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SUMMARY
A method for identification of local structural changes in terms of storey stiffnesses of buildings is
proposed here. Static condensation is applied to reduce the size of system for identification, while
stiffness changes are determined recursively in a remedial model by the extended Kaiman filter. The
efficacy of this "improved condensation" method under various noise levels is illustrated numerically by
an example of a twelve-storey plane frame building.

RESUME
L'auteur präsente ici une möthode pour identifier les faiblesses structurales locales des bätiments. II se
base pour cela sur la determination de la rigidit.6 des ätages par identification du Systeme, appliquee a un
modele räduit par compression statique, en procädant par la möthode itörative de Kaiman de filtrage non
linäaire. II dömontre ainsi l'efficience de cette mäthode de compression amrjlioräe en l'appliquant ä un
bätiment de douze 6tages ä ossature plane en portique, sous niveaux difförentiels de perturbations.

ZUSAMMENFASSUNG
Es wird eine Methode zur Auffindung örtlicher Tragwerksschwächungen in Hochbauten vorgestellt. Sie
basiert auf Ermittlung der Stockwerkssteifigkeit durch Systemidentifikation an einem durch statische
Kondensation reduzierten Modell, wobei iteraktiv mit einem erweiterten Kaiman-Filter vorgegangen wird.
Die Effizienz dieses verbesserten Kondensationsverfahrens wird an einem zwölfgeschlossigen ebenen
Rahmentragwerk für unterschiedliche Störsignalpegel demonstriert.
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INTRODÜCTION

In recent years, application of system identification (SI) to damage
assessment and safety evaluation of civil engineering structures has received
considerable attention (e.g. Natke and Yao 1987; Agbabian et al. 1991). Based
on input and output measurements of dynamically excited structures, structural
parameters such as stiffnesses are determined and then compared with intended
design values. In this manner, periodic monitoring of state of structures can
be performed for detection of structural changes due to damage or
deterioration. However, several problems have yet to be resolved before this
methodology can become viable for actual structures.

One of the problems reported by some researchers is that current SI
techniques have not been satisfactory in detecting local damages. Modal
parameters as determined by frequency domain analysis are not sensitive to*
local damages, except for small structural Systems or unless high modes are
taken into aecount. The aecuraey of high modes is, however, often difficult
to achieve because of measurement noise. Hence, there is apparently a trend
that researchers prefer time-domain SI approaches, among which the extended
Kaiman filtering (EKF) originally developed by Kaiman and Bucy (1961) is
perhaps most widely used. Nevertheless, it has been found that the change in
stiffness matrix due to member stiffness changes in the locality tends to
"spread out" or "diffuse" into adjacent structural members (herein referred to
as "stiffness diffusion"), thereby making local damage identification
difficult (Natke and Yao 1987).

In addition, from the viewpoint of structural safety evaluation, it is
important to estimate the confidence level (or reliability) of identified
parameters taking into consideration measurement noise as well as modeling
errors. In this aspect, Agbabian et al. (1991) has applied least-squares
approximation methods to successive time Windows of input and output (I/O)
time histories. In their numerical studies, the effects of I/O noise have
been taken into aecount. However, to the authors* knowledge, modeling errors
have thus far not been considered in the confidence estimate of identified
parameters.

IMPROVED CONDENSATION METHOD

The problem of local damage detection is aggravated by the large number
of degrees of freedom (DOFs) in modeling an actual structure. When applied to
a complete structural model involving all DOFs, the EKF and other time-domain
SI approaches alike are often found to be numerically inefficient in terms of
aecuraey, convergence and computation speed. Alternatively, a "reduced" model
with a smaller number of DOFs can be considered. For instance, if
quantification of storey stiffness changes of a building suffice for the
purpose of damage detection, a simple lumped mass model can be used to reduce
DOFs. Unfortunately, as a result of considerable modeling errors, diffusion
problem of storey stiffness into adjacent storeys would render local damage
detection ineffective.

As an attempt to detect the location of damage and quantify the magnitude
of damage in terms of stiffness reduction of a building, an improved
condensation method (ICM) is proposed here. For illustration purpose, a
single-bay n-storey plane frame building as shown in Fig. Ha) is considered.
Axial and shear deformations are assumed to be negligible. Static
condensation is first condueted, reducing the complete structural model to a
"Condensed" model with a significantly smaller number of DOFs [Fig. Hb)]. In
this study, columns are considered to be the eritieal elements where damages
are likely to occur and affect the overall Performance of the building.
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Non-critical elements (beams) are assumed to be undamaged and any difference
in storey stiffness is solely due to changes in column flexural rigidities
(EI), In order to narrow the gap between the Condensed model and the actual
structure (upon which I/O measurements are taken), a "remedial" (or

correction) stiffness
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FIG. 1. (a) Complete Model; (b) Condensed Model;

(c) Remedial model. (Numbers indicate DOFs).

matrix K is derived
R

based on a lumped
mass model as shown
in Fig. l(c). By
applying the EKF on a
time window of data,
the stiffnesses of
this remedial model
are identified and
then used to update
the Condensed model.
This process is
repeated for a
specified number of
time Windows (or
unt i1 convergence).

The procedure of the ICM for damage detection of the building considered
is described below.

(1) Divide the excitation and response time histories into time Windows.

(2) Form mass matrix M (3nx3n) for the complete model based on known mass
distribution. Given flexural rigidities of the "undamaged" building, form
complete stiffness matrix K (3nx3n) encompassing all DOFs, i.e. two Joint
rotations and one horizontal translation per floor [Fig. Ha)].

(3) Damping matrix C (3nx3n) is constituted by adopting Rayleigh damping
assuming that damping ratlos of two Vibration modes are known. (This
assumption can be relaxed by including damping ratios as additional
unknown parameters to be identified.)

(4) Perform static condensation to obtain Condensed mass matrix M »damping

matrix C and stiffness matrix K all of size nxn [Fig. Hb)],c c
(5) The improved condensation model is derived by adding the remedial

stiffness matrix K (as explained earlier) to the Condensed stiffness
matrix K Elements in K are the unknown parameters to be identified by

the EKF, while K remains unchanged.

(6) Compute stiffness correction factor tj for the j-th storey as follows:
N J

t). V (ei vK)/(ei

where U denotes the undamaged quantity, R denotes the remedial quantity
and N is the current time window number. Since the remedial model is

w
derived from a shear building, the remedial flexural rigidity is given by
(EI =(K 1 / 12, where (K is the corresponding storey stiffness in

R J R J J R J
K and J is the column length

R J
The updated flexural rigidities

J 1 n (2)

are then used to compute the complete stiffness matrix K.

EI
J (EIu).(l +,j).
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(7) Repeat step 3 to step 6 for all time Windows considered. The severity of
the damage in each storey is finally given by the end result of tj

ADAPTIVE FILTER

In SI techniques employing the EKF, uncertainties in terms of variances
of identified parameters are supposedly reflected in the error covariance
matrix. The error covariance is dependent on the output noise covariance and
the system noise covariance in the EKF algorithm. The variances of input and

output noise can be estimated from resolution and aecuraey of Instruments and
data acquisition system. The main problem is the difficulty in estimating the
variance of system noise which includes modeling errors as well as input
noise. In application of the EKF, the uncertainty in the system noise causes
the divergence phenomenon, especially when the input noise is small in
comparison with the modeling errors.

An adaptive filter was developed by Jazwinski (1969) as an algorithmic
attempt to control divergence in Kaiman filtering of orbit determination
problems. In this paper, this adaptive filter is modified to suit SI problems
for the purpose of obtaining statistically consistent variances of identified
parameters.

Determination of System Error Covariance Q

Consider a time window beginning with k-th time step. The predicted
residual vector at p steps läter (i.e. time t is defined as

k+p *k+p k+p k+p k
where y is an Observation vector (mxl), x(t, \t is an expected state

*k+p K+P K

vector (nxl), and H(t, is an Observation matrix (mxn). The covariance of
k+p

the predicted residual vector can be derived by means of the EKF algorithm as

«WV - H^ic+p^(tk+p't)c)P(tkltk)$T(tk+p^lc)HT(tk+p)

k+p

P

I«Wtw,Qttw-i)#IlVw)
1=1

[nT(t, + r, n (4)
k+p k+p

where E{ • > denotes expectation Operator, $ is a state transition matrix (nxn),
P is an error covariance matrix (nxn), Q is a system noise covariance matrix
(nxn), and R is a measurement noise covariance matrix (mxm). Q is determined
by ensuring consistency between the residuals and their statistics such that

P

~y I rk+irk+i ^ E{rk+prk+P}
i=l

Equation 4 can thus be written as
P ^ P

H(tIr Jk+p

(5)

I«ti.p-ttoi)«(tic.i.i)#T(Wti-i)V(W ^lT
1=1 y J i=l

T

k+i k+i

E{r, r?" |Q(t, )=0} ^6a^
k+p k+p1^ k+p

where

k+p
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In the present formulation, only diagonal elements of r, r. are considered
whereas all off-diagonal elements are assumed to be zero (i.e. no

where

The left hand side of Eq. 6(a) can now be

cross-correlation between residuals). Let Q(£, equal to G, Q, G,
k+p ^ k+p k+p k+p

G. is a distribution matrix.k+p
expressed as A, diag[Q, ] where* k+p & k+p

P

«•- =iüH(t, )$(t, ,t, JG.
k+p k+p k+i k+i ->]'

Hence, the diagonal terms of Eq. 6(a) can be obtained from
A, diag[Q, ]

k+p ö k+p
where

k+p

diag[— Y *Y .rl - E{r7 r* |Q(t, )=0}1
fe+P L P *^i k+1 k+1 k+P k+P k+p J

(7)

(8a)

(8b)

It is reasonable to assume that Q remains constant in a time window of N

k+N' The system noise covariance in thissampling points, i.e. Q Q Q

time window is given by

diag[Qk,tf] lAl,N Ak,N}'lAl,N Ck,N (9a)
where A is an Nmxn matrix and e is an Nmxl vector written as follows

Ak,tf {Ak*Ak+l >Ak+N} ek,N {ek'ek+l"-"ck+N} (9b,c)
The main procedure of adaptive filter is schematically explained in

Fig. 2. For purpose of discussion, we now let 9 denote a vector of parameters
to be identified, such as unknown stiffnesses, and x contains only response
variables (displacements and velocities). Initially the EKF may be carried
out once (not shown in Fig. 2) to obtain a better guess of G An adaptive
filter cycle comprises two processes: (a) determination of Q by enforcing
Statistical consistency of residuals using N sampling points, and (b)
determination of x, G and P by the EKF using M sampling points.

N samples delay x{k\k)

e(*IA)

Start
x(k\k), 0(k\k), Q=0,P(k\k) Determine

Q

EKF

Algorithm

x{k+M\k+M)

e{k+M\k+M)

P(/r+AM+Af)

k=k+M

End of
Data

No

Yes e(sls)
*""

P(sls)

FIG. 2. The Adaptive Filter Procedure.

NUMERICAL EXAMPLES AND DISCUSSIONS

In our examples, the input is a force comprising several (five or more)
harmonics of frequencies covering the first few significant Vibration modes of
the structure. Added to input and output time histories are independent
Gaussian noises with zero mean and Standard deviations equal to certain
specified percentages of their respective unpolluted root-mean-square values.
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Example 1 (ICM)

The procedure of ICM is illustrated by considering a 12-storey plane
frame building. The "complete" plane frame model has a total of 36 DOFs (two

Joint rotations and one horizontal translation at each floor). The mass

matrix and stiffness matrix for the undamaged building are derived from a

small-scale steel laboratory model. The damping ratio is 0.5% as determined
by free Vibration tests of the laboratory model.

We now consider the building to be "damaged": the column stiffnesses in
the first, fourth, eighth, ninth and eleventh storeys are reduced by 10, 15,

30, 20 and 25 per cents, respectively. An excitation force is applied at the
top floor and horizontal responses at all floors are measured. Total
Observation time history of 2 s at a sampling rate of 0.0005 s is divided into
20 Windows. All rotational DOFs are eliminated in the Condensed model and the
remedial model thus has 12 DOFs.

Following the procedure of the ICM described earlier, storey stiffnesses
of the damaged building are identified without I/O noise and with different
noise levels. The ratios of damaged storey stiffnesses to the corresponding
values of the undamaged building are computed and summarized in Table 1. In
the ideal case of zero 1/0 noise, the identified stiffnesses are almost exact
(error < 1%) for all twelve storeys and the stiffness diffusion problem is
negligibly small. In comparison, if the lumped mass model were used instead
for the same conditions, the results (not shown in Table 1) would have been

disastrous with error as high as 60% at some storeys. For an 1/0 noise level
of 20% which is considerably high in practice, the identified results are
remarkably good (with error ranging from 0.2% to 6% only) in view of the

fairly large system for identification.

Story
1/0 Ist 2nd 3rd 4th 5th 6th 7th 8th 9th lOth llth 12th

Noise
0% 90.0 99.6 100.5 85.0 99.9 99.8 100.0 70.1 80.3 99.9 75.0 99.6

10% 89.7 97.2 103.4 87.6 100.7 99.6 99.8 72.8 83.6 97.7 76.8 100.3

20% 90.9 97.1 95.8 86.9 100.2 101.9 100.7 74.1 83.4 97.1 76.0 101.2

207. 88.5 120.8 126.0 91.0 92.9 115.1 140.0 79.7 78.6 97.8 79.4 76.9
+

20% 90.6 99.6 105.5 86.9 97.5 104.5 101.0 72.3 81.0 97.5 78.4 94.2

Exact 90.0 100.0 100.0 85.0 100.0 100.0 100.0 70.0 80.0 100.0 75.0 100.0
* Six horizontal response measurements at alternate floors.
+ Averaged results based on twelve different time histories of excitation with same noise level

TABLE 1. Percentage Ratio of Damaged Storey Stiffness to Undamaged Storey Stiffness

In terms of computation time, the ICM requires only 20% more than the
lumped mass approach in this example, whereas a complete structural
identification with 36 DOFs would be very time consuming (easily ten times
more) if convergence can be achieved at all. The ICM is hence a simple and

yet effective approach to determine local structural changes with virtually no

stiffness diffusion problem.

Example 2 (Adaptive Filter)
In this example, the adaptive filter procedure is applied to an 1-DOF

system to obtain error variances of identified parameters under the influence
of 1/0 noise. The mass is known and has a value of 1 whereas the stiffness
(K) and damping coefficient (C) are to be identified. Assuming independent
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system noises for all state variables,
unit matrix. Initial conditions are:

The sampling numbers are J\T=20 and tf=3. Total

the distribution matrix G is simply a
x =1, P =400 and

4 3,3
Observation time

x =yl -'o x =y2 Jo x =100,
3

IS

of estimation error, the

(12)

<fc

h -

<k

p =0.1.
4,4

22.5 s at a sampling rate of 0.075 s.
To evaluate the Statistical consistency

following Performance index is defined:

** { B-J1[xrUi}^(ti,ti),a ] / [pr,rWk) ] }
where y =1, 2, 3 and 4 denote displacement, velocity, stiffness and damping,
respectively. Due to randomness, the Performance index fluctuates with k and

it would be desirable
10 I ~~ 1 to have the index

averaging about one.
The Performance of

the adaptive filter is
compared to that of the
EKF with zero system
noise(Q=0). The Performance

index for stiffness
is shown in

Fig. 3a for 10% 1/0
noise and in Fig. 3b
for 30% I/O noise. It
can be seen that the
Performance index
diverges in the case of
the EKF. This means
that the error variance
are statistically
inconsistent and thus
do not truly reflect
the confidence level in
the identified
parameter. The Performance
indices in the case of
the adaptive filter
Clusters around 1,
which is an indication
of good Statistical
consistency of error
covariances determined
in the SI process.
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FIG. 3. Performance Indices for Stiffness (a) under 10% L/O
Noise and (b) under 30% 1/0 Noise.

Example 3 (ICM with Adaptive Filter)
The last example demonstrates the combined application of the ICM and the

adaptive filter for identification of local structural changes with confidence
estimates of a three-storey plane frame building which has the same damping
ratio, columns and beams as in Example 1. The excitation force is applied at
the top floor and horizontal responses at all three floors are measured.
Total Observation time is 2 s at a sampling rate of 0.0005 s. In the
application of the ICM, the Observation time history is divided into 20 time
Windows.
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For Simulation of structural changes, we consider a damaged building with
column stiffnesses at the first and third storeys reduced by 15% and 30%,
respectively, and the second storey undamaged. These results in terms of
percentage ratios relative to the "undamaged" values are summarized in Table
2. It can be seen that the effect of stiffness diffusion into the second
storey is very small. Specifically, under a 0% noise level, the identified
stiffness change of the supposedly undamaged second storey is only about 1%.
The severity of damage in the first and third storeys is accurately reflected
even for I/O noise level as high as 20%.

In the absence of I/O noise, the Standard deviation of each identified
stiffness ratio (in %) is about 0.8. The variability of identified results in
this case is primarily attributed to the modeling errors. With 20% I/O noise,
the Standard deviation increases and thus the reliability of identified
results is less. If randomness of an identified parameter is approximated by
a Gaussian distribution, the reliability can be translated into a maximum
likelihood ränge corresponding to a specified confidence level. As an

illustration, 95%
confidence ranges based on
±1. 96<r are presented in
Table 3. Hence, with
the determination of
identified stiffnesses
and their respective
variances, the combined
application of the ICM
and the adaptive filter
would be useful for the
reliability analysis
and safety evaluation
of buildings.

I/O Storey Stiffness Standard 95%

Noise Ratio Deviation Confidence ränge

Ist 86.3 0.8 84.7 - 87.9
0% 2nd 101.2 0.8 99.6 - 102.8

3rd 69.7 0.8 68.1 - 71.3

Ist 86.7 5.8 75.3 - 98.1
20% 2nd 95.1 5.8 83.7 - 106.5

3rd 70.5 5.8 59.1 - 81.9

Ist 85.0 - -
Exact 2nd 100.0 - -

3rd 70.0 - -
TABLE 2. Percentage Ratio of Damaged Story Stiffness to

Undamaged Storey stiffness and their Confidence Estimates

C0NCLUSI0NS

Two issues, namely (a) local damage detection and (b) confidence
estimation of identified parameters, have been dealth with in this paper.
Firstly, an "improved condensation" method is proposed to identify the
locations and magnitudes of structural stiffness changes of buildings.
Secondly, confidence levels in identified parameters are estimated by means of
an adaptive filter which ensures Statistical consistency of error covariances
in the application of the EKF. The application of the proposed procedures to
numerical examples have shown their potential as an effective tool to identify
local structural changes of buildings with consistent confidence estimates.
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