade
(parking)
service-core-shape
rectanguiar
bldg-location
130 Elizabeth
Sydney

63.15m

end-level 13

use-type  parking bay-size-x req (888888)

typical-fl-ht 3.9m stories req 11

start-level -2 gird-height req 41.1m

end-level 0 *** | grid-width req 48m

2D-type des rigid-frame

GRID2 material des RC

use-type retail frame-width des 48m

ypicalfint 3,9m —! location-class des edges

| slaelevel 0 .J.| 1oaction des «a7025 202 .)

end-level 2 se e

typical-fl-ht 3.8m max-span-x req 8m

start-level 2 max-span-y req Sm

end-level 13 ﬂo;o.r-type des slab

levels 1 material  des Prestressed Concrete

live-load  3.0kpa |1 | support des d4-edges

plan-shape rectangular support-type des beam

plan-location action des  two-way

((a10.3) (a251)..) cee
B id-label-x

(abcdefg) TRANSFER-SYS

grid-label-y distance-grid-x req 2.3m
(1234506 distance-grid-y req 1.2m

] grid-offset-x {rinsfer-type des beam-slab

(888888) material des RC

grid-offset-y thickness des 150mm

2235555 overall-thickness des 400mm
GRID4

use-type  service-core

typical-fl-ht 3.9m

start-level -2

Fig.4 A partial description of a design case for an office building

4 TRANSFORMATION PROCESS IN CADSYN

The transformation process of a design case in CADSYN is an adaptation-verification-modification
iterative process using constraint satisfaction and decomposition knowledge. In the transformation,
the previous design examples act as a starting point for a new design generation and suggests a
potential solution to the new problem. An initial solution is firstly constructed by structurally
transforming the solution of the most relevant design case. The transformer then adopts a constraint
satisfaction approach to check the feasibility of the solution and repair invalid design decisions in the

adapted solution.

In this section, the generalized design knowledge used for supporting the transformation process is
represented and the strategy for the constraint satisfaction approach in the transformation is described.
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4.1 Representation of neraliz Knowl

The transformation process in CADSYN uses two types of generalized design knowledge:
decomposition knowledge and design constraints based on the representation of knowledge in
EDESYN {Maher 1989].

Generalized decomposition knowledge provides the transformation process with the search space of
possible alternatives for design attributes. The decomposition knowledge describes how a design
system is to be decomposed into attributes. Each attribute can be defined in one of three ways: further
decomposition through subsystem design; selecting from an enumerated set of discrete values; or the
evaluation of a procedural function. A generalized system for the gravity system is as shown in the

right hand part of Fig.5, where "floor-type", "material” etc. are selected from sets of discrete values,
and "typical-span" with computed values by the procedure "get-span”.

SYSTEM Gravity-system

typical-span CALCULATION (get-span)
floor-type  SELECTION (flat-plate flat-slab ...)
material SELECTION (steel rein-concrete ...}
support SELECTION (cols-only 2-edges ...)
action SELECTION (1-way 2-way)

END-SYSTEM

Fig.5 A hierarchy of structural subsystems and the description of the gravity system

Fig.5 illustrates a hierarchy of subsystems for a decomposition of the structural design of buildings.
The nodes in the hierarchy represent decomposition systems. At the top level, the bldg-design system
is broken into three subsystems, namely, Bldg-general, Grid-system and Structural-system. The
structural-system leads the synthesis process to a further decomposition of the structural design
solution.

Design constraints are used to identify legal decisions and test a potential solution to a new problem.
Each constraint is a declarative statement which eliminates a design alternative. For the purpose of
design synthesis, it is appropriate to represent constraints as infeasible combinations of attribute-value
pairs or relations, since the role of constraints in the early stages of design is to prune the potentially
large number of design alternatives.

Examples of constraints for the structural design of buildings are given in Fig.6. CONSTRAINT-1
specifies that the flat-plate and flat-slab are not used as floor types in heavy load buildings such as an
office, parking or institution. CONSTRAINT-2 indicates whether the flat-plate and flat-slab work as
one-way or two-way given their typical-span.
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: CONSTRAINT-1 CONSTRAINT-2
! (bldg-type) in (office parking institution)  (floor-type) in (flat-plate ﬂat»slab) in : one-of
(floor-type) in (flat-plate flat-slab) (action) = one-way i < :less than
(typical-span) < 10m i = :equalto

Fig.6 Examples of elimination design constraints

4.2 Transformation by Constraint Satisfaction

The transformation of cases in CADSYN can be modeled as a constraint satisfaction problem (CSP),
where decomposition knowledge defines the domain of possible values associated with each design
attribute; and design constraints represent compatibility and selection knowledge. By treating
transformation as a CSP, our method takes an initial inconsistent assignment for the design attributes
and incrementally repairs constraint violations until a consistent assignment is achieved.

If the potential solution adapted from the previously selected design case violates design constraints, it
will be input to the constraint satisfaction process as an inconsistent assignment for the design
attributes. The transformation is characterized by searching for a consistent assignment for all design
attributes subject to design constraints. A constraint satisfaction process, as illustrated in Fig.7, is
applied to find a consistent solution.

Process Knowledge

—’( Check constraints ) @_ CONSTRAINTS
v

(Selcct a subsystem to modify) <~ | HEURISTIC rules

I\ C Find value combinations j - g}%ﬁ?eziZOSITON

C Select a feasible combinatjoD «~ | CONSTRAINTS

@'opagatc effect of modification ) e E}FEIOC?POS ITON
: owledge

g.7 Constraint satisfaction in CADSYN

Check constraints. The potential solution provides a set of attribute assignments based on the
adaptation of the retrieved case or subcase. This set of attribute assignments is compared to the
constraints in the generalized knowledge base to identify violated constraints and the subsystems
associated with the constraints. If no constraints are violated, a feasible solution has been found.

Select a subsystem. An appropriate subsystem is then identified to be focused on based on a set of
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heuristic rules. During repairing, the strategy is to fix lower level design decisions rather than change
subsystems.

Find value combinations. A value for an attribute can be selected from a discrete set of values or it
can be computed using a procedure. The possible value combinations are generated by assigning
possible discrete attributes, then attributes with computed values are assigned new values by applying
relevant procedures based on the value combinations of discrete attributes. The final result of the
constraint satisfaction process is a set of possible value combinations in the selected subsystem.

Select a feasible combination. The determination of which value combination is used as a new
subsystem description is based on the number of constraints which are satisfied. That is, the value
combination which satisfies most constraints is regarded as a new design description for the
subsystem.

Propagate effect of modification. Once a selected subsystem is modified, all relevant attributes in
other systems associated with this subsystem are updated by recomputing corresponding procedures.
The process iterates from this point by identifying new constraint violations until all constraints are
satisfied.

5 CONCLUSIONS

The issues raised in this paper are the result of developing the CADSYN process model, and applying
the model to the design of structural systems for tall buildings by collecting cases from an engineering
consulting company. Direct collection of real world designs leads to difficulties due to the complexity
of building design process and the formulation of the case data from design drawings and interviews
with designers. One of major issues is that design information is not on the structural drawings. The
drawings are used for documentation of the design and contain overwhelming detail on the data
needed to construct the object and very little about how the system works. Another issue is capturing
the intent of the design so that its adaptation can be consistent following the original context. In
general, we augmented the information found on the drawings with interviews with the engineers
involved in the project design. The requirements for the design are regarded as a substitution of the
designers' intent. A hierarchical representation is used to represent a building design, each subsystem
has an associated functional label, set of requirements, and design decisions.

The transformation of a design case in CADSYN is addressed as a design synthesis process using
both specific case knowledge and generalized decomposition knowledge. The knowledge about the
behavior of structural systems is represented once as generalized decomposition knowledge, rather
than repeating it for each case. The knowledge about detecting the design failures is represented as
constraints to verify the adapted design and ensure a consistent modification. A new design is
generated by adapting cases and performing a constraint satisfaction process in which decomposition
knowledge provides a space of possible alternatives for a design attribute, and elimination constraints
represent compatibility and selection knowledge. In the development of a constraint satisfaction
approach to transformation, how to accumulate the appropriate generalized knowledge is a major issue
as there is very little causal knowledge available at the preliminary design stage. Constraints, for
example, are used to determine whether an adapted design is feasible, but as knowledge used for
preliminary design, such constraints are based on heuristics rather than on an analysis of the behavior
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of the solution.
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