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Long-term Prediction of Behaviour of Cable-Stayed Bridges
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SUMMARY
Presented herein is a method to predict the long-term change of cable forces and slip of cables out of
sockets in cable-stayed bridges. Employed are full-scale long-term tension tests of cables to determine
the visco-elastic constants of the cables and the sockets. Based on the experimental results, the analytical
prediction of bridges were made through the finite element visco-elastic analysis together with the Laplace
transform and the results were compared to the site measurement values.

RESUME
Cet article präsente une methode pour ävaluer le comportement a long terme des contraintes des cables
d'un pont a haubans, ainsi que le comportement au glissement de ses ancrages. Des essais du cäble en
vraie grandeur on etö effectuös afin de döterminer les propriätäs visco-elastiques des cäbles et des
ancrages. La möthode des 6l6ments finis combinöe avec la transformation de Laplace est appliquee ä

l'analyse et les resultats analytiques sont comparäs avec les mesures effectuäes sur le chantier.

ZUSAMMENFASSUNG
Es wird eine Methode vorgestellt, mit der langfristige Veränderungen in den Seilkräften, einschliesslich
Schlupf in den Verankerungen, vorausberechnet werden können. Dazu waren im Massstab 1:1 Versuche
zur Bestimmung der viskoelastischen Eigenschaften von Seilen und Ankerköpfen nötig. Mit diesen Daten
wurden Finite-Element-Berechnungen für Brücken unter Verwendung der Laplace-Transformation
durchgeführt und die Ergebnisse mit In-Situ-Messungen verglichen.
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1. INTRODUCTION

Presented herein is a method to predict the long-term change in the cable forces and cables slip-
out from their sockets in cable-stayed bridges. Based on long-term tension tests on full-scale cables
of 5m length, a very simple analytical model is proposed and an effort is made to determine the visco-
elastic constants of the cables and sockets, taking into aecount the seale effect of the length of the
cables, by extrapolating the results of the measurements carried out in cables with limited length to
actual cables with arbitrary length. In addition, visco-elastic F.E.M. analysis using the experimental
results was carried out to predict the long-term behavior of several existing bridges and these results

were compared to the measured values at the site.

Due to the fact that the erection of bridges is usually completed within a period of one year or one

year and a half at the site, the visco-elastic constants of the cables and sockets were determined
emphasizing first, the initial relatively short period of the erection stages and, secondly, focusing on
the control of the cable forces for the much longer period of service life.

2. LONG-TERM TEST OF PROTOTYPE CABLES

2.1 Experimental Method

When investigating the time-dependent behavior of materials, there are two types of tests,
namely, creep and relaxation tests. The former being carried out under constant loading with
increasing deformation, and the latter under constant deformation with decreasing stress. The type of
test carried out in the present study is a combination of both types [1].

The measurement System is presented in Fig.l, where the load is measured by a load cell and the

relative displacements between the cable and the steel frame, by displacement transducers. To

investigate the visco-elastic characteristics ofthe cables due to the difference in cable strength, two
types of cables (Specimen types 1 and 2) were tested. In addition, four different combinations of
cables and sockets (Specimen types 3 to 6) were tested, in a total of 6 specimens. Table 1 shows the

specimen dimensions and characteristics.
Strain gage

Loadcell | „ _* ~ / Shim plate

Socket

H Displacement |
\JF*^~ transducer """-^-ü-fl

Specimen cable

\
Av

Socket

Strain gage

Fig.l Measurement System

Table 1 Dimensions and Characteristics ofthe Test Specimen

Specimen Name Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Cable Length (m) 5 9 5 9 5 4 5 4 5 4 5 4

Diameter of Wire (mm) 5 0 5 1 7 0 7 0 7 0 7 0

Number of Wires 127 127 19 19 19 19

Cable Type PWS PWS PWS
PWS shghtly

twisted
PWS

PWS shghtly
twisted

Anchorage Length(cm) 44 0 44 0 16 3 16 3 30 7 30 7

Anchorage Type Zinc-poured Zinc-poured HiAm HiAm Zinc-poured
(Incl 2% Cu)

Zinc-poured
(Incl 2% Cu)

Cross Sectional Area (cm2) 24 94 25 94 7 31 7 31 7 31 7 31

Breaking Force (kN) 4400 3910 1137 1137 1137 1137
Initial Cable Force (kN) 1400 1310 380 377 368 371
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2.2 Test Results

Fig.2 shows the time Variation of the tensile force in the cables. As it can be observed, the forces
in specimen types 3 and 4 tend to stabilize in a relatively short time (about 20 days), whereas in the
other cables, continue to decrease even after one year's measurement.
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Fig.2 Time Variation of Cable Tensile Force
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Although the tested cables and sockets were the same as the ones used in actual bridges, the

cable length of the specimens differed from the actual cables, thus, it was decided herein to consider
the cables and sockets separately. Fig. 3 illustrates the time-dependent strain of each cable type and

Fig.4, the slip-out behavior of the different types of sockets.
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Fig.3 Time-dependent Behavior of Cables
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Fig.4 Time-dependent Behavior of Sockets

Specimen types 1 and 2 presented large values for the amount of slip-out from the sockets,
compared to the values of cable creep. Specimen type 3 and 4, 5 and 6 have respectively the same
sockets. In the formers, the forces, as well as the amount of slip-out stabilized in relatively short time
(20 days); whereas in the latters, the amount of slip-out continued to increase.

Cable material of the specimen types 3 and 5, 4 and 6, being respectively the same, presented
similar values for the final creep. However, time Variation between cables of the same type were
different, suggesting the influence of their sockets.
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3. MODEL TO EVALUATE TIME-DEPENDENT CONSTANTS

3.1 Mechanical Model

Due to its simplicity, the analytical model adopted is the three-element model shown in Fig.5 [2].
The total strain of the model e, can be expressed as the sum of the elastic (ee) and viscous (£v) strain:

e e0 + e9 (1)
For the total stress a, the strain-stress relationship

can be expressed as follows:
Ei

a=av E2ev + ri£v

HArV-
(2)

(3)

Ei

¦A\\-i
V

-E-
Fig.5 Three-element Visco-elastic Model

where Ei, Ei are the elastic coefficients and rj the viscosity coefficient of the three-element model.

Differentiating Eq.l and Eq.2 in relation to time t and introducing them in Eq.3, it yields the

following equation, after some arrangement.

T+Ei±JkG=Ei{e+*ke)
(4)

3.2 Evaluation of Time-dependency

The visco-elastic constants of the model were evaluated according to the three different methods
described bellow.

3.2.1 Method 1

Focusing on the viscous part of the model in Fig.5 (Eq.3) the following approach curve for the
strain due to the viscosity was assumed.

c, e,(l-«-*) (5)
The coefficient X can be obtained through the least Square method. The results of the evaluation

for one of the cables is shown in Fig.6, with the corresponding slip-out from the sockets shown in
Fig.7 and the viscosity constants thus evaluated are presented in Table 2.

This method is effective for cables in which the phenomena of creep and slip-out from the
sockets stabilize in a short time, however, in cases in which the time dependent curves are not steep
and long-term Variation is observed, the curves tend to diverge from the predicted values.
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Table 2 Evaluated Visco-elastic Constants (Method 1)

Specimen

Cable Socket

l/X
(day)

El

(GPa)

E2

(GPa) (year GPa)

1A
(day) (MN/m)

*2
(MN/m)

il
(year MN/m)

Typel 2.97 217 6272 51.0 80.0 381 704 154

Type 2 0.26 196 30184 21.5 113.6 543 948 295

type 3 1.168 202 19306 61.8 0.153 210 4192 1.76

Type 4 1.043 201 20690 59.1 1.188 228 2454 7.99

Type 5 25.5 191 20482 1428.4 75.0 785 769 158

Type 6 23.0 198 24304 1533 1 50.3 582 769 106

3.2.2 Method 2

The prediction of the time dependent behavior of bridges during their construction stages
requires more accurate values for the initial steep part of the time Variation curves. Thus, in the
second method, the equations used in Method 1 were applied to a relatively short time interval
corresponding to the average interval of time between the prestress of one of the cables and the

prestress of the cable of the succeeding stage. This method converges for the initial part of the time
Variation curves and leads to reliable values for the initial 40 days. Fig.8 shows one of the curves
evaluated by this method with the respective experimental curve. Table 3 presents the visco-elastic
constants evaluated for specimen types 1,2,5 and 6.

Table 3 Evaluated Visco-elastic Constants for
Sockets (Method 2)

Specimen
l/X

(day)

Ki
(MN/m)

K2

(MN/m) (year MN/m)

Type 1 0.921 381 1491 3.76

Type 2 1.043 543 2154 6.16

Type 5 2.48 785 2030 13.8

Type 6 1.319 582 1910 6.90
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Fig.8 Predicted Time-dependent
Behavior of Sockets (Method 2)

3.2.3 Method 3

For the maintenance of the bridge during its service life, a long-term prediction is necessary and
the strain Variation for the time period succeeding the one considered in Method 2, shall be assumed
as it follows.

ev ew(l- ae-»)9 where X E2 / 7] (6)
Considering Ev as a determined parameter, oc and X can be determined by the least Square

method. Fig.9 illustrates the results of the analysis for one of the specimens and Table 4 shows the
evaluated visco-elastic constants for specimen types 1,2, 5 and 6.

Table 4 Evaluated Visco-elastic Constants for Sockets (Method 3)

Specimen a
1A

(day)

Ki
(MN/m)

K2

(MN/m)

Tl

(year MN/m)

Type 1 0.450 351 344 684 658

Type 2 0.541 413 491 866 980

Type 5 0.748 607 505 479 797

Type 6 0.588 178 406 731 356

1 1 —,_.,.

Type 6 _
Predicted
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O 04 /
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3 02 «r^
00 i i i

0 100 200 300 400

TIME (day)

Fig.9 Predicted Time-dependent
Behavior of Sockets (Method 3)
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4. PREDICTION OF TIME-DEPENDENT BEHAVIOR OF A CABLE-STAYED BRIDGE

4.1 Finite Element Formulation

The equilibrium equations for the cable, tower and girder elements after applying Laplace
transform leads to a linear system of equations, whose stiffness matrices Kij are as presented bellow.

K^ ttjvB^mn(s)BfydV
,=i ,=i (7)

where Bim and Bnj are strain matrices and Emn(s) is the elastic modulus corresponding to the Laplace
space:

£^(5)= K + E2
El

s + — -
^ for visco-elastic elements (8-a)

for elastic elements (8-b)

The F.E.M. analysis as above described provides Solutions in the Laplace space which has to be

converted into the real time domain, so as to give the final Solution. Therefore, an inverse
transformation has to be carried out [2].

In case of cable-stayed bridges, the cables, towers and girders have different visco-elastic
constants and therefore, different intervals of convergence, which makes it difficult to perform a

numeric inverse transform considering, simultaneously, all the structural elements visco-elastic.
Thus, the bridge analysis was carried out considering each element, separately, visco-elastic (case
1,..., case n) and the final Solution was assumed to be a linear combination of all the n cases [3]. The
contribution factor for each of the terms of the linear combination is determined by means of the least

Square scheme in the Laplace image space and the use of the Regula-Falsi method.

4.2 Model Bridge

The model bridge, as presented in Fig. 10, is a cable-stayed bridge with a central span of 238.0m
and the side spans supported by a PC rigid frame bridge. The structural analysis was carried out for
half the bridge, considering its structural symmetry and the cables actually used in this bridge were of
type 4 and type 6.

Thus, the following cases were considered for the analysis:
- case 1: only the cables are linearly visco-elastic;
- case 2: only the concrete members of the PC rigid frame bridge are linearly visco-elastic, and

- case 3: final Solution assumed as a linear combination ofthe former cases.

Cable 11

Cable 1
Steel Girder

©0
OZZ2ZZ

0X0

Node 31

119m 238m 119m

PC Rigid Frame Bridge *. _

0© ®/ |

Fig. 10 Model Bridge

4.3 Analytical Results

The structural analysis was performed using the experimental values of the specimen types 4 and
6, which, although having the same cable material, had different types of sockets. Fig.l 1 presents the

time Variation ofthe axial force in cable No.l (one ofthe longest cable) and Fig. 12, the time Variation
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of the axial force in cable No.l 1 (one of the shortest cables). The forces stabilized in a short time,
presenting similar values for both types of cables.
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On the other hand, as it can be noticed in Fig. 13, the time-dependent behavior of the nodal
displacements were more remarkable in type 6, whose socket is of a more sensitive type. The
effectiveness of considering the cables and sockets separately in the evaluation of the visco-elastic
parameters is shown in Fig. 14, where the curves for the case in which cable and sockets are
considered separetly provides values closer to that of the data measured in situ.
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Fig. 14 Displacement of Node No.31
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A Simulation was also performed using a ficticious type of cable, assuming elastic constants
similar to that of type 1 (£i=200GPa, £2=4000GPa) and the delay-time (T=^\/Ei) of 50 days, which
correspond to the values of locked coiled rope [1]. Fig. 15 illustrates the time-dependent behavior of
the nodal displacement when using the ficticious cable.
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Fig. 15 Displacement of Node No.31
(Ficticious Cable)
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Cable No.ll (Ficticious Cable)
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