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SUMMARY
The Clifton Suspension bridge is an iron eye-bar chain Suspension bridge of 214 m span. Despite its age
(128 years) it is a vital link in the traffic System of Bristol, carrying nearly 4 million vehicles per year. An
extensive structural assessment of the bridge has been carried out. This has required global analytical
modelling, load testing, strain monitoring under traffic, and fatigue appraisal of the major components.

RESUME
D'une portöe de 214 m, le pont suspendu de Clifton est Supporte par des chatnes formöes de barres ä oeil.
Malgrö son age de 128 ans et avec pres de 4 millions de vöhicules par annäe, il constitue un elöment de
liaison essentiel pour le trafic routier de Bristol. Au cours de l'6valuation de la säcuritä ä la ruine ä l'aide
d'un modele analytique appliquö ä la structure complete, il a 6t6 procödö ä des essais de Charge et ä des
mesures de deformation sous Charge mobile, ainsi qu'a la vörification de la fatigue de tous les 6l6ments
porteurs principaux.

ZUSAMMENFASSUNG
Die Clifton-Hängebrücke mit 214 m Spannweite wird von Ketten aus eisernen Augenstäben getragen.
Trotz ihres Alters von 128 Jahren stellt sie mit fast 4 Mio. Fahrzeugen pro Jahr eine Hauptverbindung im
Verkehrsnetz von Bristol dar. Bei der notwendigen Tragsicherheitsüberprüfung anhand eines analytischen
Modells des gesamten Tragwerks wurden Probebelastungen, Dehnugsmessungen unter Verkehr und
Ermüdungsnachweise aller Hauptkomponenten durchgeführt.



198 FATIGUE ASSESSMENT OF THE CLIFTON SUSPENSION BRIDGE Jt

1. INTRODUCTION

The Clifton Suspension Bridge
was designed originally by the
eminent Victorian engineer
Isambard Kingdom Brunei. The

bridge was completed in 1864,
after his death, with a number
of important modifications to
his design [1]. The

spectacular setting of the
bridge spanning the Avon Gorge
makes it an important tourist
attraction and focus of civic
pride (Fig 1). But it is also
an important link in the
traffic System of Bristol
carrying nearly 4 million
vehicles per year, although
there is a gross weight limit
of 40 kN.
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Fig 1 Clifton Suspension Bridge

Structurally the bridge is a wrought iron eye-bar Suspension chain with a

suspended structure carrying an asphalt surfaced timber deck (Fig 2). There

are three chains on each side of the roadway, arranged one above the other as

shown in Fig 1. They are made up of 175mm x 25mm wrought iron bars with
special eye joints forged to each end. Each link is made up of ten or eleven
bars arranged side by side, interleaved with the bars of the next link, and

connected with a pin through the eye Joint. Successive suspender rods, at
intervals of 2.44m (8 feet) are attached to each of the three chains in turn,
(see Fig 1), so that the eye-bars are approximately 24 feet in length
depending on the local slope of the chain. The wrought iron suspended
structure (Fig 2) consists of longitudinal riveted plate girders, under each

set of chains, lattice cross-girders and longitudinal lattice parapet girders.
The roadway deck is timber with mastic asphalt surfacing.

suspender
rods

timber
deck

road
surface

bridge

cross-girder

main girder

Fig 2 The suspended structure

parapet girder
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A number of studies of the structural capacity of the bridge have been
undertaken this Century, some of them resulting in remedial or strengthening
works [1,2]. The collapse of the Point Pleasant Bridge over the Ohio river in
1967, resulting from corrosion-fatigue in an eye bar, prompted an extensive
fatigue appraisal of the Clifton Bridge [3]. It was concluded that there was
an adequate margin of safety against fatigue failure at that time. However,
traffic loading was steadily increasing and there was concern over progressive
deterioration of the riveted joints of the parapet girder and other signs of
wear or damage. It was decided that a global analysis of the structure should
be carried out, using modern analytical methods, so that the effects of a
ränge of load cases could be studied.

2. FINITE ELEMENT MODEL

2.1 Modelling assumptions and analytical procedure
Suspension bridge behaviour under load is geometrically non-linear. This is
because the cable or chain adapts its shape when a concentrated load is
applied at a particular point on the structure. In most Suspension bridges,
as at Clifton, the longitudinal girder provides some stiffening and
effectively distributes these deformations over part of the structure. For
this reason it was decided to use a finite element program which had
geometrically non-linear Solution capabilities.

The finite element model was designed to represent the effects of vertical
loading on the structure. For this purpose a two-dimensional model was
considered to be adequate. Dead load and traffic load in both lanes is
symmetrical about the longitudinal axis of the bridge and therefore only one
half of the bridge needed to be modelled, i.e. one set of three chains
supporting the main girder and parapet girder. Eccentric traffic loads, in
the form of single vehicles or traffic in one lane only, were dealt with by
means of a separate torsional analysis.

A schematic diagram of the node and element geometry is shown in Fig 3a. From
the left anchorage to the tower the three chains were represented by a single
chain of beam elements. The final link was connected by a pin Joint to the
saddle elements. The saddle nodes were all effectively constrained to move
horizontally as a single unit, simulating the roller bearing that exists at
the top of each tower. The three chains of the main span were represented by
beam elements of the same length as each eye bar link. Thus the correct
sequence of connection to the suspender rods could be modelled as shown. Each
link of ten, eleven or twelve bars, was modelled by a Single element of
equivalent area. It has been observed that the chain links behave as if they
are rigidly connected to each other over the main part of the span. The pins
work freely only at the tower saddles. The main girder was modelled by beam
elements pin connected to the vertical rods as shown. There is no vertical or
horizontal restraint to movement of the main girders of the bridge. However,
in order to avoid computational instability, a soft horizontal spring
restraint was connected to the middle node of the deck.

The behaviour of the cross girders and parapet girder were modelled by
suspending longitudinal beam elements from the main girder elements by means
of vertical linkages. The stiffness of the linkage elements was determined
from the stiffness of the cross girder in shear between points of connection
of the main and parapet girders as shown in Fig 3b. In order to avoid the
problem of horizontal instability it was sufficient to introduce horizontal
coupling between main and parapet girders at mid-span.
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(a) Schematic diagram of node and element geometry
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Fig 3 Finite Element Model

2.2 Analysis of eccentric loading
It was mentioned earlier that eccentric loads, such as single vehicles or
traffic in one lane only, could be dealt with by introducing a torsional
component. This is illustrated in Fig 4 where it can be seen that the loading
can be resolved into Symmetrie and torsional components at the line of the
chains. If the cross girder is rigid, then because of its rotation about the
centre line, it forces the parapet girder to deflect more than the main girder
in the torsional case. Hence the effective stiffness of the parapet girder,
if it is transposed to the same plane as the main girder and the chains,
becomes:

leffPa Ip(B/b)- (1)
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Fig 4 Analysis of eccentric loading
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In this way it would be possible to analyse the problem as two separate load
cases and add the results, provided that it could be assumed that deflection
of the chains was linear with changes in live load applied at a point. In
practice it was possible to combine the Symmetrie and torsional components
into a Single eccentric load case. This was done by evaluating the effective
stiffness of the parapet girder when transposed to the line of the chains with
both Symmetrie and torsional component loads present. The formula is as
follows:

Ieffp Ip [
B2 + fb2

](1 + f) ; where f Pa/Ps (2)

Further refinements were included which took aecount of cross girder
flexibility in the torsional case, but are outside the scope of this paper.

2.3 Load tests and comparison with analytical model
In order to confirm the analytical model, loading tests were carried out on
the bridge at night. The weight limit on the bridge is 40 kN. This
represents vehicles such as ambulances, loaded vans and pick-up trucks. Two
loading cases were identified as follows:

(a) Dual vehicle Symmetrie loading
The maximum concentrated load occurs when two 40 kN vehicles, travelling in
opposite directions, pass each other on the span. Assuming a load
distribution of 15 kN at front axles and 25 kN at rear axles the load case iE
as shown in Fig 5. Although the front axles are in opposite lanes of the
carriageway, and would produce an anti-Symmetrie torsional component of
loading, it was assumed that this would be a small localised effect and that
the load could be treated as Symmetrie as shown.

motion

15 kN 25 kN

o
25 kN

15 kN 50 kN 15 kN

15 kN

o
h ° K °—%b b motion b b

m »-^ m

b 3.66 m

Fig 5 Dual vehicle load case (Symmetrie)

(b) Single vehicle eccentric loading
The bridge is torsionally flexible and therefore it was considered important
to study the effects of a Single 40 kN vehicle travelling in one lane of the
carriageway, thereby applying an eccentric loading to the structure. The
eccentricity of the vehicle in the analysis was taken as 1.0 m from the centre
line of the carriageway.

For the loading tests on the bridge, two pick-up trucks were hired and loaded
with boxes of nails to provide the appropriate distribution. Strain gauges
were fixed to the top and bottom flanges of one parapet girder and both main
girders at 1/4 span. The Signals were logged by a Computer data acquisition
system while the vehicles were crossing the span in the loading configurations
described above.
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The results of a typical analysis are shown in Fig 6 and the results of a

single vehicle load test run are shown in Fig 7. Similarity in the shapes of
the curves is evident. The test run results are effectively influence lines
for strain at 1/4 span when the vehicle passes over the span. The analysis
represents the distribution of deflection and bending moments when the vehicle
is stationary at the 1/4 point. But since the wheel base of the vehicle is
very short compared with the span, and there is evidence of linear ity under
live loads, it may be considered that the analysis results approximate to
influence lines. It may also be noted that the bending in the main girder is
sharper than that of the parapet girder directly under the load. This is
because flexibility of the cross girder results in transfer of bending from
the main to parapet girder to be distributed longitudinal ly to some extent. A

further point to note about the results is that the parapet girder bending
moment is of the same order as that of the main girder. It is not known if
this structural action of the parapet girder was taken into aecount in the
original design.
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Parapet Girder Bending Moment
Max BM - 70.6 kNm

Fig 6 Finite element analysis of eccentric 40 kN load at 1/4 span
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Fig 7 Strains at 1/4 span under action of 40 kN vehicle eccentric load

In order to obtain quantitative comparison between the experimental results
and the analysis it was necessary to convert the observed strains at top and
bottom of the girders to equivalent bending moments. This was done using the
measured sectional properties of the girders and a value of E for wrought iron
of 192 GN/m2. The results are compared in Table 1 below.



13.1 (24.6) 38.4 (44.3)
5.3 (1.8) 11.6 (5.8)

64.1 (-86.3) -170.6 (-198.0)
-7.0 (-10.6) -18.8 (-19.1)
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Table 1 Bending Moments at 1/4 span in kNm (analysis in parentheses)

LOAD POSITION MAIN GIRDER PARAPET GIRDER TOTAL MOMENT

8 ton 1/2 span 18.2 (19.7)
symm. 3/8 " 3.3 (4.0)

1/4 " -89.1 (-111.7)
1/8 " -2.1 (-8.5)

4 ton 1/4 " -56.4 (-64.0) -43.7 (-70.6) -111.2 (-134.6)
ecc.

In Table 1 the experimental moments were evaluated from the strain gauge data
so as to provide a comparison with the analysis. The analytical results are
generally greater than the experimental results. This is probably a result of
the influence of the deck which acts like an additional flange to the main
girder. This was difficult to include in the analytical model although some
allowance was made by modifying the girder section properties to simulate the
shift of the neutral axis.

The 'Total Moment' in Table 1 is the sum of the girder moments in the case of
the analysis. However, the longitudinal forces introduced by the presence of
the deck could be evaluated from the strain gauge data together with the
girder moments. Hence, the 'Total Moment' of the experimental results is
always greater than the direct sum of the girder moments.

3. CONTINUOUS MONITORING OF GIRDER STRAINS UNDER NORMAL TRAFFIC

3.1 Installation and use of "Stress Analvser"
The same strain gauge locations, as used in the vehicle loading tests, were
monitored continuously under normal traffic for several one week periods. The
equipment for doing this, called a "Stress Analyser" [4], was capable of
amplifying the signal from the gauges, detecting peaks and troughs of the
fluctuating signal, and performing a "rainflow" count in real time.
"Rainflow" counting is an accepted method for interpreting a varying amplitude
signal in terms of an equivalent number of simple cycles of different
amplitudes. The fatigue damaging potential of the signal may then be assessed
by summing the fatigue damage contributions of all the simple cycles.

The data are provided in the form of numbers of cycles of different strain
ranges. The mean strain was not recorded because, although it has an effect
it is generally accepted that, for materials such as wrought iron with many
defects, strain ränge is the dominant factor affeeting fatigue life.
3.2 Prediction of strain ränge cycle count and comparison with observations
The results of the global analysis were used to make a prediction of the
strain ränge cycle count under normal traffic. This was achieved by looking
at the output from the analysis of the bridge under a 40 kN eccentric load as
shown in Fig 6. It has already been said that this figure approximates to an
influence line and therefore the ränge of bending moment at the 1/4 span when
a 40 kN vehicle crosses the bridge may be deduced from the maximum and minimum
of this figure. It was further assumed that the bending moments at this point
were linear with load within the ränge of live loading. Hence, it was
possible to evaluate strain ranges oecurring under the passage of a ränge of
vehicle weights as they cross the bridge.

A Classification count was carried out on the bridge, grouping weekday traffic
into seven weight classes. Cars were relatively easy to classify according to
weight, but estimates had to be made for larger vehicles such as pick-up
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trucks, vans and ambulances. A count was also made of the number of times
vehicles travelling in opposite directions were applying load to a particular
cross girder simultaneously. The count is set out in Table 2 below.

Table 2 Number of loadings of a cross girder bv vehicles of different weight

Vehicle weight 8 10 14 20 25 30 40 (kN)

Left lane 264 633 252 26

Right lane 343 819 243 41
Both 21 184 56 10

22
22

1

11
11

The weights were converted into strains at the top of the main girder and a
table of the number of loading cycles within strain ränge bands was compiled.
Data on the number of vehicle crossings was available from the toll records
and amounted to 72,000 vehicles per week during the period of the study. The
number of cycles for the short count (four hours in total) was then factored
up to give the number of cycles that would occur at the same rate during one
week of normal traffic. The predicted cycle count was compared with the data
obtained using the "Stress Analyser" and is shown in Table 3.

Table 3 Strain ränge cvcle count: Predicted v. Stress Analvser

Range
(x 10'-6>

0 - 10
10 - 20
20 - 30
30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 100

100 - 110
110 - 120
120 - 130

Number of Loading Cycles
Predicted Stress Analyser (avg

Short count Seven days of 3 seven day periods)

343
1,326

695
469

82
25
21

1

2

8,332
32,210
16,882
11,393
1,992

607
510

24
48

124,022
20,713
12,403
6,989
3,328
1,356

519
174

59
18

7

3

1

Considering the difficulties of assessing the loads from the Visual
Classification count the correlation is remarkably good. The large number of
cycles occurring in the smallest strain ränge may be the result of small
vibrations and electronic noise. A further comparison can be made by
evaluating the fatigue damage done by each loading cycle. This can be
achieved by assuming a power law for fatigue life with an index of 3, together
with Miner's law of cumulative damage. It is then possible to calculate the
equivalent strain ränge per vehicle, if applied repetitively, that would yield
the same fatigue damage as the actual variable loads. This quantity (ESRV) is
given by

ESRV (niSim/72,000)1/m (3)

where n^ is the number of cycles of strain ränge S^ and m is the index of the
power law. m=3 is a reliable mean value for fatigue of wrought iron.
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Using the data in Table 3 the following comparison may be made:

ESRV predicted 26.4 x 10-6
ESRV experiment 26.8 x 10

This result confirms that the method of prediction provides a very accurate
measure of fatigue damage.

4. FATIGUE ASSESSMENT OF MAJOR COMPONENTS

4.1 Saddle link
Rotation of the chain links attached to the saddle bearings at the tops of the
towers were found to produce significant variations in principal stress while
vehicles crossed the bridge. In an earlier study this was found to be the
most significant fatigue loading on the bridge [3]. The results of the load
tests carried out on the bridge at that time were found to compare favourably
with the global analysis. Hence the conclusion of the earlier assessment,
that there was sufficient factor of safety against fatigue or fracture, was
confirmed.

4.2 Main girders
The strains observed in the main girder under normal traffic (Table 3) were
converted to stress cycles. These were compared with S-N curves for riveted
girders [5,6]. Assuming traffic totalling 4 million vehicles per year the
fatigue life of the main girder was calculated to be 468 years.

4.3 Parapet girders
For fatigue loading the eritieal location is the spliced Joint in the top
flange of the parapet girder. Strains were obtained using the same procedure
as for the main girders and were converted to stress ranges. The joints have
been progressively deteriorating in recent years and a new friction grip
bolted assembly has been designed as a replacement. Using the current UK code
for fatigue assessment, the life of the Joint was estimated to be 197 years.
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SUMMARY
Presented herein is a method to predict the long-term change of cable forces and slip of cables out of
sockets in cable-stayed bridges. Employed are full-scale long-term tension tests of cables to determine
the visco-elastic constants of the cables and the sockets. Based on the experimental results, the analytical
prediction of bridges were made through the finite element visco-elastic analysis together with the Laplace
transform and the results were compared to the site measurement values.

RESUME
Cet article präsente une methode pour ävaluer le comportement a long terme des contraintes des cables
d'un pont a haubans, ainsi que le comportement au glissement de ses ancrages. Des essais du cäble en
vraie grandeur on etö effectuös afin de döterminer les propriätäs visco-elastiques des cäbles et des
ancrages. La möthode des 6l6ments finis combinöe avec la transformation de Laplace est appliquee ä

l'analyse et les resultats analytiques sont comparäs avec les mesures effectuäes sur le chantier.

ZUSAMMENFASSUNG
Es wird eine Methode vorgestellt, mit der langfristige Veränderungen in den Seilkräften, einschliesslich
Schlupf in den Verankerungen, vorausberechnet werden können. Dazu waren im Massstab 1:1 Versuche
zur Bestimmung der viskoelastischen Eigenschaften von Seilen und Ankerköpfen nötig. Mit diesen Daten
wurden Finite-Element-Berechnungen für Brücken unter Verwendung der Laplace-Transformation
durchgeführt und die Ergebnisse mit In-Situ-Messungen verglichen.
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1. INTRODUCTION

Presented herein is a method to predict the long-term change in the cable forces and cables slip-
out from their sockets in cable-stayed bridges. Based on long-term tension tests on full-scale cables
of 5m length, a very simple analytical model is proposed and an effort is made to determine the visco-
elastic constants of the cables and sockets, taking into aecount the seale effect of the length of the
cables, by extrapolating the results of the measurements carried out in cables with limited length to
actual cables with arbitrary length. In addition, visco-elastic F.E.M. analysis using the experimental
results was carried out to predict the long-term behavior of several existing bridges and these results

were compared to the measured values at the site.

Due to the fact that the erection of bridges is usually completed within a period of one year or one

year and a half at the site, the visco-elastic constants of the cables and sockets were determined
emphasizing first, the initial relatively short period of the erection stages and, secondly, focusing on
the control of the cable forces for the much longer period of service life.

2. LONG-TERM TEST OF PROTOTYPE CABLES

2.1 Experimental Method

When investigating the time-dependent behavior of materials, there are two types of tests,
namely, creep and relaxation tests. The former being carried out under constant loading with
increasing deformation, and the latter under constant deformation with decreasing stress. The type of
test carried out in the present study is a combination of both types [1].

The measurement System is presented in Fig.l, where the load is measured by a load cell and the

relative displacements between the cable and the steel frame, by displacement transducers. To

investigate the visco-elastic characteristics ofthe cables due to the difference in cable strength, two
types of cables (Specimen types 1 and 2) were tested. In addition, four different combinations of
cables and sockets (Specimen types 3 to 6) were tested, in a total of 6 specimens. Table 1 shows the

specimen dimensions and characteristics.
Strain gage

Loadcell | „ _* ~ / Shim plate

Socket

H Displacement |
\JF*^~ transducer """-^-ü-fl

Specimen cable

\
Av

Socket

Strain gage

Fig.l Measurement System

Table 1 Dimensions and Characteristics ofthe Test Specimen

Specimen Name Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Cable Length (m) 5 9 5 9 5 4 5 4 5 4 5 4

Diameter of Wire (mm) 5 0 5 1 7 0 7 0 7 0 7 0

Number of Wires 127 127 19 19 19 19

Cable Type PWS PWS PWS
PWS shghtly

twisted
PWS

PWS shghtly
twisted

Anchorage Length(cm) 44 0 44 0 16 3 16 3 30 7 30 7

Anchorage Type Zinc-poured Zinc-poured HiAm HiAm Zinc-poured
(Incl 2% Cu)

Zinc-poured
(Incl 2% Cu)

Cross Sectional Area (cm2) 24 94 25 94 7 31 7 31 7 31 7 31

Breaking Force (kN) 4400 3910 1137 1137 1137 1137
Initial Cable Force (kN) 1400 1310 380 377 368 371
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2.2 Test Results

Fig.2 shows the time Variation of the tensile force in the cables. As it can be observed, the forces
in specimen types 3 and 4 tend to stabilize in a relatively short time (about 20 days), whereas in the
other cables, continue to decrease even after one year's measurement.
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Although the tested cables and sockets were the same as the ones used in actual bridges, the

cable length of the specimens differed from the actual cables, thus, it was decided herein to consider
the cables and sockets separately. Fig. 3 illustrates the time-dependent strain of each cable type and

Fig.4, the slip-out behavior of the different types of sockets.
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Fig.4 Time-dependent Behavior of Sockets

Specimen types 1 and 2 presented large values for the amount of slip-out from the sockets,
compared to the values of cable creep. Specimen type 3 and 4, 5 and 6 have respectively the same
sockets. In the formers, the forces, as well as the amount of slip-out stabilized in relatively short time
(20 days); whereas in the latters, the amount of slip-out continued to increase.

Cable material of the specimen types 3 and 5, 4 and 6, being respectively the same, presented
similar values for the final creep. However, time Variation between cables of the same type were
different, suggesting the influence of their sockets.



210 LONG-TERM PREDICTION OF BEHAVIOUR OF CABLE-STAYED BRIDGES

3. MODEL TO EVALUATE TIME-DEPENDENT CONSTANTS

3.1 Mechanical Model

Due to its simplicity, the analytical model adopted is the three-element model shown in Fig.5 [2].
The total strain of the model e, can be expressed as the sum of the elastic (ee) and viscous (£v) strain:

e e0 + e9 (1)
For the total stress a, the strain-stress relationship

can be expressed as follows:
Ei

a=av E2ev + ri£v

HArV-
(2)

(3)

Ei

¦A\\-i
V

-E-
Fig.5 Three-element Visco-elastic Model

where Ei, Ei are the elastic coefficients and rj the viscosity coefficient of the three-element model.

Differentiating Eq.l and Eq.2 in relation to time t and introducing them in Eq.3, it yields the

following equation, after some arrangement.

T+Ei±JkG=Ei{e+*ke)
(4)

3.2 Evaluation of Time-dependency

The visco-elastic constants of the model were evaluated according to the three different methods
described bellow.

3.2.1 Method 1

Focusing on the viscous part of the model in Fig.5 (Eq.3) the following approach curve for the
strain due to the viscosity was assumed.

c, e,(l-«-*) (5)
The coefficient X can be obtained through the least Square method. The results of the evaluation

for one of the cables is shown in Fig.6, with the corresponding slip-out from the sockets shown in
Fig.7 and the viscosity constants thus evaluated are presented in Table 2.

This method is effective for cables in which the phenomena of creep and slip-out from the
sockets stabilize in a short time, however, in cases in which the time dependent curves are not steep
and long-term Variation is observed, the curves tend to diverge from the predicted values.
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Table 2 Evaluated Visco-elastic Constants (Method 1)

Specimen

Cable Socket

l/X
(day)

El

(GPa)

E2

(GPa) (year GPa)

1A
(day) (MN/m)

*2
(MN/m)

il
(year MN/m)

Typel 2.97 217 6272 51.0 80.0 381 704 154

Type 2 0.26 196 30184 21.5 113.6 543 948 295

type 3 1.168 202 19306 61.8 0.153 210 4192 1.76

Type 4 1.043 201 20690 59.1 1.188 228 2454 7.99

Type 5 25.5 191 20482 1428.4 75.0 785 769 158

Type 6 23.0 198 24304 1533 1 50.3 582 769 106

3.2.2 Method 2

The prediction of the time dependent behavior of bridges during their construction stages
requires more accurate values for the initial steep part of the time Variation curves. Thus, in the
second method, the equations used in Method 1 were applied to a relatively short time interval
corresponding to the average interval of time between the prestress of one of the cables and the

prestress of the cable of the succeeding stage. This method converges for the initial part of the time
Variation curves and leads to reliable values for the initial 40 days. Fig.8 shows one of the curves
evaluated by this method with the respective experimental curve. Table 3 presents the visco-elastic
constants evaluated for specimen types 1,2,5 and 6.

Table 3 Evaluated Visco-elastic Constants for
Sockets (Method 2)

Specimen
l/X

(day)

Ki
(MN/m)

K2

(MN/m) (year MN/m)

Type 1 0.921 381 1491 3.76

Type 2 1.043 543 2154 6.16

Type 5 2.48 785 2030 13.8

Type 6 1.319 582 1910 6.90
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D
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TIME (day)

Fig.8 Predicted Time-dependent
Behavior of Sockets (Method 2)

3.2.3 Method 3

For the maintenance of the bridge during its service life, a long-term prediction is necessary and
the strain Variation for the time period succeeding the one considered in Method 2, shall be assumed
as it follows.

ev ew(l- ae-»)9 where X E2 / 7] (6)
Considering Ev as a determined parameter, oc and X can be determined by the least Square

method. Fig.9 illustrates the results of the analysis for one of the specimens and Table 4 shows the
evaluated visco-elastic constants for specimen types 1,2, 5 and 6.

Table 4 Evaluated Visco-elastic Constants for Sockets (Method 3)

Specimen a
1A

(day)

Ki
(MN/m)

K2

(MN/m)

Tl

(year MN/m)

Type 1 0.450 351 344 684 658

Type 2 0.541 413 491 866 980

Type 5 0.748 607 505 479 797

Type 6 0.588 178 406 731 356

1 1 —,_.,.

Type 6 _
Predicted

H06
D
O 04 /
CU

3 02 «r^
00 i i i

0 100 200 300 400

TIME (day)

Fig.9 Predicted Time-dependent
Behavior of Sockets (Method 3)
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4. PREDICTION OF TIME-DEPENDENT BEHAVIOR OF A CABLE-STAYED BRIDGE

4.1 Finite Element Formulation

The equilibrium equations for the cable, tower and girder elements after applying Laplace
transform leads to a linear system of equations, whose stiffness matrices Kij are as presented bellow.

K^ ttjvB^mn(s)BfydV
,=i ,=i (7)

where Bim and Bnj are strain matrices and Emn(s) is the elastic modulus corresponding to the Laplace
space:

£^(5)= K + E2
El

s + — -
^ for visco-elastic elements (8-a)

for elastic elements (8-b)

The F.E.M. analysis as above described provides Solutions in the Laplace space which has to be

converted into the real time domain, so as to give the final Solution. Therefore, an inverse
transformation has to be carried out [2].

In case of cable-stayed bridges, the cables, towers and girders have different visco-elastic
constants and therefore, different intervals of convergence, which makes it difficult to perform a

numeric inverse transform considering, simultaneously, all the structural elements visco-elastic.
Thus, the bridge analysis was carried out considering each element, separately, visco-elastic (case
1,..., case n) and the final Solution was assumed to be a linear combination of all the n cases [3]. The
contribution factor for each of the terms of the linear combination is determined by means of the least

Square scheme in the Laplace image space and the use of the Regula-Falsi method.

4.2 Model Bridge

The model bridge, as presented in Fig. 10, is a cable-stayed bridge with a central span of 238.0m
and the side spans supported by a PC rigid frame bridge. The structural analysis was carried out for
half the bridge, considering its structural symmetry and the cables actually used in this bridge were of
type 4 and type 6.

Thus, the following cases were considered for the analysis:
- case 1: only the cables are linearly visco-elastic;
- case 2: only the concrete members of the PC rigid frame bridge are linearly visco-elastic, and

- case 3: final Solution assumed as a linear combination ofthe former cases.

Cable 11

Cable 1
Steel Girder

©0
OZZ2ZZ

0X0

Node 31

119m 238m 119m

PC Rigid Frame Bridge *. _

0© ®/ |

Fig. 10 Model Bridge

4.3 Analytical Results

The structural analysis was performed using the experimental values of the specimen types 4 and
6, which, although having the same cable material, had different types of sockets. Fig.l 1 presents the

time Variation ofthe axial force in cable No.l (one ofthe longest cable) and Fig. 12, the time Variation



Jk E. WATANABE - M. KAMEI - Y. ISHIHARA - 0. NAKADE - L.H. ICHINOSE 213

of the axial force in cable No.l 1 (one of the shortest cables). The forces stabilized in a short time,
presenting similar values for both types of cables.
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Fig. 11 Variation of the Cable Force
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Fig.12 Variation of the Cable Force
Cable No. 11 (Types 4 and 6)

On the other hand, as it can be noticed in Fig. 13, the time-dependent behavior of the nodal
displacements were more remarkable in type 6, whose socket is of a more sensitive type. The
effectiveness of considering the cables and sockets separately in the evaluation of the visco-elastic
parameters is shown in Fig. 14, where the curves for the case in which cable and sockets are
considered separetly provides values closer to that of the data measured in situ.
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Fig. 14 Displacement of Node No.31
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A Simulation was also performed using a ficticious type of cable, assuming elastic constants
similar to that of type 1 (£i=200GPa, £2=4000GPa) and the delay-time (T=^\/Ei) of 50 days, which
correspond to the values of locked coiled rope [1]. Fig. 15 illustrates the time-dependent behavior of
the nodal displacement when using the ficticious cable.
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SUMMARY
Spatial behaviour of plate girder bridges under redecking is studied experimentally and theoretically. A
series of statical loading tests were conducted under several loading and structural conditions which may
occur when the bridge is partially open to traffic during redecking. A finite element method was developed
in order to analyze the spatial behaviour of plate girder bridges and the results of analysis are compared
with the test results. Both the displacements and the stresses obtained from these analyses show good
agreement with those of tests. Validity and efficiency of the theoretical method are shown.

RESUME
L'article präsente l'ätude du comportement thäorique et expörimantal des ponts a poutres a äme pleine,
lorsque Ton maintient la circulation sur une partie de la chaussäe au cours de sa ränovation. A cet effet,
ont 6t6 6labor6s aussi bien une sörie d'essais statiques pour difförents 6tats de chargte et conditions
structurales, qu'une analyse mäthodique spatiale au moyen de la möthode des 6l6ments finis. La
comparaison des räsultats de calculs avec ceux des mesures fait apparaTtre une tres bonne concordance
tant des döplacements que des contraintes. Enfin, l'auteur montre la validitö et l'efficience de cette
möthode de calcul.

ZUSAMMENFASSUNG
Theoretisch und experimentell wurde die räumliche Wahrung von Plattenbalken-Brücken studiert, wenn
infolge Fahrbahnerneuerung nur Teile für den Verkehr geöffnet sind. Zu diesem Zweck wurde eine Serie
statischer Belastungstests für mehrere Last- und Tragwerkszustände sowie eine Methodik zur räumlichen
Analyse mittels Finite-Elementen entwickelt. Beim Vergleich der Rechen- mit den Messergebnissen zeigt
sich eine gute Übereinstimmung in den Verschiebungen und Spannungen. Validität und Effizienz des
Berechnungsverfahrens werden aufgezeigt.
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1. INTRODUCTION

In recent years, many reinforced concrete (RC) floor slabs of highway bridges
have been deteriorated or damaged and require rehabilitation, repair and
replacement. This is caused by the increase in traffic volume and the illegal
passing of over-loaded heavy vehicles. Although many studies have been reported
in reference to the repairing or strengthening method of damaged RC floor
slabs, the redecking method by orthotropic steel deck has become of major
interest in the view of the reduction of the dead load and the expected
remaining life of bridge lately[l,2]. The authors have been studied the useful
method of replacing damaged floor slabs with the prefabricated steel deck of
Battledeck Floor Type[3] which is easily manufacturedf4,5]. The bridge has to
be partially open to traffic because a long traffic close of bridges with heavy
traffic is usually not allowed in the work of replacing. Therefore, it is
important to clarify the spatial behavior as a whole system and local stresses
of plate girder bridges during the redecking.

This paper presents the results of statical loading tests for a large scale
model and the finite element analysis for plate girder bridges. In the
analysis, the RC floor slab is modelled by thin plate elements having six
degrees of freedom for one node and the main girder by equivalent substituted
truss system. The supporting cross beam and the cross frame are modelled by
beam-column elements. Since the shear connector transfers the load primarily by
shear, it is assumed that their flexural and torsional stiffness can be
neglected. Validity and efficiency of the theoretical method are examined by
comparing with the experimental results. Many useful information for redecking
design are obtained from the results of tests and analyses.

2, SUMMARY OF LOADING TEST

2.1 Test model

Although the test model is designed to simulate the replacement of a damaged RC

floor slab with the steel deck, a bridge model with the steel deck in place of
the RC floor slab is used here. This is due to the practical reason that the
thin concrete slab in the model may cause the structural unbalance between the
floor slab and steel girders and it may be difficult to conduct the casting and
removing Operations of the RC floor slab in the testing frame.

The bridge model is composed of three main girders, the prefabricated steel
deck, supporting cross beams and cross frames. The steel deck used is the
Battledeck Floor Type with welded longitudinal ribs as shown Fig.l and is
connected by high strength bolts to the main girders. In order to simulate the
behavior of the actual bridge under redecking, the steel deck is divided into
two panels along the length. The supporting cross beam is corresponding to the
transverse rib of the orthotropic steel deck and is fastened by high strength
bolts to main girders.

2.2 Test procedure

The objectives of the experimental programme are to investigate the spatial
structural behavior of the girder bridges as a whole system and the local
stress during the redecking. The statical load is applied at the centre of the
span through 300mm x 120mm hard rubber plates which are placed on the steel
deck. The loading conditions and the applied load are summarized in Table 1.
The test procedure corresponding to the actual replacement of the RC floor slab
with the steel deck is selected and consists of a total of seven steps as shown
in Table 2. The modeis of STEP 1 & 2 are composed of three main girders and
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Table 2 Test procedure

Table 1 Loading cases
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Plate element

Cross frame

Qy

/^Truss element

Supporting cross beam Connecting member

Fig. 2 Theoretical model

cross frames without the steel deck, and for the model of STEP 2 supporting
cross beams are installed in addition to cross frames. Measurements of
strains in the main girders, steel deck and supporting cross beams were made by

using strain gages. The deflection of the steel girders and the shear slip
between the deck plate and the main girder were measured using electrical and

cantilever type displacement meters, respectively.

3. SUMMARY OF ANALYSIS

3.1 Theoretical model

The theoretical model used for the analysis of the plate girder bridge which

composed of steel deck, main girders, supporting cross beams and cross frames

is shown in Fig. 2. The steel deck is modelled by triangulär thin plate
elements having six degrees of freedom for one node. The stiffness matrix of
the plate element is derived with the consideration for in-plane flexural
stiffness[6]. The supporting cross beam is modelled by thin-walled beam-column

elements[7] and the cross frame by truss elements. The main girder is modelled
by an equivalent truss system which can störe the same amount of strain energy
with that stored in the plate girder. With reference to Fig. 3, the cross
sectional areas of the substituted truss members are given by the following
equations[8]:

Upper chord member: Acc

Lower chord member: Act

(hc+ht)hc
I

(hc+ht)ht
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Vertical member: Av

Diagonal member: Ad

6AwG

jlEtanB
3AwG

2^Esin9cos28
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Fig.3 Substituted truss

where I is the moment inertia of the girder cross section about the neutral
axis, ht and hc are the distances from the neutral axis to each outermost
fiber, respectively, E and G are the Young's modulus and the shear modulus, \l
is the shape factor and Aw is the cross sectional area of the web plate. Though
the steel deck is connected by high strength bolts to main girders, the shear
connector is modelled by cantilever elements which permits only the horizontal
shear at the free end of element.

3.2 Computation method

The computation was carried out for the half of the girder bridge considering
the symmetrical condition at the midspan. The deck plate is divided into 10
elements both along the length and the width of the deck. In the modeling, the
cross sectional shape of the theoretical model is used the rectangular
determined according to the condition that the flexural stiffness of the deck
plate section equals those of experimental model. The bridge part of which
steel deck is removed, is modelled in the same way, but the thickness of deck
plates supposed to be removed is assumed to be negligibly small (0.001cm) in
the analysis.

4. RESULTS AND DISCUSSIONS

4.1 Load distribution effect of cross frames and supporting cross beams

The load distribution effects of cross frames and supporting cross beams are
examined at the test Steps 1 & 2 (without the steel deck) for the loading CASE I
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Fig. 4 Deflection of main
girders at midspan

Fig. 5 Stress distribution of main
girders at midspan
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Fig. 7 Distribution of normal stresses at midspan

Figs. 4 and 5 show the deflection at midspan and the distribution of normal
stresses on the girder under concentrated load at the midspan, respectively.
It can be seen that 40% of the applied load is distributed to the exterior
girders by using cross frames (STEP 1) and for the model of STEP 2 by using
supporting cross beams in conjunction with cross frames 50 ~ 60% of the applied
load is distributed to the exterior girders. From these test results, we can
recognize that the use of supporting cross beams in the prefabricated steel
deck system can give large effects of the load distribution.
4.2 Behavior during redecking
The deflection at midspan subjected to a lateral load at the midspan for STEP
4~6 are shown in Fig. 6. It may be found that the deflection for STEP 4 in
CASE IV and STEP 6 in CASE I are larger than those of the other loading cases.
This is due to the reason that the loads are directly applied to the main
girders where part of the deck plate is removed. Fig. 7 shows the distribution
of normal stresses on main girders at midspan for STEP 4,7 in CASE I and STEP 6,
7 in CASE V. By comparing the stress in the low flange of main girders with
(STEP 7) and without (STEP 6) the deck plate, we notice that the stress of main
girder without a part of deck plate is relatively small and is nearly equal
to those of a complete system (STEP 7). The reason of this is that the
moment inertia of the composite section is 2 ~ 3 times larger than that of a

main girder and this section is mainly in Charge of the applied load. From test
results, it can be noticed that the supporting cross beams play satisfactory
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Table 3 Comparison of test and
analysis for each slip modulus k

(a) Deflection ijnitimm
GA GB GC

Experiment 0.90 1.32 1.42 1.31 0.94

Analysis k=9.8 0.86 1.16 1.31 1.16 0.86

98 1.16 1.31 1.48 1.31 1.16

(b) Stress Unit:MPa

GA GB GC

Comp Tens Comp Tens Comp Tens

Experiment 5.2 16.5 12.2 34.4 4.8 15.8

Analysis k=9.8 3.8 16.0 9.2 34.1 3.8 16.0

98 6.0 17.0 16.6 34.8 6.0 17.0

75kN 75kN

J _JL J J J J
N

L J J
yyy

L L

H\/ \y
0

1

GA GB GC

&^„ ^ß^Pa -
c
•°- 3 _ W^ y

ytf
o 4
Q

yy' Experiment Analysis/' STEP3 A
5 y'O STEP 4 O'' STEP 6 O
6 6

(a) CASE I

100kN

ö\ ^^ \~T
--i*0 *

Fig.

-50 0 50
Stress(MPa)

Experiment Analysis
STEP 3 A
STEP 4 O
STEP 6 O

_9 Stress distribution at
midspan

70kN

j^tj _j
GA GB GC

&1 -
AT

£ 2
O^

2 3

m 4

5 -
6 •-

Experiment Analysis
STEP 3 A
STEP 4 O
STEP 6 O

(b) CASE II
Fig. 8 Comparison of deflection at midspan between theory and experiment

role for the load distribution in transverse direction together with for the
outer girder without the deck.

4.3 Comparison of tests and theory
To determine the slip modulus k of the shear connector prior to model analysis,
the complete modeis (STEP 3) subjected to a lateral load at midspan were
analyzed for two k values, k= 9.8 and 98 (N/m/m), based on the previous studies
[4,5]. The comparisons of tests and the theory for deflection and stress of
main girders are given in Table 3. The slip modulus k= 9.8 (N/m/m) was adopted
in this analysis because it tends to give overestimated conservative results in
comparison with test results. The deflection at the midspan for STEP 3~6 in
CASE I and II are shown in Fig. 8. Though the small differences between the
theoretical and experimental results for STEP 6 in CASE I is observed, it can
be noticed that the good agreement exists between the two sets of results.
Fig. 9 shows the normal stress distributions on three main girders at the
midspan for CASE IM. The theoretical results correspond to the experimental
results quite well. In spite of small differences for some loading cases, it
can be seen that the results of the present analysis have fairly good
correspondence with the test results as a whole. The validity of the present
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method can be recognized. This numerical method will be utilized to investigate
the spatial behavior of existing plate girder bridges under redecking.

5. CONCLUSIONS

Spatial behavior of plate girder bridges under redecking is studied
experimentally and theoretically. From this study the following conclusions
can be drawn.
l)The redecking procedure of actual bridges with deteriorated RC slabs is

simulated well by the experiment.
2)It is recognized that the use of supporting cross beams in the prefabricated

steel deck system can give large effects of the load distribution.
3) In spite of small differences for some loading cases, it can be seen that

the results of the present analysis show good agreement with the test
results as a whole. The validity of the present method can be recognized.

4)The present method will be utilized to investigate the spatial behavior of
existing plate girder bridges under redecking.

The writers express his thanks to Mr. K. Ishii, Kajima Ltd., the former
graduate Student of Kumamoto University, for his valuable assistance in
numerical computations.
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SUMMARY
On the basis of inspection, testing and analysis for a number of existing bridges, the factors which have
influence on the load carrying capacity of existing reinforced concrete bridges are identified and a finite
element model for evaluating the load capacity is developed. A Simulation method for the evaluation is
proposed, by which the load testing of bridges can be simulated by means of Computers and the
characteristics of the load carrying capacity of existing bridges can be calculated.

RESUME

Sur la base d'inspections, d'essais et d'analyses d'un grand nombre de ponts, les facteurs qui influencent
la capacitä portante des ponts en böton armö ont 6t6 identifiäs et un modele par elöments finis a 6te
döveloppö. Une methode de Simulation pour l'ävalution est pr6sent£e, par laquelle l'essai de Charge du
pont peut etre simule au moyen de l'ordinateur; les caracteYistiques de la capacite portante des ponts
peuvent ötre ainsi egalement calculäes.

ZUSAMMENFASSUNG
Auf Grund der Untersuchungen, Proben und Analysen von zahlreichen bestehenden Brücken werden die
Hauptfaktoren, die Einfluss auf die Tragfähigkeiten von bestehenden Stahlbetonbrücken ausüben,
festgestellt und ein Finite-Elemente- Modell für die Tragfähigkeitsbewertung entwickelt. Mittels dieser
Methode kann die Belastungsprobe der Brücken mit Hilfe von Computern simuliert und dadurch können
die Kennziffern der Tragfähigkeit von Brücken berechnet werden.
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l.INTRODUCTION

With the development of transportation, the load carrying Capacity of a number of existing bridges are
found to be insufficient due to progressing deterioration and increased loads. There are nearly 136,000
highway bridges in China, About 5,000 of these are judged to be functionally obsolete or inadequate
for current requirements, the service age of these bridges are ranged from 30—years to 40—years. In
addition, some of bridges constructed over the last 20 years are considered to be structurally deficient
because of deterioration or distress[l][2].

While replacing all the deficient bridges mentioned above with new bridges is often extremely difficult
and expensive, a moderate increase of structural capacity through rehabilitation and repair is fairly
cheap and easy to obtain. To avoid high costs of rehabilitation and repair, the evaluation of the bridges
must accuratelly reveal the present load carrying capacity and any further changes in the capacity in the
applicable time span. In recent years, many method for evaluating the load carrying capacity of
existing bridges have been developed. these method can be roughly divided into three kind: Knowledge
—based method; computalional method; and load testing method. The knowledge—based method has
the advantage of assessing the damage state of the bridges, but can not give exact index about the load
carrying capacity. Most computational methods are similar to design methods, the hypothesis on which
design methods based are not quite the same as practical behavior of existing bridges, and computational
results may be doubtful. load testing on bridges can directly examine the load capacity and the results
are more reliable than other methods. However, it would be very expensive to test all the deficient
bridges. In order to explore the load carrying capacity of existing bridges, it is necessary to develop an
inexpensive evaluation method which can fully take into aecount the real behavior of existing bridges
and give reliable results about the load capacity.

The objeetive of this paper is to identify the factors which affect the load carrying capacity of the
bridges and develop a Simulation method for the evaluation. Using the method, the load testing of the
bridges can be simulated by means pf Computers and the index about the load carrying capacity can be
caculated. An example of evaluating a T-beam bridge is also presented.

2. FACTORS AFFACT1NG THE LOAD CAPACITY OF R. C. BRIDGES

Over the years of servicing, various forms of deterioration would appear on beams, piers and bases of
bridges and all affect the load carrying capacity. So the load carrying capacity include the capacity of
upper structure which composed of beams and deck and that of lower structure constituted by piers and
bases. Only the upper structural capacity is studied in this paper.

In order to assesss the damage State of old bridges and identify the factors which affect the load carrying
capacity of the bridges, a thorough field survey of old R. C. bridges located in Guangdong province in
China was made and static and dynamic load tests were performed on some of these bridges [3].
Inspection and testing show that the deterioration emerged on beams and deck are main factors which
influence the load carrying capacity. The deficiencies on the attachment such as discharge orifices and
expansion joints results in the damages on beams and deck, then have indirect influence on load
capacity. Various types of deterioration -efflorescence, leakage, cracking and spalling-can contribute to
the reduction of bridge' s load capacity to different degree. Ignoring the deficiencies which have little
influence on the load capacity and only beams and deck are considered, main factors äffecting the R. C.

bridge's load capacity can be identified as shown in Fig. 1.

Among the factors, cracking of concrete is very important to estimate the load capacity. The density,
width, length and pattern of cracks are significant Indexes for the estimation. The factors given in Fig.
1 must be take fully into aecount in the computational model for evaluation of R. C. bridge' s load
carrying capacity.
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Cracking and spalling
of concrete

Corrosion of
reinforcement

Inadequate material
properties

Insufficient load capacity

Fig. 1 Main factors affecting load capacity

3. COMPUTATIONAL MODEL FOR R. C. BRIDGE'S LOAD CAPACITY

3. 1 Mathematical Model

Theoretically, for a given loadings and structure type, a bridge' s load carrying capacity can be
determinated in terms of the parameters such as load components, dimensions, strength of materials,
etc. The evaluation philosophy of an existing bridge must differ from the design philosphy of a new
bridge. In this study, the load carrying capacity index, R is defined as follows:

R gls(0, /(0, x(0, <p(0 ] (1)

where S(t) represents load effect; /(0 represent strength of materials; x(f) represent dimensions; <p(t)
is structural integrity and is equal to 1 — d in which d is damage. All of these parameters are
functions of service time t Assuming that, R is differentiable continuous function of all the
parameters, the change of load capacity, AR can be derived from Eq. (1) as*

Aä (dg/dt)As + (dg/df)Af + (dg/az)A* + Og/d<p)A<P (2)

in which As A/ > A% and A<p denote the changes of load effect, strength of materials, dimensions
and structural integrity, respectively. Over the years of Performance, the actual load carrying
capacity, R* at the time of evaluating, t is Witten as.

Rt R — AR (3)

The resistance coefficient, k can be defined as:

K= (Rt- G)/S (4)

where G represents dead load effect; S represent the effect of the live loads used for evaluation.

3. 2 Finite Element Model

To reveal the real load carrying capacity of bridges, a rational computational model must be
established. Actual behavior and the factors affecting the load capacity must be fully considered in the
model. The finite element method is appropriate for dealing with non — homogeneous materials,
nonlinear constitutive relationships and complicated boundary conditions. It is easy to dispose
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deterioration or distress which contributes to reduction of the load capacity by using the finite element
method. Thus a finite element model can be developed to caculate the load carrying capacity index, R

The major factors in Fig. 1 can be taken into aecount in the finite element model and constitutive
relationships (Fig. 2)

Fig. 3(a)shows a damaged simply supported T—beam, which has four cracks located at A, B, C,and
D, respectively. Spalling occurs at location E, and result in corrosion of parts of reinforcing bars.
Meanwhile, expansion bearing lose its efficaey. Finite element model of the beam is illustrated in Fig.
3. (b). Details of the model will be described in the following.

Cracking]—»—( FE meshes configuration Numerical techniques

Spalling &.
corrosion

Modified dimensionsiuFE model

Inadequate material properties [ Constitutive modeis

Simulation of
load test

P,(i=l~n)
t

Fig. 2 Management of the factors affecting load capeity
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(a) Deteriorated beam
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(b) Finite Element Idealization

Fig. 3 Finite element model of deteriorated beam
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3. 2. 1 Concrete

The assumption of the plane stress is considered to be reasonable for T—beam subject to loadings in—
web plane. Reduction of concrete section due to spalling is taken into aecount by the modified element
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thickness, Tc defined as:

Tc KCT (5)

where Kc is modification coefficient, T is original thickness.

Existing cracks are modelled with two techniques* Discrete model and smeared crack model. The
discrete model approaches a Single fully separat!ve crack by disconnecting nodal points (Fig. 4(a)).
Interlock elements are placed across the incompletely separative cracks to simulate aggragate interlock
(Fig. 4(b))

> i > f ' T '

i 1 i.-.i • i 1 **s
(a) (b)

Fig. 4 Discrete crack model

The smeared crack model represent overall influence of many discrete cracks existing in the domain of
the element. the constitutive eqation is expressed by[8];

Tda{\ VEX 0 Ol fitei]
\dai\ =10 E2 0 I \de2 I

LfcrJ LO 0 gJ \dyj
(6)

where G„ is reduced shear modulus which reflects the density, width and degree of Separation of the
cracks.

3. 2. 2 Steel reinforcement

Main reinforcing bars are represented by axial force elements with two translational degrees of freesom
defined at each node. Corrosion of rebars is considered by reduction of the cross sectionl area of the
bars. Secondary reinforcement, such as stirrups is assumed to be distributed over concrete elements and
forms composite concrete — steel element. The material stiffness of the element is defined as follows
[8]:

M-M + SM (7)

where [ U ] and [ DI ] are the concrete and reinforcement material stiffness matrices, respectively.

3. 2. 3 Bond between steel reinforcement and concrete

If the influence of bond slip is considered, linkage elements must be set up to model bond behavior, so
the number of nodal points will increase greatly. For the sake of utilizing memory capacity of Computer
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effectively, reinforcement may be assumed to be connected directly to the concrete at the nodal
points.

4. CONSTTTUnVE RELATIONS FOR THE CONSTTTUENT MATERIALS

Material properties have a significant influence on the load capacity. Actual material parameters must
be used in constitutive relations. Biaxial nonlinear constitutive relations and failure theories should be

applied to explore the realistic load capacity of existing bridges.

The concrete constitutive model and failure crireria of Balakrishnan &. Murray[5] are introduced in this
study. The model divides the uniaxial response curve for concrete into five damage regions described as

linear elastic;compressive strain hardening; compressive strain softening;tensile strain softening; and
tensile stiffening regions. When used under biaxial stress conditions, the model is considered

orthotropic after cracking. The effect of biaxial stress conditions on peak strength is represented by a

Variation of the Kupfer — Hilsdorf failure curve in stress Space in which the compressive and tensile
envelopes are separatelly specified[4][5]. In the tension—compression region, tensile stress less than
0. 5 ft does not reduce compressive strength. If o\ > 0. 5ft the ultimate strength may be described

as:

/* 2fc/ü/2 + 2fjfd (8)

/« (-1.5+ /,„//<) l/cl (9)

In compression—compression region, the ultimate compressive strength may be written ass

U (1 + 3. 65)JV(1 + «)2 (10)

in which a o\/<Jt <j\ and <r2 are major and minor principal stresses respectively, fa,and ftuare peak
compressive and tensile stresses respectively. Details of the model are described in reference [5]. The
paramefers in the model such as cylinder compressive strength fc elastic modulus E should be

determined with nondestructive inspection such as sonic pulse velocity measurements. If neccessary,
cores are taken from bridge for compressive and split test.

Reinforcing steel is assumed to be elastic perfctly plastic material. Actual values of the yield strength fr
and elastic modulus Es are used. The strain—hardening region may be considered, if neccessary.

The bond stress—slip relationships of Mirza and Houde is used, expressed as[6]:

x (54 X 102S-25. 7 X lO5^ + 5. 98 X IOW-O. 558 X 10nS4 Vfc/41. 5) (11)

in which r is the bond stress in MPa, S is the slip in cm.

Interlock elements are employed to model the interface shear transfer across the crack by aggragate
interlock and friction. The stiffness of the element is derived from Horde &• Mirza' s shear stress-

displacement relation as[6]:
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Kg 63. 85(1/C)3/2 Vfc/35,4 (12)

in which A is the area for which one element is responsible, in cm2; f' c in MPa; C is crack width in cm;
kf in N/cm.

5. EVALUATING PROCEDURE

Based on the mathematical model and the finite element model aforementioned, a finite element

program can be developed and implemented into a particular Computer code to simulate the load tests of
R. C. bridges. For T—beam bridges, each beam of the bridge is evaluated as a Single unit. Simulation
results of all beams are synthesized and analyzed to give the resistance factor of the whole bridge. The
evaluating procedure is described in the following.

5. 1 Field Survey and Review of Design Documents

A thorough field survey is needed to obtain the information about deterioration of the bridge, including
crack location and size, corrosion of reinforcement, actual material properties, and as — built
dimensions. The presence and location of reinforcement can be determined though review of design
documents. If the design drawings are not available, the reinforcement location may be determined
using a pachometer which locate steel magnetically. The parameters needed in the computational model
can be defined through field survey and review of design documents.

5. 2 Determination of Loading pattern and Finite Element Meshes

According to loads for evaluation,the most detrimental loading pattern can be decided. The transverse
distribution of loads must be taken into aecount to determine the detrimental loading pattern applied to
each beam evaluated. Generally for simply supported beam, the internal forces such as bending
moments and shear forces at beam ends and mid—span control the position of loads. After defining the
load pattern, finite element meshes are construeted. Data file are prepared and inputed into Computer to
Start Simulation of load test using incremental load procedure described in the next.

5. 3 Incremental Loading

For the i th T-beam, the loading factor is defined as vhj in the j th loading increment. If failure occurs or
the specified indexes, such as deflection and crack width, are reached at m th loading increment. The
resistance coefficient for the beam is defined as

Ki ^Wj (13)

5. 4 Evaluating the Load Carrying Capacity

If the bridge consist of n of beams and the resistance coefficient for every beam is caculated, the
resistance coefficient of the bridge is given as:

K <f>r* Min(KuK2»',Km) (14)

where <pr 1 — d? q>r and dr are integrity and damage of the transverse diaphragms, respectively; fc(i
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1,2, •••») is the i th beam's resistance coefficient.

If k > 1, the load carrying capacity of the bridge is enough to meet the need of present traffic.
Otherwise, repairs or rehabilitation must be made to restore or increase the load capacity.

6. EXAMPLE OF BRIDGE EVALUATION

Using the computational model given is this paper,a Computer program RCBM for simulaing the load
tests of R. C. bridges is developed. The proposed approach is illustrated by an example. The load

capacity is evaluated for one beam of a T-beam bridge which is located in chengdu city in China. The
bridge, built in 1961, is a three-span simply supported T-beam bridge. The cross section are composed

of 12 T-beams. The span length is 16. 3m. The midspan cross section of one beam is shown in Fig. 5.
There are 14 main unnotched rebars which have diameter of 32mm. Concrete design compressive

strength is 18. 4MPa. A field survey was conducted. Spalling, corrosion of rebars, several inclined
and vertical cracks were found. Actual concrete compressive strengen is only 8. 3Mpa. One beam was
taken from the bridge for failure test in order to judge whether the load capacity is enough or not. The
load pattern is shown in Fig. 6 [7].
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Fig. 5 Mid—span cross section Fig. 6 Loading pattern

The design load p is 70. 5KN, corresponding to the bending moment of 782. 6KN—M in mid—span.
The program RCBM is employed to simulate the failure test and evaluate the experimental results as

shown in Table 1. The load—mid-pan defletion curves of the beam are shown in Fig. 7. It can be

seen, from Table 1 and Fig. 7 > that the proposed Simulation method gives a good approximation to
failure test of the T—beam, the evaluation resuts are available.

Table 1 Comparision of Simulation results with test results\ Max. Load (4P)
(KN)

Mid—span bending
Moment (KN—m)

The resistance
coeffcient

Design 282 782.6 __^—-^^
Simulation 540 1497 1.91

Test 600 1665 2.13
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Fig. 7 Load—midspan deflection curve

7. CONCLUSIONS

—An evaluation method for load carrying capacity of existing bridges should distinct from methods in
design of new bridges. A finite element model for evaluating the load capacity is developed, in which
the factors influencing the load capacity are taken into aecount. Nonlinear constitutive relationships and
failure criteria under biaxial stresses are employed to explore the realistic load carrying capacity.

—A Simulation method is proposed to estimated the load capacity of existing bridges. Using the method,
load tests can be simulated in order to given reliable resistance coefficient of the bridge. The method is
effective and inexpensive, since it may replace many load tests. Although the present approach is
developed for R. C. bridges, it can be used in the evaluation of various types of bridges,such as steel

bridges and composite bridges.
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SUMMARY
This paper firstly gives a brief review on the research of damage assessment and remaining life prediction
for existing bridge structures in China. Secondly, a discussion on this topic is also presented. Finally a
prototype expert System for damage assessment of railway bridges is introduced.

RESUME

Apres une introduction sur les recherches et l'6valuation des dommages et de la vie restante des
structures de pont en Chine, et des commentaires sur les möthodes existantes, l'auteur propose un projet
de Systeme expert pour däterminer l'6tat des dommages et de la vie restante des structures de ponts
ferroviaires.

ZUSAMMENFASSUNG
Der Beitrag gibt eingangs einen kurtzen Überblick über die chinesische Forschung bezüglich
Schadensbewertung und Vorhersage der Restlebensdauer von Brückentragwerken. Nach einer Diskussion der
Problematik wird der Prototyp eines Expertensystems für Schäden an Eisenbahnbrücken vorgestellt.
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1. INTRODUCTION

The safety of railway transportation has been focused serious
attention of railway administration, research and design branches,
not only because railway accidents always induce heavy loss of
the life and property of peoples, but also because the most
important is it is directly related to traffic schedule of
railway transportation. Of a lot of factors affecting railway
traffic safety, it is the service state of railway track and
railway structures which plays a significant role to. Firstly,
railway construction, especially railway bridges have a long
service life and difficult rehabilitation characteristics.
Secondly repair expense of railway bridge is very great. Hence
railway maintenance branches has a very important, long-time task
which is bridge service state inspection. Since 1950's, damage
assessment of railway bridges has been investigated and a lot of
experimental data and experience have also been obtained. But due
to the complexity of the problem, it is still a very important
research project to start deepgoing investigation on damage
assessment and remaining life prediction method for existing
structures. At the end of the paper, a prototype expert system
to diagnose damage state of railway bridges will be briefly
introduced.

2. BRIEF REVIEW ON THE RESEARCH

For a long time, railway bridge inspectors and researchers in
China have been searching for a reasonable and effective method
to assess service state of railway bridges. But up tili present,
no well method has been developed, owing to the limit of
experience and research work as well as the complexity of the
problem. Existing approaches may be classified into two kinds:
physical inspection and mechanical measurement, such as
structural outward appearance Observation for cracks and dynamic
response test. Physical means for interior inspection include
ultrasonic method etc. Not all of the existing methods is
effective.
In Northern China, railway has served for a considerablly long
time. Bridge damage is more serious. Hence Harbin Railway
Administration Bureau has paid more attention to the research and
practice of damage state inspection and assessment for bridges.
Since 1979fs, a lot of situ test data for dynamic response and
time-domain properties of railway bridges have been accumulated,
and a great deal of experience for diagnosing damage state of
bridges has been obtained. They applied maximum transver dynamic
displacement of bridge pier and some peculiarities of Vibration
wave of pier-head displacement as identifying rule to sum up into
10 types of damage for bridge pier.
China Academy of Railway Sciences started the investigation and
research work on this topics in last 1970*s. At the first stage
of research, CARS has gathered a lot of situ dynamic test data
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for existing bridges, which have been also analyzed, for example,
the effects of damage on frequencies, modes, time-domain and
frequency-domain peculiarity of bridges. Classifying the test
data of about 80 bridge piers, CARS has suggested a Standard for
damage diagnosing of bridge pier.
The investigation on damage assessment for superstructure of
bridges in China started in middle 1980's. CARS firstly did a lot
of inspection work on riveted and welded steel bridges. Then a
great amount of tests on fracture mechanics and fatigue
properties of situ samples of bridge elements. For these kinds of
bridges, CARS has done about 10-year investigation and has
obtained some preliminary results. In recent years, CARS still
does an amount of researches on damage assessment method for
reinforced and prestressed concrete railway bridges, as well as
strengthening method for damaged bridge rehabilitation.
According to present research state, the investigation and
research on damage assessment and remaining life prediction
approaches for existing railway bridges must be continued.

3. PREPARE WORK IN DAMAGE ASSESSMENT PROCEDURE

Prepare work for damage assessment of existing structures is
composed of two stages:

* situ inspection and testing
* laboratory testing and analysis
The main objeetive in the first stage is to acquisite practical
structure geometric, physical and mechanical knowledge and
information about the bridge to be assessed. The methods to
inspect the bridge include outward appearance Observation,
physical measurement for cracks etc. as well as mechanical test
to measure free Vibration frequencies, modes and dynamic response
to loading etc.

3.1 Situ Inspection and Testing

Outward appearance Observation

Outward appearnace Observation for railway bridges is one of the
routine duties of bridge maintenance branches. From the
inspection, we can obtain basic knowledge and information about
bridge service state, such as

cracks: length, location, direction, depth etc.
crust of reinforcement: location, extent etc.
deterioration of concrete: location extent etc.
inclination of bridge pier: direction, degree etc.
link of bridge and piers: state, relative displacement etc.
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foundation: state

Interior defect inspection
On the basis of outward appearnace Observation, interior defect
inspection for existing bridges is mainly to survey interior
damage of bridge structures by means of physical method, for
example using ultrasonic approach to measure crack depth and
interior cracks of structures.

Situ mechanical testing
The aim of situ mechanical testing is to acquisite basic
mechanical properties of the bridge to be assessed, generally
using dynamic testing to measure free Vibration frequencies,
modes and dynamic response to vehicle loading. In addition, situ
testing work also include obtaining samples for laboratory test
and some basic material property experiment such as concrete
strength test etc.

3.2 Laboratory Testing and Analysis

The main tasks in this stage composed of data treatment for the
first stage, necessary laboratory test of situ samples in order
to deliever sufficient information for damage assessment and
remaining life prediction of the bridge assessed. Laboratory test
is generally to measure fundamental properties, fracture
mechanics and fatigue properties of samples of bridge structure
and materials.
Time-domain and frequency-domain analysis as well as dynamic
parameter identification are very useful to assess bridge service
state. The second work in this stage is posttreating dynamic
testing data recorded in situ test, including analysing and
identifying physical and modal parameters, time-domain and
frequency-domain peculiarities of the bridge.

4. DAMAGE ASSESSMENT AND REMAINING LIFE PREDICTION

From the prepare work, we have obtained some knowledge and
information for geometric, physical and mechanical properties of
bridge assessed. The remained work is to assess service state of
the bridge and to predict its remaining life. How to do this
work? The first problem is how to model and quantify damage .As
discussed above, damage phenomena are very different and complex.
So it is considerablly difficult modelling damage of structures.
As an example, we investigate effects of damage on dynamic
properties of bridge pier in following so as to find some
variables sensitive to damage.
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(1) Frequencies of bridge pier
Dr. Sun [21 investigated frequencies of bridge pier with and
without cracks in 1991. The first four frequencies of a pier is
listed in Table 1, from which we may know the effect of damage on
frequencies of bridge pier.

Table 1. Frequencies of a bridge pier (Hz)

Mode 12 3 4

Normal pier 17.05 18.93 113.95 137.21

Cracked pier 16.39 17.42 110.51

(2) Modal shape of bridge pier
Convex point may be found near cracks in modal shape of cracked
pier.
(3) Modal damping of bridge pier
Chen [3] found that modal damping of damaged bridge pier becomes
greater and greater as damage becomes larger.
(4) Maximum pier-head displacement
With the reduction of pier stiffness, maximum pier-head displacement

under vehicle loading becomes greater.
(5) Time-domain peculiarity
Forced Vibration response wave is smooth, similar to harmonic
wave for good state bridge piers, but it may emerge some Singular
peculiarities for damaged piers.
(6) Frequency-domain peculiarity
Power spectrum of damaged pier may be found with some differences
to that of normal pier, such as with a wider band and smaller
value at low frequency, a continuous spectrum and a greater
number of peaks etc.
For superstructure of railway bridge, the effect of damage is
more complex. In general, dynamic response parameters reflect the
synthesized properties of structures. Some local damages have no
evident effect on dynamic parameters. From identification of
system parameters, we can only obtain a global and average damage
description.
Here we classify damages of structures into two categories: local
damage and global damage. The first may also called nonstructural
damage, and the second structural damage. "Nonstructural" and
"structural" do not mean without or with effect on structural
capacity. But nonstructural damage only affects local stress and
deformation of strcutures, and does not greatly affect
macroscopic global displacement of structures. However the second
is directly reflected from global mechanical response, such as
frequencies, modes etc.
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The first kind of damage includes local cracks, corrosion of
reinforcement, exposure of concrete etc. The second is the
worsening of structural materials.

4.1 Damage Tolerance Method

For the first kind of damage, we can use several characteristic
variables to measure it. For example, using crack length 1, crack
depth a and crack open displacement d to describe a local crack
in structures. In general,

Characteristic variables: { Ai / i=l,2,...n }

Assume the damage produce a response quantity J to local stress,
deformation etc. of the structure:

Response quantity: J

Through fracture analysis and material test, we may obtain a
eritieal value of J as Je. A simple method to define local damage
is

D=J/Jc
undamaged structure
local failure

This method for the first kind of damage is similar to the main
idea of Damage Tolerance Method of fracture mechanics.

4.2 Combined Damage Theory-System Identification Method

According to damage theory, if there are cracks or vacancy in
materials, elastic modulus of material will be reduced. The
author [5] obtained:

where % and JE are elastic tensors of damaged and undamaged
materials respectively. D is called damage tensor. ^ is a unit
tensor. In case of isotropy, it can be simplified as

E=(1-D)E

where D is a damage scalar.

Applying system identification method, we can obtain elastic
modulus distribution of damaged bridges. Therefore damage state
of the bridges may be also identified.
The approach discussed above is called Combined Damage Theory-

D=J/Jc
D=0 when J=0
D=l when J=Jc
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System Identification Method.

4.3 Remaining Life Prediction

In order to predict remaining life of existing structures, it is
necessary to model damage evoluting property of bridges. In
general,

D=f(D, t, F)
or

SD/ &N=g(D, N, F)

where F represents external act. N represents loading cycles.

It is a very complex work to obtain the damage evoluting equation.

Firstly we have to do deep investigation on damage
mechanism. Secondly we must grasp a lot of experiment results for
bridge materials and elements with and without typical damages.

If damage evoluting equation has been developed, remaining life
of bridges assessed can be predicted from the present damage
state and the future loading spectrum of the bridges.

Nr=Nf-Ns
D(N+dN)-D(N)=g(D(N), N, F)(N+dN-N)
D=Ds when N=Ns
D=l when N=Nf

where Ds represents the present damage of the bridge.

5. A PROTOTYPS EXPERT SYSTEM FOR BRIDGE PIER ASSESSMENT

The expert system, DREPM-DP, is a prototype system developed by
China Academy of Railway Sciences, which is based on an expert
system tool DREPM. In acquisition of knowledges, domain knowledge
and expert knowledge as well as an analyse module are used. The
system has two kinds of knowledge representation method: frame
representation and productive representation. A ask-answer
blackboard is designed, which makes the system has a good humanmach

ine interface.
DREPM-DP has been used to assess damage state of about 20 bridge
piers. The diagnosing results are identical to practical
Situation.
Example: Haoshi River Bridge on Han-Dan Railline
The piers of the bridge is of a circular cross-section, enlarge-
ment foundation on rough sand with gravel layer. Bridge maintenance

branch reported that Pier No.3 rocked greatly when train
passed the bridge. In 1988, Zhengzhou Bridge Inspection Branch
did situ Vibration testing to the bridge. According to the
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results recorded in the test, DREPM-DP gives such diagnosing
results:

Pier No.2: little worse state, D=0.4
Pier No•3: very worse state, D=0.1
Pier No.4: worse state, D=0.25

6. CLOSE REMARKS

Damage state assessment and remaining life prediction for railway
bridges are closely related to transportation safety. Deepgoing
investigation on how to assess the state and to predict the life
is very significant at present. According to the discussion
above, it has been found following topics must be done futher
studies:

(1) Modelling method for damage of bridges
(2) Damage criterion and damage-servicability relation
(3) Damage evoluting properties
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SUMMARY
This paper is concerned with the recent available data obtained for modeling geometrical and material
uncertainties for concrete bridges, and the use of these modeis to obtain the probabilistic response of
reinforced and prestressed concrete bridge cross-sections. A parametric analysis is performed for
explanning the basic features to evaluate the real response of existing bridges for reliability analysis and
identifying the more relevant parameters for quality control or testing tasks.

RESUME

L'article r£sume les donnries obtenues pour la modelisation de l'incertitude relative ä la göomätrie et les
propriötös des matäriaux employös dans la construction des ouvrages d'art en böton armö et pröcontraint,
et leur utilisation pour la determination de la räponse probabiliste de sections transversales de ponts. Une
analyse paramätrique permet de mettre en fjvidence les principaux criteres pour l'gvaluation de la räponse
röelle des ponts existants, d'analyser la fiabilitö, et d'identifier les parametres les plus importants ä
consideYer dans le contröle de qualite" ou la rationalisation d'essais.

ZUSAMMENFASSUNG
Dieser Artikel beschreibt die neuesten verfügbaren Daten, die für die Modellierung von Geometrie- und
Materialunsicherheiten bei Betonbrücken bestimmt wurden und die Verwendung dieser Modelle zur
Bestimmung der wahrscheinlichen Belastungsantwort von vorgespannten Stahlbetonbrückenquerschnitten.

Einer Parameterstudie wird durchgeführt, um die Hauptmerkmale der Bestimmung der wirklichen
Belastungsantwort von existierenden Brücken sowie deren Zuverlässigkeitsanalyse zu erklären, ausserdem
bestimmt sie die wichtigsten Parameter für die Qualitätskontrolle oder vorzunehmende Tests.



242 PROBABILISTIC RESPONSE OF BRIDGE CROSS-SECTIONS

1.- INTRODUCTION

In order to obtain an accurate reliability analysis of existing or future structures it is necessary to
use more realistic modeis for materials, geometrical variabilities and structural analysis, taking into
aecount the non-linear behavior [1]. The use of analytical or semi-empirical relations for the
obtention of the bridge section resistance available in design code must be improved.

The Statistical parameters of geometrical variability and the uncertainties in the physical properties
of the involved materials has been normally derived for the available literature data for building [2].
Nevertheless, in bridge construction both the construction considerations stipulated are different
and more accurate techniques are used. Thus, a higher quality construction can be obtained. On the
other hand, the available data are not directly suitable for other countries with different modes of
construction or quality control. So that, more information should be obtained.

Recently, numerical methods to evaluate the structural cross-section response of prestressed and
reinforced girders have been developed to obtain ultimate moment and shear responses and the
moment-curvature relationship [3], and they has been widely used for bridge evaluation and code
calibration [4]. There is a need for the analysis of other concrete bridge typical cross-sections.

2.- GEOMETRICAL VARIABILITY

The parameters involved in the geometrical snapes, alignment, configuration of building
components are subjected to uncertainties due to different sources: form works, placement of
reinforcing or prestressing steel, placing of concrete, assemblage procedures, etc. Geometrical
variations affect both, the seif weight of the structural elements, (dead load) and the cross section
response (effective depth, concrete Covers, etc.) Most of the different literature data available has
been collected in Western Europe, USA and Japan, mainly for building structures [5] [6].

2.1.- Experimental dam and proposed modeis

A large experimental data bank has been collected until now in different bridges recendy built in
Barcelona area (post-tensioned concrete slabs and one box girder bridge). Also, a large data has
been obtained from a group of reinforced and prestressed concrete bridges (slabs and girder
bridges) demolished, for urbanistic reasons because of the 1992 Olympic Games and the
construction of new infrastrueture, in Barcelona.

The parameters collected have been: Deck tickness in slab-girder bridges, geometric definition of
girders, depth of slabs, thickness of top and bottom slabs in box girder bridge, effective depth of
reinforcing, diameter of voids in voided slab, thickness of asphalt.

The measurements of all these variables have been analyzed in order to obtain the Statistical
parameters. A Kolmogorov-Smirnov test has been used to derive the theoretical probabilistic
model. The probability distribution function included in these study were: Normal, Lognormal,
Truncated Lognormal, Gamma and Truncated Gamma. For each of these distributions the
Kolmogorov-Smirnov test provide a rational measurement of the approach. In many cases, all of
these functions fitted well the sample, thus to simplify the rational use of the theoretical modeis the
criteria was to select the Normal or Lognormal probability density distributions. The results are
summarized in Table 1.

3.- MATERIAL UNCERTAINTIES

The available data and modeling for the physical uncertainties involved in the material and
mechanical properties is very large [7] [8] [9]. Anywise, to obtain accurate modeis it is necessary
to define the source and to process the samples that are homogeneous, in order to establish a
suitable probability functions for a well definite random variable to use in further calculations.
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In this paper, the data collected is restncted to materials recently used in concrete bridge
construction in Spain, with a mean quabty control of the materials and high quality control of
construction

Parameter
X

Xnormnal
(mm)

Xmean
X nominal

Xmin
Xmean

Xmax
Xmean

Standard Dev Typeof
distributionXmean

Deck Slab
Girder Thick. 250 0 100 0 79 113 0 07 Normal

Horizontal
dimensions
of Girders

250 600 099 1003 0 99 1007 0003-0 007 Normal

Vertical
dimensions
of Girders

150
600

094 1025 0 95 105 0025
0 003

Normal

Depth of east
in situ Slabs

300
1800

0 996 0 94 105 0 026
0 015

Normal or
Lognormal

Depth of
top Reinforc

266 1006 091 107 0 045 Normal

Depth of
bottom Reinf

50 141 0 48 1 83 0 27 Normal

Thickness
of top slab
in Box Girder

250 0 95 1 03 0 89 0 92 106 1 10 0 02 0 07 Normal

Thickness of
bottom slab
m Box Girder

200

350^50

1002

0 95 1 1

0 987

0 95 0 97

1012

1 03 1 05

0011

0 016 0 025
Normal

Diameter of
voids (Slab)

1200 1400 0 97 0 98 102 0 007 0 008 Normal

Thickness
of asphalt

45 80 0 95 114 0 58 0 76 125 153 0 26 0 11 Normal or
Lognormal

The measurements of geometrical definition of girder cross seeuons have been classified in vertical and horizontal
dimensions

Table 1 - Geometrical vanabüity

3 1 - Concernmg Concrete

Different samples of compressive strength of concrete have been processed to get the Statistical
parameters and to obtain a good fit Normal and Lognormal PDF provide a rational approach for
modeling this parameter It is recommended to use Normal distribution for high quality concrete
The Statistical data are summanzed in Table 2, for three types of concrete
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Specified
fc,k(MPa)

Age at
test (days)

fc, mean
(MPa)

fcmin
fc,mean

fcmax
fc,mean

cov Typeof
distribution

25 7 22 30 0 71-0 85 1 13 1 19 008 011 Normal
Lognormal

25 28 28 33 0 74-0 82 120 009011 Normal
Lognormal

30 7 34 081 1 19 0 14 Normal
Lognormal

30 28 36 0 70 120 0 11 Normal
Lognormal

35 7 30 35 0 72-0 88 109 1 16 0 07 011 Normal
Lognormal

35 28 40 42 0 77 0 94 1 05 1 16 0 03 0 10 Normal
Lognormal

Table 2 - Compressive concrete strength

3 2 - Concerning prestressing steel

A large data bank has been processed for two different types of Strands, 0 5" and 0 6", and steel
270K (186/167 MPa) The source has been the more important manufacturer of prestressing steel in
Spam, which provided hundreds of quality control tests, conform to ASTM A-416 specifications
All these data corresponds to prestressing steel used in post-tensioning concrete bridges in the last 3

years Analysis of data and results of the Kolmogorov-Smirnov test are summanzed in Table 3 An
example of the sample is shown in Figure 1

Typeof
Strand

Parameter
X

X mean X nominal Xnun
Xmean

Xmax
Xmean

COV Typeof
distnbuti

05 Emodul 197 0 190 0 0 96 104 0 018
Normal
Lognormal

05 Ty 0 2% 180 6 166 0 0 92 108 0 028
Normal
Lognormal

05 Tmax 195 5 186 0 0 95 106 0 017
Normal
Lognormal
Gamma

06 Emodul 196 5 190 0 0 95 106 0 019
Normal
Lognormal

06 Ty,0 2% 247 0 238 0 0 94 108 0 022
Tr Gamma
Tr Lognor

06 Tmax 2716 266 0 0 96 107 0 018
Lognormal
Normal

E Deformation module (kN/mm2), Tmax Tensile strength (kN) and Ty,0 2%= Yield force (kN)
Tr Gamma= Truncated Gamma Tr Lognorm= Truncated Lognormal

Table 3 - Prestressing Steel (270K) properties
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3.3 - Concerning reinforcing steel

The available data for reinforcing steel is not as large as in the case of prestressing. Different
quality controls, made in some bridges, provide us the data. The mechanical properties are very
related with the bar diameter in the analysis performed. The results are presented in Table 4
although its can not be significant until the data bank will be more representative.

N

^1

iL

NORMAL
LOGNORMAL
TRUNC LOGN
TRUNC GAMMA
GAMMA

g;

O^EL
2« 24-5 250 255 2<>0 265

YIFLD TENSILE FORCE (kN)

NORMAL
LOGNORMAL
TRUNC LOGN
TRUNC GAMMA
GAMMA

23Ü 235 240 245 250 255 260 265

YIELD TENSILE FORCE (kN)

Figure 1.- Histogram, PDF and CDF curves, for yield tensile force prestressing steel. (Strand 0.6")

Parameter
X

X nominal X mean Xmia
Xmean

Xmax
Xmean

c.o.v. Type
of
Distribution

Area.real
Area,nom

1.0000 1.003 0.98 1.05 0.002 Normal
Lognormal

fy
(kN/mrn2)

51.0 58.0 0.91 1.10 0.057 Lognormal

f max
(kN/mm2)

60.0 67.9 0.98 1.10 0.050 Lognormal

Table 4.- Reinforcing steel parameters (fy yield tensile stress f max= maximum tensile stress)

4.- RESISTANCE MODELS

Accurate resistance reliability modeis to obtain the real response of cross sections must take into
aecount the real strain-stress relationship of the materials involved, and consider the uncertainty in
the geometry and material properties [4].

A numerical procedure has been developed, considering the above mentioned needs, to obtain the
moment, shear and torque response and the moment-curvature relationship of typical cross-sections
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of reinforced and prestressed concrete bridges, conform to CEB Model Code [10]. The model has
been computerized for easy application. In order to predict the probabilistic response and to fit a
theoretical probability distribution a 400 Monte-Carlo simulations, for each case, were performed.
The following assumptions were made:

- Strain-stress curves from CEB Model Code.

- The theoretical PDF used in the simulations are in conformity with data bank collected. The user
can also use the experimental histogram.

- All parameters involved to define the cross-section geometry and strain-stress curves are
considered as a independent random variable, in Statistical sense.

- In each Simulation all the above mentioned parameters are actualized.

Sensitivity analysis is made, in a recently built bridge in Barcelona (Fig. 2), to reveal the effects
on the random response due to selected parameters such as:

- C.O.V of vertical and horizontal magnitudes of geometry, diameter of voids, fc, fct, yield stress
of prestressing, effective steel prestress after losses, depth of prestressing.

The parametric analysis concerning C.O.V. is because of this statistic is directly correlated with
quality of materials and construction and human error, for new bridges, or with the level of
uncertainty in the unknown involved parameters of existing bridges. Thus, the more relevant
parameters in the resistance evaluation can be selected and used to rationalize the test tasks and
inspections.

4.1- Voided $lat>, Margenat Bridge in Barcelona,

This is a simply supported prestressed concrete voided slab, east in situ in 1991, with a span length
of 27.40 m, the cross-section and the placement of prestressing are shown in Figure 2 [11]. The
Moment-curvature relationships are shown in Figure 3, with design values (factored resistance) and
with mean and characteristic values of parameters involved. Numerical results of the response
value analyzed are given in Table 5. Due to the lack of space only the most relevant results of
parametric study are summarized in Figures 4, 5, 6 and 7.
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Figure 2.- Margenat bridge. Typical cross-section. Figure 3.- Moment-curvature relationship
from decompression of concrete
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Parameter
X

Xmean
X nominal

Xmean Xmin
Xmean

Xmax
Xmean

c.o.v. Type
of
Distribution

Ultimate
Bending-
Moment
(MN*m)

1.254 *

1.067
57.45 0.92 1.10 0.034 Normal

Lognormal

M, crack
(MN*m)

1.00 32.48 0.90 1.14 0.046
Normal
Lognormal
Gamma

Inertia
section (m4)

1.00 0.829 0.75 1.23 0.089
Lognormal
Tr. Lognor.
Gamma

Area
section
(m2)

1.00 6.657 0.91 1.08 0.032 Normal
Lognormal

Table 5.- Simulation results. * design value, factored resistance 0c 1.5 and 0s 1.15).
Nominal values conform to CEB Model Code, with characteristic parameters.

The real case of cross-section herein studied yield a good example to evaluate the main important
parameters involved in its ultimate resistance and serviceability behaviour. It is easy to realize that
the most important parameters are related with geometry and not with those concerning with
strength of material, due to the ductile behaviour. In the same way, the parametric study varying
C.O.V of void diameters and with yield tensile stress of prestressing shows a not important
correlation with the section properties analyzed.

5.- CONCLUSIONS

5.1.- Conclusions concerning geometrical and material variability.

Due to the lack of data available for modeling geometrical and material variability in concrete
bridges an important experimental data has been collected and presented. The Statistical analysis of
data fairly shows that different Statistical parameters has to be considered in the analysis of
reinforced and prestressed concrete bridges, which usually have a more accurate construction than
buildings.

5.2. - Conclusions concerning probabilistic response of concrete bridges

The scarcity of analysis of the most typical cross-sections in concrete bridges has conducted to
develop a numerical procedure to obtain the probabilistic response, in terms of moment, torque and
shear, taking into aecount the non-linear behaviour of materials and the uncertainties in the
parameters involved. A parametric study has been presented as a guideline to determine the
sensitivity of resistance and geometrical properties of the cross-section to different varying C.O.V.
of main parameters. The results show that the most important parameters to be correctly and
accurately evaluated are cross-section geometry and depth of prestressing steel.
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Fig 4 - Influence of C O V depth prestressing
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Note: Tx=prestress after losses, fc= compressive concrete strength.
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SUMMARY
In this paper, the sensivities of the dynamic behaviour of concrete bridges constituted by natural
frequency, mode shape, damping and phase angle in damage detection is studied utilizing an analysis of
the complex eigenproblem considering non-proportional damping and using dynamic loading tests on an
existing bridge in which some specified artificial damage had been included. Also, a method of damage
assessment for concrete bridges integrated from both the concise detection of damage location based on
the difference in the sensitivities of modal parameters and the exact evaluation by localization and
quantification of multiple damage based on the system identification method, is discussed.

r£sum£
Les sensibilitös du comportement dynamique des ponts en böton constituöes par la fröquence naturelle,
la forme modale, l'amortissement et le däphasage sont examinäes en vue de la detection des dommages,
avec le recours a l'analyse de problemes propres complexes, et en tenant compte de l'amortissement non
proportionnel et des essais en Charge dynamiques sur des ponts existants od quelques dommages
artificiels späcifiques ont 6t6 induits. On y discute ggalement une methode d'estimation des dommages
des ponts en bäton int£gr6e a la fois par une detection concise de la localisation du dommage selon la
difference des sensibilitäs des parametres modaux et par une Evaluation exacte par localisation et
quantification des dommages multiples selon la möthode d'identification des sySternes.

ZUSAMMENFASSUNG
In dieser Arbeit wird die Empfindlichkeit im dynamischen Verhalten, ausgedrückt durch natürliche
Frequenz, Modalform, Dämpfung und Phasenwinkel, von Betonbrücken in der Schadenserkennung
untersucht. Dabei wird die Analyse von komplexen Eigenproblemen unter Berücksichtigung der nicht-
proportionalen Dämpfung und dynamischer Belastungstests auf vorhandenen Brücken, bei denen
spezifizierte künstliche Lasten aufgebracht wurden, eingesetzt. Ausserdem wird eine Methode der
Schadensbewertung von Betonbrücken diskutiert, bei der die schnelle Erkennung der Schadenslage und
die genaue Bewertung der Lage und Quantifizierung von mehrfachen integriert sind. Erstere basiert auf
dem Unterschied der Empfindlichkeit modaler Parameter, während für letztere die Systemindenfikation
eingesetzt wird.
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1. INTRODUCTTON

The need for damage assessment of existing concrete bridges by a combination of visual inspections,
loading tests and analytical studies, has been pointed out with reference to the diagnosis of bridge
serviceability [1]. Since there are a number of factors included in the relationship between the damage
to existing bridges and dynamic behavior, it is necessary to develop an efficient method for damage
detection based on dynamic loading tests [2]. The most important aspect of this problem is to focus on
the dynamic sensitive parameters to the damage, because this has a significant influence on the
aecuraey of assessment.

In this paper, the sensitivities of dynamic behavior constituted by the natural frequency, the mode
shape, the damping constant and the phase angle, for damage detection was studied using an analysis of
the complex eigenproblem considering non-proportional damping and also dynamic loading tests. For
the analytical study, the component mode synthesis (CMS) method, which is one type of coupling
technique for substruetures in the dynamic analysis was applied to the complex eigenproblem for
simplification and an iterative analyses for damage detection was utilized. The system identification
(SI) method was developed based on sequential linear programming (SLP), combined mth the dynamic
sensitivity analysis, to quantify the degree of damage for each member in the whole system.

For the application of this method to existing concrete bridges, parametric analyses for simply
supported RC-T beam bridges in service were executed to evaluate the sensitivities of damage to
dynamic behavior and to construet a concise flow for damage detection. Furthermore, the SI method
was applied to the results from the dynamic loading tests, performed on an existing bridge in
whichsome specified artificial damages were induced. Finally, the concise flow and the SI method were
integrated, to enable an efficient damage assessment by multi-level and multi-aspect approaches.

2. ANALYTICAL METHOD FOR DAMAGE
DETECTION OF EXISTING BRIDGES

2.1 Modeling of bridges
For existing concrete bridges, stiffness reduction
of the main girder has been caused due to the
interactive effect of flexural cracks and
retrogression in the modulus of elasticity of the
concrete, The safety of bridges is strongly
influenced by this process as due to a change of
load distribution and hence a reduction in load
carrying capacity. In this research, the stiffness
reduction and change of damping constant were
considered to be the damage factors. The
modeling of the target bridge was carried out by
using a lumped mass gridform model of finite
beam elements and spring elements for the
elastic restraint of rotation at the supports. Fig. 1

shows an example of the model for an existing
RC-T beam bridge, "Nakaibashi" located in
Hyogo prefecture in Japan.
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Fig. 1 Modeling of existing RC-T beam bridge

2.2 Component mode svnthesis method in the
complex eigenproblem
The CMS method deals with the equation for the
whole structure in modal coordinates obtained by
synthesis of the boundary modes of substruetures
previously evaluated by modal analysis in the
physical coordinates. When the whole structure is
divided into n pieces of substruetures, the equation of motion for the substrueture i can be expressed by:

Maa Mab

M\a Mbb -

IM +

IM
Cab

Cba Cbb

M +

I

J\-aa K.ab

Kba Kbb

•IJol (i)
18*1

where subscript a, b denote the internal area and the boundary area, respectively.
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By using Guyan reduction of the stiffness matrix, a correlation between the displacement in the internal
area and the boundary area can be expressed by:

ö* --[jüJ1[j&]ö* - r,ö» (2)
After this, an analysis of the complex eigenproblem for the synthesized whole structure, of which the
matrix size is reduced to the degree of freedom for the boundary area of each substructure, is carried
out Displacement at the boundary area b can be evaluated in the form of complex conjugates by linear
combination of each mode as:

_ _
yb - 4>* fy (3), where §b - \$bu ?«. <j>w, §b% $t*, <(>*]: the complex mode matrix,

k denotes the adopted number of modes, yb \§b> ö&/ %a - {?u» &h ?«&}T: the modal coordinates.

On the other hand, carrying out the analysis of the constrained mode for each substructure,
displacement at the internal area a for each substructure can be expressed by:

y™ - \j\$ü>, 4>i«] & (4), where <|>m - [<j>wi, 4>,ai» <!>*& $vq> * tyum, bumü : the complex mode matrix,

m denotes the adopted number of modes, & {&& ?w) T{ -
T, 0

0 Ti

Displacement of the whole structure can be expressed by using the modes at the boundary area and the
internal area, as:

{yis ya)T - X {& %a)T -X (5), where yfl » {v^ v^ y„)T, g« - {$to ^ ?«,}T,

<|>& 0 r-
[T^b <|>a

Ti

7*i

?ia

0 M» 0 Mto -Af» 0 -Mba 0

0

Mo,

Mob

Cbb

0 Maa

Mba Cba
.<?-

-Mab

0

0

Kbb

-Maa

0

0

Kba

M* Cab Maa Caa _ 0 Kab 0 Kaa

Finally, the equation of motion for the whole structure can be written as:

XTPX + XTQX 5 - 0 (6), where P -

By analyzing the eigenproblem for Eq.(6), the modal parameters for the whole structure can be
obtained. Furthermore, substituting the modes evaluated by Eq.(6) into Eq.(5), the modes of the whole
structure in the physical coordinates can be obtained. The degree of freedom for this analysis is the sum
of the adopted number of modes for the
whole structure synthesized by the modes for
the boundary area of all substruetures; 2k,
and the adopted number of modes for the

internal area of all substruetures; 2Lmh (i-1,
«, n: number of substruetures), and it can be
seen to be much less than the total degree of
freedom for the whole structure. Through
study of the aecuraey of this method using
the existing bridge model shown as Fig.l, it
was founded that the results of this analysis
were sufficiently accurate for the target
modes of bridge Vibration as shown in Fig.2,
even if the adopted degree of freedom for the
whole structure was half the total degree of
freedom.

[l-l]th mode [l-2]th nxfe [l-3]th mode

[2-l]th mode [2-2]th mode [2-3]th mode

Fig.2 Shape of target modes

2.3 SI method using sensitivity analysis
The SI method [3] is one type of back analysis method, which can be used to identify system
parameters such as the flexural rigidity corresponding to the degree of damage in the problem, by
minimizing the error between the mechanical behavior as obtained from test and analysis. Here, the
existing concrete bridge was modeled as shown in Fig.l, considering spring elements for the friction
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restraint of rotation at the supports. In this research, the sensitivity analysis of damage to mechanical
behaviors and the SLP method were integrated. The objeetive function was defined as minimizing the
total squared error between the mechanical behavior obtained from the field test and the analysis, by:

'•"IM + Wil IIa min (7)

where/? is the order of normal Vibration, n is the number of measuring points, u, um are the eigenvalues
obtained from the analysis and the field test, respectively, Z, TP1 are the normalized modes of Vibration,
and W\, Wz are the weights for the eigenvalue and the Vibration modes. Here, it is assumed that
Wi=1.0,W2=l/n.

The sensitivity (derivative) ofthe design variable(for identification, here assign it the rigidity K± *=1~A
/: the number of members) to the objeetive function, can be expressed by:

OL W± I^L - i\ ^ + y 2W2 [Zj* t\ dZj
ÖKt uf» \tf dK ki z£ \Z£ I dK

where

(8)

d\ip _ _r dK - dZp
— Lp Z*p

dK dkt dK
and K is the stiffness matrix of the whole structure.

Following this, identification of the
design variables can be performed by
applying the SLP method using the
objeetive function and its derivative for
the design variables. Fig.3 shows the
flow of the SLP method for the dynamic
problem. Firstly, the initial values of the
design variables are evaluated by
analysis. Linearization of the objeetive
function is then carried out within the
region of movement limits for the
design variables, and a search for the
minimum point of the objeetive value is
tried using the simplex method. In the
event that the change of design variables
exceeds the movement limits,
reanalysis of the modal parameters and
restart of the search for the minimum
values from updated initial values are
executed by the same procedure
iteratively up to the stage at which the
objeetive function is within the
allowable limits.

* vr-vp
-t dK 7L.j £j\

dK

3. APPLICATION TO AN EXISTING
RC BRIDGE WITH ARTIFICIAL
DAMAGE

3.1 Outline of target bridge
The target existing bridge "Oyasubashi"
is 27 years old and a simply supported 4
girder RC-T beam bridge with a skew
angle of 46 degrees and a span length of
14.7m. This bridge seemed to be almost
intact according to the results of Visual
inspections. Fig.4 shows an outline
section for this bridge.

3.2 Inducement of artificial damage
The artificial damage corresponding to

START

Determination of initial values for design
variables Xi (i-I, 2, •••, n),
such as flexural rigidity of raain girders
and spring rigidity for rotation at supports

Evaluation of modal parameters by analysis
X (x Eigen value
ym(x Mode

m number of nodes

k+1
Judgement of
error for
identification

yes

^ STOP

Calculation of objeetive function Fk and
derivative of objeetive function VFk

Calculation of updated objeetive function
Fk+1 Fk + VFk-SXk

I SXk | < S{ m tf öllu t Move linit

Xk+i Xk + £Xk

Fig.3 Flow of SLP (for dynamic problem)



A. MIYAMOTO - H. MORIKAWA - Y. KAJITANI 253

C.L.

„Asphalt pavement

1500 450 mm

Girder A Girder B Girder C Girder D

Fig.4 Section oiOyasubashi bridge

T Tjg^e j» m GIrdbr A jmss drcppin
4150 £ 4150 J

»in&

t\4150 JTl39Q*T

(unit mraj\

Girrjer lN
• Sensor

Girder fN

—u
Girder\

flexural cracks in concrete in the tensile region
were induced partially in the girders A and B as
shown in Fig.5. Introduction of cracks was
carried out by core boring along a vertical line
from the bottom surface of concrete in the
tensile region to the neutral axis, as shown in
Fig.6. The core concrete blocks were then
replaced in the holes from which they had been
extracted, in order to avoid altering the weight
of the girders.

3.3 Procedure for field test [41
Prior to the field test, the target bridge was
modeled as the lumped mass system shown in
Fig.7, and the modal parameters were
evaluated by analysis. From this a
measurement method was determined focusing
the antinodes of target Vibration modes, as
shown in Fig.5. Positions of forced vibrations
by falling mass were arranged to obtain the
various modes of Vibration and the mass
dropping was carried out from about 70cm
height for ten times at the same loading point
to cancel white noise and to obtain a stable
average value. The modal analysis [5] was then
applied to the acceleration data to identify the
modal parameters.

3.4 Identification of damage parameters
The stiffness reduction of main girders was
identified by the SI method based on the [1-
l]th eigenvalue and eigenvector obtained from
the field tests, using the following procedure:
(l)For the target bridge before inducement of

the artificial damage, the system parameters
constituted by the stiffness of main girders
and cross beam, and the spring coefficient of
rotation at the supports, were identified.

(2)After inducement of the artificial damage,
the stiffness of the main girder in Sie

damaged region and the spring coefficient of
rotation at supports were identified under
the condition that the girder stiffness except
for damaged region was fixed at the value
identified in (1).

Table.3 shows the results of the above
procedure. According to the results, the change
of natural frequency due to inducement of
artificial damage is about 8% i.e. relatively
great The results of the SI method can be seen
to show that the spring rigidity of rotation at
the supports changed sharply due to
inducement of the damage, although this bridge has simple support conditions in its design. In such
cases, the SI method considering the spring rigidity of rotation at the supports as the design variables is
effective. Identified girder stiffness before inducement of the damages was equivalent to the theoretical
value considering the stiffness of concrete in the tensile region, and it agreed with the results of visual
inspections and material tests of concrete cores extracted from the target bridge. Also the evaluated
degree of damage was then relatively great and qualitatively matched the theory.

Flg.5 Outline of dynamic loading test
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Haunch
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Fig.6 Inducement of artificial damage
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Fig.7 Analysis model for Oyasubashi bridge
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Table 1 Results of damage detection for Oyasubashi bridge

Girder stiffnessCx 1012Kg«cm2) Spring rigidity of rotation at supports (x109kg-cra/rad) Ist

Girder Girder frequency

A B C D A B C D (HZ)

Theoretical value 7 198 6 755 6 755 7 255 -
Identified value
without damage

8 242 7 701 7 160 6 346 1 310 1 310 1 100 1 100 0 900 0 900 0 690 0 690 12 69

Identified value
with damage

5 496* 5 671* 0 0203 0 0122 0 0100 0 0089 0 0075 0 0073 0 0046 0 0044 11 71

* Value at damaged region

4. EFFECTIVENESS OF MODAL PARAMETERS IN DAMAGE DETECTION

4.1 Modeling of hridge with damage
The target bridge is shown in Fig.l, and this was modeled considering partial damage. For the damage
condition, the change of damping constant in the region of 0-30% in the region ofA, B were assumed.

4.2 Damping characteristics
Fig.8 shows the relationship between the change of damping
constant in the damaged area and that for the whole bridge

system. For the [l-l]1*1 mode of Vibration, the sensitivities of
damage A and B are the same and have linearity, independently
of the change of damping constant in the non-damaged area. On
the other hand, according to the results for the [1-2]111 mode,
damage B in girder B which is the node of Vibration has no
influence on the whole bridge system. Accordingly, localization
of the damage can be carried out using the damping
characteristics for both the [l-l]01 and [1-2]111 modes.

20

515

10

4.3 Phase angle
Fig.9 a)~c) shows the relationship between the change of
damping constant in the damaged area and the difference in
phase angle for each girder for the [l-l]111 mode of Vibration.
Here, the difference in phase angle was evaluated on the basis
of the phase angle at the midpoint of girder B. The difference in
phase angle in the damaged girder is greatest, in particular, the
influence of damage A is significant. The sensitivities of these

parameters have linearity independently of the change of
damping constant in the non-damaged area. On the other hand,

Fig.9 d) shows the result for the [2-1]111 mode and it can be seen
that the sensitivity of damage A is great and the difference in
phase angle between girder A and C is about 0.5rad i.e. largest.
Accordingly, localization of the damage can be carried out by
using these characteristics, similar to the above-mentioned
damping characteristics.

4.4 Flow of damage detection based on modal parameters
Fig. 10 shows the flow of damage detection by localization and
quantification based on the sensitivities of modal parameters to
damages. Firstly, a brief evaluation for the location of damage
can be carried out using all or a portion of modal parameters
constituted by natural frequencies /i_i, /i_2, fi-2, damping
constants £i-i, Ci-2, and phase differences yi-1» \|/2-i. At the first
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Fig.8 Damping characteristics
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Fig.9 Characteristics of phase angle

step, the existence of damage can be detected by searching whether the parameters (f\-\ and^i), &-i,
\|/1_1 indicate large values. After this, at the second step, localization of the damages i.e. the distinction
between damage the inside girder or the outside girder, can be carried out by searching whether
parameters fi-2, Cl-2> \|*2-l indicate large values. Though the above evaluation can be carried out
independently for each modal parameter, the final decision for damage detection should be carried out
comprehensively by comparison among the results from all parameters. Furthermore, the exact
evaluation by localization and quantification of multiple damages can be carried out by the SI method.
As the above mentioned procedure, the concise flow and the SI method can be integrated, to enable an
efficient damage assessment by the multi-level and multi-aspect approaches.

5. CONCLUSIONS

The main conclusions obtained from this study can be summarized as follows:
(l)For the simplification of analysis of the complex eigenproblem considering non-proportional

damping, the CMS method was applied and its suitability was demonstrated.
(2)The SI method based on dynamic sensitivity analysis and the SLP method has been studied and

applied to the results of dynamic loading tests performed on an existing concrete bridge in which
some specified artificial damage was induced.

(3)The sensitivities of dynamic behaviors to damage were evaluated by analysis and the results could be

seen to show that the [2-1]111 and [2-2]1*1 natural frequencies, the [l-l]* [1-2]01 and [2A]^ damping
constants, and the [l-l]1*1 and [2-1]1*1 phase differences had high sensitivity.



256 DYNAMIC BEHAVIOUR IN EXISTING CONCRETE BRIDGES

START

J___.

Dynamic loading test
4r

Modal analysis

S or UK

ÜK

Damage in inside girder Damage in outside girder

Damage assessment at first levelI•> Application of SI methodI
SiSmall
L:Large
UK : Unknown

Damage assessment at second level

Fig. 10 Flow of damage detection

(4)By using these modal parameters, a concise flow of the damage detection without any complex
analysis was constructed. Furthermore, this concise flow and the SI method were integrated, to allow
efficient damage assessment by multi-level and multi-aspect approaches.
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