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SUMMARY

Twin algorithms are described for separating linear and nonlinear moment-curvature characteristics of sub-
members and then using these characteristics in elastic-plastic frame analysis with two submembers per
frame member. Provision is made for complete stress-strain curves, residual stresses, shrinkage, plastic
local and lateral buckling, interface slip and combinations of permanent and imposed load properties, as
well as end connection flexibility. An example shows the enhanced ultimate load capacity that can be
achieved in continuous structures and the required rotations of plastic hinges that are checked using a
limit states criterion of ductility.

RESUME

L'auteur expose des algorithmes doubles en vue de séparer les rapports courbures-moments de types
linéaires et non linéaires dans les éléments porteurs secondaires, puis d'appliquer ces caractéristiques au
calcul élastoplastique de cadres & deux éléments porteurs secondaires. Cette méthode prend en compte
la totalité des diagrammes contrainte-déformation, les contraintes résiduelles, le retrait, le voilement et
déversement local plastique, les surfaces de contact a glissement, la variation des propriétés sous charges
permanente et utile, ainsi que la flexibilité des assemblages bout & bout. Un exemple met en valeur, d’une
part |"augmentation de la charge portante ultime de structures hyperstatiques et, par ailleurs, les relations
requises par les rotules plastiques qui sont vérifiées a I'aide d'un critére de ductilité a I’état ultime.

ZUSAMMENFASSUNG

Es werden Zwillingsalgorithmen zur Trennung der linearen und nichtlinearen Momenten-Krimmungsbe-
ziehungen von Rahmenbauteilen mit zwei Untertraggliedern beschrieben. Sie beriicksichtigen vollstindige
Spannungs-Dehnungskurven, Eigenspannungen, Schwinden, értliches plastisches Beulen und Kippen,
gleitende Kontaktflichen, Anderung der Eigenschaften unter Dauer- und Verkehrslast, sowie Nachgiebig-
keit der Endverbindungen. Ein Beispiel belegt die gesteigerte Grenztragfihigkeit statisch unbestimmter
Tragwerke und die bendtigte Rotationsfahigkeit der plastischen Gelenke, die mit einem Duktilitdtskriterium
Uberprift werden.
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1. INTRODUCTION

Structural frames often possess load-resisting capacity above that assessed in the original design

due to the following reasons:

® Semi-rigid end-connections that may provide continuity where simple-supports were assumed.

® Stress-strain properties of materials, including nonlinear effects, that differ from those
originally assumed (conservative properties and partial material factors may be adjusted after
in-situ testing).

® Partial composite action in structures where this was neglected.

® Benefits of limit states design codes allowing for redistribution of moments and ultimate
(stress-block) resistances compared to older allowable stress codes, but also requiring more
comprehensive analysis including non-linear P-A effects and ductility criteria.

If adequate analysis procedures are available, these factors will often lead to an assessed increase
in load capacity. This may be improved further by strengthening procedures that enhance flexural
resistance and stiffness, introduce additional continuity and load paths, or prevent secondary modes
of strain-weakening behaviour.

The first two sections of this paper describe moment-curvature and frame analysis algorithms that

link together to provide a computational method of allowing for all these nonlinear characteristics

without the need for finite-element analysis involving numerous elements both across the sections
and along the length. Features of this approach include:

1. In the frame analysis each "member" is represented by only two "sub-members", each
reflecting the integrated non-linear behaviour between an end and the internal section of
maximum moment (or the midspan if no maximum internal moment exists), without further
discretization in inelastic regions.

2. The frame analysis identifies not only the ultimate load capacity, but also the plastic rotations
at each critical section before loss of moment resistance, that are required to check the
ductility, as described in the third section of the paper.

3. The behaviour of each element in positive and negative bending is determined in the moment-
curvature algorithm allowing for nonlinear material behaviour, shrinkage, creep, interface slip,
residual stresses and other effects.

4. This moment-curvature algorithm minimises the number of "elements" representing the cross-
section because it is not necessary to subdivide for strain gradient through the depth.

5. Strain-hardening followed by strain-weakening behaviour beyond the elastic region is
represented by an idealised elastic-perfectly-plastic moment-curvature relationship for frame
analysis, together with expressions for determining the available plastic rotation prior to the
moment falling below the design resistance.

The moment-curvature and frame analysis algorithms and the limit states criterion for ductility are
illustrated by the example of a three-span composite beam in Fig. 1. Although this is a relatively
simple structure, the approach has been applied to more complex sway structures involving frame
instability [1,2]. This example is also used at the end of the paper to illustrate the reserve capacity
that can be mobilised by allowing for nonlinear characteristics, including continuity in a previously
simply-supported beam using the semi-rigid end detail reflected in Figs. 1b and c.

2. MOMENT/CURVATURE-ROTATION-DEFLECTION RELATIONSHIPS

2.1 Stress-strain models of material behaviour
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The moment-curvature method described in this paper has L New end
its origins in some of the many stress-strain models that =——= plate
exist [3], but has been developed and tuned progressively o '
over the last decade by the author to represent t; Saction dimensions
consistently the inelastic behaviour of a wide range of
structural components. Importantly, the results may be
integrated to determine the element properties required
for nonlinear frame analysis, including the assessment of | Mpc
required ductility using a mixed method of analysis that T T 0. r
is described in the next section. 5 ‘A i
5] /
Any stress-strain curve is subdivided into three regions as § / Slope = C = 83000kNm/rad
illustrated in Fig. 2. Each region is represented by a j (Connection stiffness)
local curve with an origin at the start of the region and a !
relationship in region i of the following form: ]
Ao, - EAe + D(Ag)" (1a) Rotation 6
Ae - ¢ - ¢ (1b) c) End connection M - O curve

Fig.1 Composite beam example

which Ao; and Ag, are the changes of stress
and strain at strain € from the origin of the
region, ¢,  is the strain at the origin, E, is the
slope of the stress-strain curve at the origin
and D; and n; model the observed
characteristics of the material.

Stress

The general Eqns. 1a and 1b for each of the
three regions are particularly useful in
calculating the moment-curvature relationship
because at any extreme fibre strain & the
average stress under the curve @, the location
of the centroid of this area ¢ = foede/ae? ' 3

Region 1 i s i
and the tangental slope E, may be expressed o Sljg:i‘ . »le Region 2 e Region 3 N
in simple algebraic form as follows: pe = Slope = Eg
o =X A /e (2a) Fig.2 Stress-strain curves
A - o Ae + EAe? / 2 + D(Ae)"" " /(n+1) (2b)

Y [Ag, + o, Ae? /2 + EAe’ /3 + D(Ae)" */in + 2)]  {(2¢)
ae?

E - E +nD, (Ae)"" (2d)

c




A

108 EVALUATION OF RESERVE CAPACITY OF FRAMES

in which the summation extends over all regions i up to and including the region containing the
strain €, g,  is the stress at the start of the region and A, is the area under the stress-strain curve
in any region given by Eqn. 2b. The index n, is calculated from a known change of slope (E, -
E) over Ao, and Ae, from Eqns. 1a and 2d:

n - (E - E) Ae / (EAe - Ac) (2e)

The material properties that need to be specified to determine the unknowns E;, D, and n; in the
three regions of the curve apart from continuity are shown in Fig. 2 and Table 1. This table also
includes in brackets typical design values, incorporating partial material factors, that are used in
the example of Fig. 1.

2.2 Moment-curvature relationships

Any cross-section of a structural element comprising one or more materials and subjected to
bending with or without coincident axial force, may be subdivided into an appropriate number of
equivalent rectangular elements or concentrated areas to represent the geometry of the cross-
section. This subdivision does not have to be sufficiently fine to neglect the strain gradient because
of the availability of expressions for average stress and lever-arm of the resultant force vector
given by Eqns. 2a to 2c. Thus a steel I-section may be represented by three equivalent rectangles
and a reinforced concrete beam by one rectangle and one concentrated area, whereas a circular
cross-section may require twelve rectangular elements.

A linear distribution of longitudinal strain is considered through the depth of the section and the
strain gradient is assumed equal to the curvature. Considering any rectangular element j shown
in Fig. 3 of breadth b, thickness t and depth of centroid y, from an arbitrary reference level (the
top surface), the axial force supported by the element and its moment of resistance may be
determined directly from the stress-strain properties of the material described previously. The
resistance of the rectangle under consideration ABCD may be represented by the difference in
resistance of the rectangles ABEF and CDEEF in this figure. For the strain distribution shown,
representing a curvature or strain gradient ¢:

Material Mod. of Proportional Strain hardening/weakening
(Fig.2) Elasticity limit £,
E Onset Slope

1. Structural f,=f, e,=(5-15)e, E,=E/(30-100)
Steel (206 GPa) (f,=235MPa) (e,=10e,) (E,=E/100)

2. Metal f,=0.8f, e,=(1.5-2)f /E | E;=E/(30-200)
(reinforcing) (200 GPa) (f,=390MPa) (e,=2f,/E) (E,=E/200)

3. Concrete E=20-35GPa | f,=(0.5-0.8)f, e, @f, = E,=-E/(3-50)°
(Compression) | (E=24GPa) f.=15MPa 0.002-0.0025 (E,=-E/5)

f,=9MPa (e, =0.0022)

4. Concrete E as for f,=f=0.3(f)*" | e,=G-8)f/E |[E =0

(tension) compression f,=1.8MPa (e,=4f /E)

Depends on extent of triaxial restraint provided by reinforcement

Table 1. Material properties for stress-strain curves in Fig. 2
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surfaces of the rectangle defined as | Rectangular | Y L

- ) c! _Element Ip £,
positive below the neutral axis, €, and y. _ _ | il .
e, are the corresponding strains and y, AWA B : &
is the depth of the neutral axis below b
the reference level. Fig.3 Assessment of element ABCD

The axial force F,; supported by element j is given by the difference in axial forces on the two
rectangles ABEF and CDEF:

F, = b (ay, -oy) (4)

in which G, and G, are the average stresses under the stress-strain curve given by Eqns. 2a and
2b at strains €, and €, respectively.

The moment of resistance M; of the element about the centroid of the complete section is given
by the difference in moments of resistance of the two rectangles ABEF and CDEF:

M - b (o,c,y’, ~ocy’) +F ly -v,) {5)

in which ¢, and c, are the centroidal ratios given by Eqn. 2c and y, is the depth of the centroid
of the section from the reference level. Similar expressions may be derived for concentrated areas
such as reinforcement [4].

In all of the above equations the assumed sign convention is stress, strain and force positive in
tension, curvature and moment positive in sagging bending and depth y positive below the arbitrary
reference level. The expressions apply whether the element is above or below or cut by the neutral
axis. For materials such as concrete the form of these equations also enables different stress-strain
curves to be adopted under compression and tension by referring @,, ¢, and G, c, to the properties
of different materials if the neutral axis falls within the depth of the element.

In Eqgns. 3 to 5 it is assumed that the depth of the neutral axis below the reference level y, is
known. At inelastic levels of stress and strain, y, is determined iteratively to satisfy equilibrium
between the net axial force resisted by the section, }'F;, and the external axial load N applied to
the section.

The method has been applied [4] to & wide range of structures and elements of different materials

at serviceability and ultimate load and has been adapted to model the following important aspects

of structural behaviour:

® Prestressing and shrinkage in concrete elements, by introducing initial values of strain in the
relevant elements.

® Residual rolling or welding stresses, by providing additional elements with different initial
strains to reflect the residual stresses approximately, based on proposals such as Young [5].

® Interface slip in composite beams with partial shear connection, by introducing slip-strain
increments at the interface that are a function of curvature and, when integrated over the half-
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span of the beam, provide a total end slip that is consistent with measured behaviour in push-
out or beam tests.

® A combination of differing section configurations and stress-strain properties under permanent
and imposed loads.

® Strain-weakening due to interactive local and lateral buckling of yielded steel sections based
on a semi-empirical model described by Kemp [6].

2.3 Idealisation for frame analysis

The moment-curvature relationships for the composite beam example shown in Fig. 1b, with
material properties defined in brackets in Table 1, are illustrated by the solid lines in Fig.4 for
positive and negative bending. The ultimate design resistance M, is an important parameter that
is determined from code rules in this case, or other considerations. These curves include the
effects of residual rolling stresses, interface slip due to a 50% partial shear connection and
interactive plastic local and lateral buckling at high moments in the negative moment region. The
region of the beam adjacent to the semi-rigid end connection shown in Figs. 1b and c has been
modelled by assuming that the steel section cannot resist tension.

In the three-span continuous beam of Fig 1a, the first regions to develop plastic hinges are adjacent
to the internal supports. Uncertainty exists over the moment-curvature path followed by sections
in the inelastic region adjacent to these supports (represented by portion PM in Fig. 4b) once the
structure is loaded under displacement control beyond the maximum moment and experiences
strain-weakening with the section of maximum moment following portion MM' in Fig. 4b. Based
on a qualitative assessment of test behaviour it is proposed that the distribution of curvature in this
inelastic region at the load level at which the maximum moment at the internal support falls to the
design resistance M, may be modelled simply and approximately by the line P'M'. This implies
that curvature is a linear function of moment and the available inelastic rotation 8,, is given by the
shaded area in Fig. 4b as:

' !
8, = 0.5M_(m -1) [¢! - ¢, (m +1) / 2m)/mV, '6)
2a0 - T T T T T 100 T T L T ) T T ]
= = Mp=88 —— ,
E 200 |- Z e P M, =76 Mo
= = O S S s
160 |- mg"\l;‘m—WEakemﬂg
- + 80 - After str .
= 7]
g 10 = 8,, =shaded area
g . € 40 |- .
o o | Elastic slope 1 @ — — - Idealised
£ =E1=13000kNm ot
o T 20 =
c 40t 1 5
@ e 0 @m
)
O”OIIZD { 1 1 L 1 7] 0»], - 1 1 1 1 1 L:“
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
Curvature  (m-1) curvature (m-1)
a) Positive (sagging) bending b) Negative (hogging) bending

Fig. 4 Moment-curvature relationships for example of Fig. 1
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in which V, is the shear force at the section of maximum moment and m = M, /M, in Fig. 4b.

On this basis the behaviour of elements of the structure between sections of zero moment and
adjacent sections of maximum positive or negative moment (or adjacent joints) may be modelled
in the frame analysis described subsequently as the superposition of the following effects:

1. Elastic behaviour is represented by the slope of the dashed elastic region of the idealised
moment-curvature relationship OP in positive bending EI = M,/¢,.

2. Inelastic behaviour is modelled by the horizontal dashed line PM' representing a concentrated
ideally-plastic hinge of moment capacity M, with an available rotation capacity 8,, equal to the
shaded area in Fig. 4b and given by Eqn. 6.

3. Differences in stiffness between positive and negative moment regions including cracking of
concrete adjacent to internal supports, is represented by an additional component of available
plastic rotation 0, . given approximately by the integration of a linear difference in flexural
rigidity between the positive moment EI and the cracked negative moment EI', as follows:

6, -0, [1 - (M_/M)?([E/E -1] (7)

in which 8, is the calculated elastic rotation in the negative moment région and M,, is the
moment at which cracking occurs.

4. Semi-rigid end connections are represented by an idealised elastic stiffness C in Fig. 1c and,
in cases where the connection rather than the adjacent member is the critical flexural element,
by identifying the available plastic rotation 6, of the end connection prior to the moment
falling below the design value M, as shown in this figure.

3. FRAME ANALYSIS

3.1 Mixed flexibility/sway-deflection method

The selection and development of a mixed flexibility/sway-deflection method of analysis arose

primarily from convenience in modelling elastic and inelastic behaviour, differences in negative

and positive moment characteristics and semi-rigid connections, as outlined in the previous section

[1,2]. By selecting end moments and independent sway-deflections as unknowns in frame analysis

all of these properties including the development of plastic hinges can be considered on a consistent

basis without changing the number or location of the unknowns. Additional benefits of this

approach include:

® In nonlinear analysis the use of end moments as unknowns rather than joint displacements is
likely to lead to more stable and sensitive solutions.

® Axial forces in members are determined from equilibrium considerations rather than as a
stiffness function of axial distortions.

® The unknown independent sway-deflections are all directly related to the plastic and instability
mode shapes of the structure and therefore relevant to inelastic P-A methods.

The method is described firstly in terms of the unknown end moments and then in terms of the
additional unknown, independent sway-deflections.

3.2 Solution equations for unknown end moments

In the substructure shown in Fig. 5 that is used for illustrating this approach, ij is one of the two
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sub-members representing member ijn between sections of maximum moment (or midspan if there
is no internal section of maximum moment). The matrices relating end rotations 8 to end moments
M and relative end deflections due to sway &, (all positive anti-clockwise) in ij are:

[eij] L [by3 —bZ/Gl [Mij] . [b‘i‘,/L] (8)
eji E i

-b,/6  (b/3 +f)| (M, 3, /L
in which L and EI are the length and elastic flexural rigidity of the member, b, and b, are Berry
stability functions [7] that allow for increased flexibility due to axial force and have values of unity
when second-order P-A effects are neglected and f is the non-dimensional flexibility ratio of the
end connection expressed in terms of the elastic stiffness of the connection, C in Fig. 1c :

f-E/CL (9)

The following equations are used for solving the n unknown moments at the ends of the n members
meeting at joint i in Fig. 5a (n = 4 in Fig. 5a) :

1. One equation representing equilibrium of
the moments, M at the ends of the
members meeting at joint i

Z M =M +M +M, +M_ -M (10) } ; j

in which M'; is the magnitude of any K 1
external moment applied to joint i.

2. (n-1) compatibility equations expressing
the equality of rotations at the ends of
each pair of members meeting a joint i
(three compatibility equations for joint i
in Fig. 5a representing equal rotations at
end i of members ij and ik, ij and if, and
ij and im), as follows:

6‘1 - Eik ’ 6ii = Bu and Hij - Bim (1)

a) Substructure and sub - members

in which, for example in sub-member jj,
6, =6, + 0'; + 6, and B is the
superposition of 8; (the end rotation due
to unknown end moments given by Eqn.
8), 6'ij (the end rotation due to member
loads with end moments equal to zero - Fig.5 Sub-member ij at joint 1
i.e. simply-supported) and 6, (the
required plastic rotation of a hinge if it
develops at this section, as discussed
subsequently). In considering P-A effects
the end rotations 8' may be amplified due
to axial force using Berry functions [7].

b) Sub - member ij
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The only exception to this subdivision of equilibrium and compatibility equations occurs at a fixed
support where all n equations will be compatibility equations.

3.3 Solution equations for unknown sway deflections

The independent modes of sway are treated as additional unknowns and the approach therefore
becomes a mixed method combining unknown end moments with unknown independent sway
deflections.

In a structure with j joints, m members and r constraints to global translation at support joints
(horizontal and vertical components), there are s independent components of sway deflection given
by:

s=2j-m-r (12)

A systematic approach has been developed by the author [1] for identifying the most appropriate
unknown joint translations to represent these s unknown modes of sway and their relationship to
the other joint translations. Typically there is one mode of sway representing plastic collapse of
each member and one representing each mode of sway instability. In this algorithm conventional
sway-equilibrium equations are used to solve for each unknown sway deflection and are derived
by the Principle of Virtual Displacements applied to a virtual free body displacement of the
structure in the mode of sway. These sway equilibrium equations are expressed in terms of:

® the unknown end moments in the sub-members,

® P-A terms for elastic or inelastic stability analysis in which P are the axial forces extrapolated

from the previous iteration and A are the unknown sway deflections normal to P.

3.4 Application of this frame analysis method

This mixed flexibility/sway-deflection method may be used in the same form for elastic, elastic-

plastic and elastic-plastic-instability (P-A) analyses as follows:

1. Elastic analysis (including elastic connection flexibility) : The unknown end moments are
solved using the idealised (dashed) elastic properties in Fig. 4a and the joint equilibrium and
compatibility Eqns. 10 & 11 and the unknown sway deflections using conventional sway-
equilibrium equations.

2. Elastic-plastic analysis : After the elastic analysis, plastic hinges may be introduced at critical
sections either by defining the ultimate design resistance M,, or by identifying a specified ratio
between the moment capacities at two sections and the location at which a hinge is expected
to develop. In either case the moment at the plastic hinge is then known and is replaced as
unknown by the required plastic hinge rotation 6, (forming part of Eqn.11) to accommodate
the necessary redistribution of moments, as discussed subsequently.

3. Elastic-plastic-instability and P-A analyses : The elastic-plastic analysis approach is extended
to include the Berry stability functions in Eqns. 8 & 11 and the P-A term in the sway-
equilibrium equations. The member axial force is extrapolated from the previous analysis step
introducing a limited iterative procedure.

4. REMAINING CAPACITY ASSOCIATED WITH REDUNDANCY

A significant source of reserve or remaining capacity may exist in redundant structures if they
possess sufficient ductility to redistribute moments from heavily stressed sections, at which the
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ultimate stress-block moment M, is achieved, to less heavily stressed sections as the load is

increased. The two preceding parts of this paper have described relatively simple algorithms for

determining results that are directly relevant to assessing ductility, namely:

1. The available inelastic rotation 8, at plastic hinges prior to the moment falling below the
ultimate resistance M, and made up of components due to plastic behaviour 6,, (Eqn. 6),
inelastic rotation of end connections 6, (Fig. 1c) and reduced stiffness due to cracking of
negative moment regions, 0,., (Eqn.7).

2. The required inelastic rotation 6, at the same plastic hinges from the frame analysis of the
redundant structure for specified loads and ultimate resistances M,

A general limit states criterion of ductility has been proposed [2] for determining how much
capacity exists in indeterminate structures to redistribute moments. This requires that the available
inelastic rotation 6, at each plastic hinge should be greater than the plastic rotation 8, required to
achieve the specified level of moment redistribution or hinge development:

i.e. LIMIT STATE OF DUCTILITY : (0, /v, ) > 6 (13)

in-which y_, is a partial material factor to allow for the considerable uncertainties in assessing 6,
and 6, in the range 1.5 to 3 depending on whether it is a ductile or brittle mode of failure. This
criterion may be expressed non-dimensionally in terms of rotation capacity by dividing both sides
by the elastic rotation at M, between the plastic hinge and the adjacent section of zero moment.
The criterion conforms to limit-states terminology by having a resistance on the left hand side and
an action effect on the right hand side, and may be applied to any mode of failure inhibiting
ductility for all types of structural materials.

5. EXAMPLE

Consider the three-span steel beam illustrated in Fig.1 that was originally designed as non-
composite and simply supported with cleat connections only resisting shear, but is to be considered
for upgrading into a continuous composite beam. The slab contained 0.4% longitudinal
reinforcement over the internal supports for crack control and this will be utilised. The spans are
about 2/3rds of a typical full-scale beam, but reflect the dimensions of a similar specimen tested
by the author for available plastic rotation [8]. The nominal load carrying capacity of the existing
beam is 6kN/m of permanent and 2 kN/m? of imposed load on the basis of an existing allowable
stress code for steel, assuming the compression flange is restrained against lateral buckling.

Upgrading will be achieved by cutting out slots in the concrete above the steel beam to accomodate
a partial shear connection capable of mobilising 50% of the ultimate slab force in sagging bending
and the full effective area of reinforcement over the internal supports (500 mm?). Each beam will
be propped at midspan during casting of the grout around the shear connectors and welding of the
end plate to the bottom flange of the steel beam and adjacent web as shown in Fig. 1b. This end
plate provides a semi-rigid end connection with moment resistance made up of the reinforcement
in tension and the bottom flange in compression when the prop is released [8].

The evaluation of the enhanced load-carrying capacity at the ultimate flexural limit state is

undertaken as follows:

® The properties of rows 1 to 4 of Table 2 are determined using the moment-curvature results
in Fig. 4 allowing for interactive plastic local and lateral buckling in negative bending and
concrete crushing in positive bending.
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The properties in rows 5 and 6 of this table are calculated from these values using Eqns. 7 and
6 respectively.

The elastic flexibility ratio f of the end connection (row 7) is determined from experimental
results (Fig. 1¢) using Eqn.9 : no significant nonlinear component of connection rotation was
apparent at the level of moment developed in the adjacent member, so 6, = O in this case.
An ultimate load capacity of the three-span beam of 41.8 kN/m associated with plastic hinges
at the internal supports and midspan region of the outside spans, is determined from the frame
analysis, in two steps (elastic and plastic) using 6 sub-members (Fig. 1a) and 12 unknown end
moments and 3 unknown sway deflections. This represents a more than three-fold increase
in the existing imposed load capacity of this beam.

Required plastic hinge rotations in the outside spans adjacent to the internal supports 6, =
0.0135 rad. are obtained from the frame analysis and are used as the action effect in Eqn. 13
to check the ductility involved in plastic moment redistribution. A partial material factor of
Yma = 1.5 is adopted for ductile failure due to local and lateral buckling and the resistance
effect is the available plastic rotation 6, = 0.0216 rad. made up of 8, (equal to zero), 6, and
8,, (from Table 2, rows 5 and 6).

Limit States Criterion (Egn.13) : (0.0216 / 1.5 > 0.0135)

The available plastic rotation 6, compares favourably with tests on composite beams with similar

semi-rigid end connections [8].

This excellent ductility is explained in this reference by the

location of the plastic neutral axis being close to the compression flange which severely inhibits

local and lateral buckling.

Moment-curvature properties (Fig.4) : +ve Moment Region | -ve Moment Region
1. Elastic flexural rigidity EI (kNm?) 13000 13000 (+ve moment)
2. Ultimate design resistance M, (kNm) 152 76 (semi-rigid)
3. Maximum moment M, (kNm) 200 88
4. Falling branch curvature ¢'_ (m™) 0.56
Assessed properties:
5. Plastic rotation (Concrete cracking) N/A 0.0017
0,.. Eqn.7 (rad.)
6. Plastic rotation (yielding) 8, Eqn. 6 N/A 0.0199
(rad.)
Experimentally measured properties:
7. Elastic flexibility ratio of end
connection f = EI/CL (Eqn.9) N/A 0.05

Table 2. Properties required for frame analysis

6. CONCLUSIONS

A significant source of reserve capacity exists in many structures if the implications of inelastic
material behaviour, continuity and plastic redistribution of moments as well as the ductility
requirements, can be assessed analytically without resorting to finite elements models that require
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numerous elements both across the section of the members and along their length. A twin
algorithm is illustrated in this paper for assessing firstly the inelastic section properties of two sub-
members per frame member, and secondly the elastic-plastic-instability analysis of frames
comprised of these sub-members. These analyses also identify the available and required plastic
rotations that are used to check adequate ductility using a simple limit states criterion involving
material plasticity, inelastic properties of end connections and differing flexural rigidities in
positive and negative bending.
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SUMMARY

This paper deals with the way in which an existing and so deteriorated structure of sheetpiling can be
evaluated. Applying more advanced structural methods than the ones used in the design stage will
uncover hidden structural reserves and together with the once more adjusted safety margin it may give
a new residual lifetime. To stretch this 'life after death’ a range of possible maintenance actions, inclusive
‘doing nothing’, should be weighted against cost and ectended lifetime.

RESUME
Cet article traite de la vérification de structures existantes comportant des réseaux de palplanches
dégradés. Il est possible de mobiliser des réserves latentes de résistance, donnant ainsi A ces

constructions une longévité supplémentaire, par I'utilisation de méthodes de calcul plus affinées,
contrairement aux hypothéses de calcul et aux coefficients de sécurité admis a I'origine. Cette
prolongation de durée de vie devrait résulter de la comparaison de mesures d’entretien possibles, y
compris de ne rien faire, avec les colts correspondants et le supplément le longévité ainsi acquis.

ZUSAMMENFASSUNG

Der Beitrag behandelt die Uberpriifung bestehender, verfallener Spundwandskonstruktionen. Werden
gegenuber den urspringlichen Berechnungsannahmen und Sicherheitsbeiwerten verfeinerte Nach-
weisverfahren angewendet, kdnnen versteckte Tragreserven fir eine neue Restlebensdauer mobilisiert
werden. Um sie zu verldngern, sollten mégliche Unterhaltsmassnahmen (entschliesslich der Option der
Untétigkeit) gegen die Kosten und die verlingerte Lebensdauer abgewogen werden.




120 IS THERE STILL LIFE AFTER THE LIFETIME OF SHEETPILING

1. INTRODUCTION

All civil engineéring structures deteriorate, so don’t trust the one who
tries to sell you a ‘maintenance-free’ structure.

Only the scale of time in which the ageing-processes takes place can vary
and so can save or foolish us.

The ancient pyramides, though still in function if we have not robbed them,
suffer from a substantial surface-damage when given a nearby view.

For the more ordinairy structures of our times we don‘t have to wait so
long.

Civil engineering structures like roads have the shortest lifecycle (15 -
25 year), primairy caused by the wear and tear of the traffic, but speeded
up by the ever growing intensity and a bad quality of subsoil.

Sheetpiling-structures, allthough designed for a fifty years or more, often
appeares to have a much shorter lifetime (10 - 25 year), because of the
much more aggressive environment.

Corrosion-velocities of 0.25 mm per year with maxima in the order of 0.5 mm
are measured, not only along the seashore but also for inland polluted
canals.

When design or building-failures makes airsupply to the backside of the
sheetpiling possible, these velocities will nearly double.

So even heavy walls with a steel thickness of 10 mm or more are in that
case of ‘a short breath’.

Most of our civil engineering structures have a protection layer on the
actual bearing construction. For example a paint-coating on a steel bridge,
a concrete cover on buildings or the armour-blocks on the slope of a dike.
So degradation is from a so called ’‘two-stage-mechanism’, in which the
damage of the first stage is a warning-bell for the starting attack of the
second underlaying structural more essential part.

In contrary a sheet-piling structure most of the time is from the type
‘one-stage-mechanism’, that is degradation (corrosion) allmost starts from
the very early beginning.

It‘s a lucky circumstance that in contrast with others, this degradation
(corrosion) is rather easy to measure by way of ultrasonic waves or more
destructive by drilling or oxygen burning followed by a normal thickness
measurement.

So on the side of ‘the assessment of the condition-parameters’ there are
less problems than on the side of ‘the assessment of structural (reserve)
capacity’ but above all ‘the adjustment of acceptable risk’!

Fig.l Structural reserve and acceptable risk
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2. THE STANDARD DESIGN METHODS

In normal practice a sheetpiling wall is at best designed as a two-dimen-
sional structure, which has an infinite extent in the third dimension.

The .variation in this third dimension, with respect to loads, geometry,
soil and construction properties is considered to be small or to be brought
into account in the variation of the other two dimensions.

Even local loads or anchors are translated in a kind of equivalent line~
loads, so the third dimension can be neglected.

For the two-dimensional computation of sheetpiling walls there are a few
analytical or grafical methods available, like Rowe, Brinch Hansen, Blum.
Because the mechanical problem is in fact staticaly indetermined, these
methods give approximate solutions under certain assumptions like infinite
rigid piling and only hydrostatic active or passive earth pressure.

More recently developed computer programs (like the dutch programs MSHEET
or DAMWAND/3) do take into account the stiffness of the sheetpiling and the
stiffness of the soil by bi-linear springs (dependent on the horizontal
displacement they come at last in the active or passive plastic stage).

The input for these computations is in general as follows:

Given or assumed by experience: - GEOMETRY (H,h,a,f)
- SOIL PROPERTIES (é,c,v,6)
- LOADINGS (q,F)

Estimated by rules of thumb : - SHEETPILING (1,1I)

Than computation results in : - BENDING MOMENTS M(z)
- SHEERFORCES D(z)

With the admissible stresses : - MODULUS OF RESISTANCE (W min.)
- THICKNESS OF BODY (t min.)

If the estimated profile doesn’‘t fit, design is repeated with a better one.

losses ->
e e —_

|'”

<- residue

Fig.2 General sheetpiling wall Fig.3 General corrosion profile

The actual sheetpiling profiles are mostly heavier than strictly needed
with respect to the computation.

If extensive corrosion is expected the designer will take a few millimeters
more (if he is aware of the phenomenon and in the possition to do so!).

But in fact at that moment he has first to answer the difficult question:

What could and should be the minimum thickness of flange and body at
the end of the designlife in relation to the function of the sheet-
piling, so the consequencies of failure, the influence of inspection
on this, the ability of a new (more plastic) equilibrium, etc.

If ram-ability of the sheetpiling in that specific soil is expected to be a
problem, this can result in a heavier profile too.

The sheetpiling that finally will be found at location still can differ
from the one selected above, because of delivery problems, sheetpiles in
stock of the contractor, problems with achieving the right depth etc.

This ‘as build’ data should be saved well in a kind of birth-register
because it is of great importance for the reassesment of the structure!
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3. THE DEGENERATION PROCES

In the case of sheetpiling composed of steel profiles like Larssen, Hoesch
etc. the degeneration process is mainly ordinairy corrosion. Besides steel
there are two elements needed for the initiation and the continuation of
this corrosion process, namely oxygin and water.

So in general a vertical corrosion profile is found with two maxima, one
just beneath the low water level and one in the splash zone (Fig.3).

The first is limited by the amount of oxygin, and the other by the amount
of water.

Also in horizontal direction there will be found a wide spread in loss of
material.

The first fluctuation is measured within one single plane of a sheetpile
and may be in the order of 100 mm due to local steel properties.

The next fluctuation is found between flanges, bodies and edges. Especially
for cold-rolled profiles at the deformed outward corners, the grid is ’‘open
for corrosion’, so warm-rolled profiles are prefered in cases of extensive
attack.

Over the sheetpiling wall there may be spots working like anodes and others
like cathodes, caused by the metal composition, deformations and soil
properties. The addition of copper and other more precious metals ment to
prevent or to decrease corrosion, after some times proves to intensify this
anodic and cathodic spots perhaps due to unequal alloys.

The largest fluctuation in horizontal direction may have its origin in the
location or use of the sheetpiling wall. Tidal streams in combination with
fresh water tonques, manoeuvring ships, etc. may cause a tendensy to vary
over distances in the order of a 100 meters.

It will be clear that there is a discision problem. On the one hand in the
case of too little information (thickness measurements) it is impossible to
make distiction between the sources of above mentioned fluctuations.

So this ‘all on one heap’ approach will lead to an overestimated loss of
thickness and so to an underestimation of the remaining strength.

At the other side more information will ask for money, but may lead to a
better understanding and probable to a longer residual service life.

The smallest fluctuations over one plane are just of interest for the
moment that minimum thickness will become zero and so loss of soil material
may start, because strength will depend on the mean value.

The largest fluctuation in the order of the construction length, sometimes
will lead to a seperate consideration and perhaps measurements for parts of
the wall.

So in that case only the spread in the midrange-variations remains of
direct interest for the reassesment of sufficient strength.

Besides the decreasing thickness (that influences strength), the geometry
and the loads may change in time too.

Geometry may differ from design because of dredging, scouring, additions,
so in case of doubt measurements like sounding the bottum can give insight.
Keep in mind taht the computation and so the behaviour of sheetpiling is
more sensitive to the retaining height H than to the thickness t!

Loads may differ from design because the destination of the adjacent site
may be different (gravel storage is not covered by the often arbitrairy
chosen one ton per sgquare meter!).

Allthough soil properties will hardly change, original design assumptions
may be of an arbitrary or global level. Supplementary measurements may give
a better insight in the present situation.

After the state of the sheetpiling wall is well mapped, the evaluation will
finally start.
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4. THE REASSESMENT OF SHEETPILING WALLS

4.1 The general concept

In principal during the design stage of a structure there ought to be made
a weighing between the initial investment plus expected maintenance cost of
this new structure on the one hand versus the risc involved with the loss
of functions on the other hand and so looking for the total cost optimum in
the life-cycle.

Allthough this is a sound economic concept it is hardly been done.

As in most of the cases there are design codes or at least practical rules
that relieves the designer of this difficult economic approach.

These codes of practice prescribes certain safety-margins that covers the
above mentioned balance ‘on the safe side‘’, that is a rather 1low risc
gained by a little bit more investment (Fig.4).

The consequencies of this practical concept is that during lifetime the
risc won‘t dominate so fast and we may say ‘nature is mild’!

These safety-margins are historically grown and reflects the level of pros-
perity and the aversion of society against structural failure, because this
risc is extremely low in comparison with others [1].

For existing structures things have changed even without deterioration!

Design values for geometry, loads, soil and material properties may be
known better by measurements, deteriorated construction properties are more
scattered than before, consequencies of failure can be better estimated but
in comparison with design, cost of adjustment are now of higher order.

Yet for existing structures the engineer still tries to hide behind design
codes, because that is the easiest and common way but unfortunately in many
cases no more practicable.

As special codes or rules for existing structures are hardly available at
this moment, every engineer has to do this unknown exercition himself.

First he tries to uncover all hidden structural reserves. Material reserves
like differences between ‘as build’ and ‘as needed’ profiles or mechanical
reserves applying more advanced models. But if deterioration is extensive
this won’t be enough.

Then trying to exploit reliability-reserves, he will be confrontated with
the basic questions about safety-margins and acceptable reliability-levels
for existing structures in relation with design-values.

The considerations may be:

- Well known loads and resistance by way of measurements may lead to
less variation so to a smaller safety-margin with equal probability
of failure (Fig.6)

- A shorter residual lifetime may lead to lower extreme loads (if time
dependend) and less loss of material so to smaller safety-margins,
ending up with a margin for temporary sheetpilings (if known!).

N More costly maintenance measures together with better known failure
consequencies may lead to a higher probability of failure (Fig.5) so
to a smaller safety-margin but should not exceed other social riscs.
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4.2 The evaluation of a sheetpiling wall

The reassesment of a sheetpiling wall follows the above given concept.

First the engineer tries to interprete all the thickness measurements in
terms of a ‘representative value’ at the different levels. For instance
using the 5%-value of the normal probability function. So overthickness
given in design or construction stage will be included. With this new
adjusted values and all others like in design he tries to passes through
the ‘design-loop’ with the ordinairy two-dimensional computation.

If this still doesn’t satisfy the present-day design rules, the more hidden
and so less computable structural reserves will be taken into account.

In vertical direction there may be a certain redistribution of moments, if
a more plastic behaviour of the sheetpiling in the computation is possible.
There are computer programs written for the design of concrete retaining
walls, that can handle yielding moments (for example the dutch program
DIEPWAND/1). Yet reduction of the fieldmoment leads to increasing (accepta-
ble?) moments and forces about tie level and the fixed end (Fig.7).

Also in horizontal direction there is a possibility of a certain redistri-
bution between the individual sheetpiles.

Less corroded piles will take over a part of the load on heavy attacked
sheetpiles. In fact in the third dimension the wall can be seen as a struc-
ture with a certain amount of parallel elements. What exactly will be the
zone to be mobilized by a weak pile depends on the given local situation.
The stiffness of the wale, the geometry and the soilproperties play an
important role in this.

A three dimensional computation (with the dutch program DIANA) has proved
that in particular for the case of an anchored sheetpiling this horizontal
redistribution may be considarable (Fig.8) [2].

Though this mobilized zone is in the order of the retaining height of the
sheetpiling it has not been possible yet to derive a general rule of thumb.

The expectation is that within this 2zone short and midrange fluctuations
may be ignored and only the mean value of the thickness have to be taken
into account.

So in opposite if combined measurements are always done for such a to be
mobilized zone, the mean value of that thickness may be of direct use in
the normal two-dimensional computation.
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Fig.7 Redistribution of Fig.8 A 3-dimensional FEM-model
bending moments of a sheetpiling wall.
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Now a lot more hidden structural capacity is brought into sight it is pos-
sible that the sheetpiling wall satisfies the present-day (!) design rules.

If not it has been argued that for existing structures and time passes by
safety-margins may decrease with relation to the original design-values.
The arguments already given above are shortly:

1. A better knowledge about strength and loads so less uncertainty.
2. A shorter residual lifetime so less extreme loads and losses.

3. More costly (maintenance) measures i.r.t. design changes.

4. Better known failure consequencies i.r.t. design starting-points.

Quantifying these arguments leads to:

ad.1 Main contributions to the failure of a sheetpiling are given by the
soil properties (¢,c), the retaining height (H), the thickness of
the sheetpiles (t) and if applied the anchors.
Measurements may give the actual coéfficient of variation (0.1-0.2),
so with reliability theory it may be possible to check if an other
safety-margin may be applied (Fig.6). But since design was based on
traditional building codes, first a calibration is needed to know
the hidden starting-points in terms of coé&fficients of variation.

ad.2 As sheetpilings usually are not designed for time varying loads, the
only benefit could be the time dependend loss of material. But again
in the traditional design it is not clear which part of the total
safety margin was reserved for this.

ad.3 In general maintenance measures are from a higher order (factor 10)
in relation with design measures having the same effect on risc.
So the new cost optimum will result in an higher probability of
failure (factor 5) and so in a reduced safety-margin (factor 1.1).

ad.4 If failure consequencies are from a lower order (factor 10), the
probability of failure may rise with the same magnitude for constant
risk. This may lead to a reduced safety-margin (factor 1.2). But
again the original starting-points are not known.

Although tendencies are clear, the traditional safety-margin used like a
‘dust-bin’ makes it hard to pay the individual aspects.

Only calibration of traditional designs based on probabilistic methods
taking into account al relevant parameters and used mechanical model may
give better insight! In Holland this study is now underway [3,4].

So in the meantime a more arbitrairy reduction factor up till 1.3 1is used
now in practice, mainly affected by the consequencies of failure [5].
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5. STRETCHING THE REMAINING LIFETIME

Now it has been proven by measurements and calculations that there is still
any ‘life after death’, the responsible authority should be informed about
the best way to manage that structure in the future. So the next step is
the weighing of alternative scenarios.

There are a few technical possibilities to stretch the residual lifetime of
sheetpiling by applying a (combination of) preventive maintenance action(s)
like the wellding of plates or beams to seal and strengthen the sheetpiles,
painting and cathodic protection to slow down the corrosion proces, ground-
injection to stop losses of soil etc.

Each alternative has his own cost and expected stretch of lifetime.

Cost may be the direct cost of the maintenance action plus cost ahead to
sustain or maintain this action.

Cost also contains the risk involved with this solution, by which risk is
the probability times the consequences of function loss (inserviceability
or failure). On its turn this probability is dependent on the frequency of
inspection, which again represents cost.

On the other hand the expected lifetime is inflenced by these inspection
and maintenance actions too.

It is up to the engineer to bring all this in the right weighing within one
scenario and next to balance these scenarios against the zero option ‘doing
nothing’, so replacement after certain time [6].

Now this complex desicion may be sustained by some analytical or Markovian
models which brings into account cost, lifetime and interactions [7,8].

Nevertheless this rational approach there are often practical restrictions
like budget-shortage and traditional philosophies that dictates the real
life, especially when no one is responsible for the total life-cycle cost!
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SUMMARY
Existing older structures are sometimes hard to evaluate, due to certain limitations in identifying their
physical properties. It is shown, however, that the application of known forces at the nodes, together with
the measurement of the associated displacements, leads to the retrieval of the physical characteristics
of the structure, namely the stiffness matrix.

RESUME

Il est parfois difficile d'évaluer les anciennes structures, en raison de certaines restrictions a identifier leurs
caractéristiques physiques. Il apparait toutefois que I'utilisation de forces connues aux noeuds, combinée
a la mesure des déplacements correspondants, permet de de déterminer les caractéristiques physiques
de la structure, notamment la matrice de raidissement.

ZUSAMMENFASSUNG

Die Mdglichkeiten zur Eruierung der physikalischen Eigenschaften bestehender alter Tragwerke sind
naturgemass beschrdnkt. Wie jedoch gezeigt wird, kann aus der Applikation bekannter Krafte an den
Knoten und Messung der zugehdrigen Verschiebungen die Steifigkeitsmatrix des Tragwerks gewonnen
werden.
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1. INTRODUCTION

Environmental attacks, corrosion and prolonged use of existing structures make their structural
evaluation rather limited because their members’ properties may not conform to the design values.
Hence, classical methods of structural analysis become inadequate to tackle and overcome the
difficulty involved. Therefore, it is both necessary and prudent to improve such methods. In this
study, system identification techniques are introduced. In such techniques, the structural stiffness
is recovered from known forces and known associated displacements. Once the stiffness matrix of
a structure is determined, the internal design forces due to any loading condition can readily be
obtained.

2. STATEMENT OF THE PROBLEM AND THE SOLUTION

Present methods of structural analysis are primarily based upon the stiffness methods of analysis
in which the input is a family of stiffness coefficients presented in a matrix form and the loading
conditions entered in a vector form. The unknowns are displacements and subsequently internal
forces. The standard mathematical representation of these three variables is:

{A - KW (1)

in which
F is an Nx1 loading vector
K is an NxN stiffness matrix
x is an Nx1 system displacement vector
N is the number of degrees of freedom

In the traditional approach to structural analysis, {x} is the unknown, whereas in this study the
unknowns are the elements of K , which in some sense represent the characteristics of the
structure. A process that has been developed for other engineering disciplines, but which is being
introduced in structural engineering, is generically referred to as "System Identification". It is an
attractive procedure to formulate and improve mathematical models.

To illustrate the derivation of the stiffness of the structure in terms of the applied force vector and
the associated and measured displacements, the following situation is used:

—F —F2
-—->X' ——+XZ

§ K, Kz ks

Figure 1

Figure 1 shows a two-degree of freedom system in which two lumped masses are attached to three
linear springs with stiffnesses k,, k,, k; .
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The force displacement relation for this situation is written in the following form:
{,:1} _ k+k -k {X1} @)
F2 -k kik | |%
For an exact solution, the following statement holds true, i.e.
{,:1} k1 +k2 ‘kz {X1 } {0} (3)
F -k k||| |0
However, when this is not the case equation error vectors can be defined as:
Bl R %

-k Ktk
To obtain an error function the right hand side of equation (4) is squared and the result is then
summed over the number of degrees of freedom. For the present case, the squared error function
becomes

- BB (5)

The problem now is reduced to that of minimizing the error function with respect to the unknown
stiffnesses. This is achieved by taking the derivative of E? with respect to each unknown element
stiffness and setting it equal to zero. This leads to a set of linear equations equal in number to the
number of elements.

Taking the first derivative of equation (5) with respectto k;, k, and k; vyields the following set
of equations written in matrix form

X
‘ Fi-(h+ kX +lox | [0 ©)
X=X —XtX% -
Fo+ kX - (I + k)X, 0
0 X,
which may be further reduced to
X, 0 k, X, 0
Xy X% 0 F (7)
Xj=Xp XX kot = X-% -X+X%
0 -x+x X F,
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Defining a Jacobian matrix [J] as follows

9E, OE, OF,
- :k, ok, ok, )

E, 9E, 9E,

ok, ok, ok

It is readily noticed that equation (7) can be written in the following form

[T[V{K} - [AT{F} ©)

From which {k} can be solved for directly

{K = (A7 AT {F (10)

The following example illustrates the solution. In this example a determinate truss configuration is
chosen for simplicity in which displacements were actually computed using the standard Direct
Stiffness Method. This is a numerical experiment meant to test the proposed method for the retrieval
of the structure’s unknown element stiffnesses. It must be mentioned, however, that for a
determinate truss no such elaborate procedure is necessary because the problem in such a case
is reduced to the solution of a system of linear equation.

For an indeterminate truss the inverse of [J]7[J] upon which the solution hinges is not
guaranteed. To circumvent such a situation and to assure the existence of a solution two or more

loading cases must be used and the squared error function given in equation (5) can be formally
written as

NLC N N 11
E2- % XZ|F -2 Kyx/ (11)

n=-1 /=1 =1

inwhich N is the number of degrees of freedom and NLC is the number of loading conditions.

From which the solution for the element stiffness may be written as

LC NLC
{k}-:g[mn’uu]“ PAUMGE 16 (12)

3. EXAMPLE

The determinate truss shown in figure 2 is used to test the
procedure. The truss is composed of 3 elements of cross <E\ , 2'] m ! _j /
sectional area equal to 25 cm®. The modulus of elasticity !

is 200 x 108 _Ig_Vz_ . The truss has 3 unrestrained degrees
m
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of freedom with the following reduced stiffness matrix derived with the standard Direct Stiffness
Method for pin jointed trusses and written in terms of the unknown element stiffnesses.

0.36k,+0.36k,  0.48k,-0.48k,  -0.36k,
[K] - | 0.48k,-0.48k,  0.64k,+0.64k,  0.48k,
-0.36k, 0.48k, k; +0.36Kk,

The applied loads are written in the following standard load vector

3
F-1-6; kKN
5

Therefore the error vector of equation can be written as

E,)] (F,] [0.36k,+0.36k, 0.48k,-0.48k,  -0.36k, |[x,
E,} - {F,}-|0.48k -0.48k, 0.64k +0.64k, 048k, |{x,
E| |R ~0.36k, 0.48k, ky+0.36k, | | x,

From which the following Jacobian matrix can readily be deduced

0.36x,+0.48x,  0.36x,-0.48x,-0.36x, O
[J] - | 0.48x,+0.64x, -0.48x,+0.64x,+0.48x, O
0 -0.36x, +0.48x,+0.36x, X,

Upon performing the operation as defined by the derived formula (10) the element stiffness are
retrievedie. Kk = k, - 28571.4 KN ang k; - 23809.5 KN which are exactly the same as can
be computed using EA/L . It mué? be reiterated that the disﬁacements X;,X, and x; supposed
to measured, were in this numerical experiment computed using standard computer programs.
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Strength Evaluation of Existing Masonry Structures
Evaluation de la résistance de constructions en brique
Festigkeitsermittlung fir bestehende Mauerwerksbauten
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SUMMARY

According to experimental data and theoretical analysis, the relationship between strength and rigidity,
rigidity deterioration, accumulated deformation energy in earthquake damage of masonry structures are
studied. Methods are suggested that show how to evaluate the strength of masonry structures in
serviceability state, and how to predict and evaluate the damage degree of masonry structures by
earthquakes.

RESUME

Sur la base de données d’'essai et d'analyses théoriques, I'article étudie la relation entre la résistance de
constructions en brique et la rigidité, la détérioration de rigidité, I'énergie de déformation accumulée lors
de séismes. Des méthodes sont proposées pour |I'évaluation de la résistance et de |'aptitude au service
de constructions en briques, ainsi que pour I'évaluation de dommages possibles lors de séismes.

ZUSAMMENFASSUNG

Anhand experimenteller Ergebnisse und theoretischer Uberlegungen, wird der Zusammenhang zwischen
Festigkeit und Steifigkeit sowie des Steifigkeitsabfalls mit der kumulierten Verformungsenergie bei
Erdbebenschdden an Mauerwerksbauten studiert. Es werden Verfahren vorgeschlagen, wie aus dem
Gebrauchsverhalten von Mauerwerk auf seine Robustheit geschlossen und wie der Schadigungsgrad im
Erdbebenfall vorhergesagt und evaluiert werden kann.
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1. INTRODUCTION

As for existing masonry structures,it is known that many of them are in illness state in
their serviceability life time,slightly or seriously. In fact,suffering various unfavourable
factors in construction and application, such as dispersity of masonry material,
temperature cracks etc. ,masonry structures are in insufficient strength or strength deteri-
oration state which is one of illness state concerned seriously. But the problem how to pre-
cisely examine the real serviceability state of masonry structures have not been solved for
a long time. In this paper,mothod solving this problem was investigated,and the mothod
developed from experimental information and theoretical analysis.

2. STRENGTH AND RIGIDITY

2.1 Compressive strength and rigidity

Compressive stress—strain curve of masonry envalope can be expressed[l][Z]:

0= fa(l — e—a") @ -1

where, 0 and ¢ are compressive stress and strain respectively. f, is the compressive
strength of masonry envalope, a is a coefficient. Therefore, elastic modulus of masonry
envalope can be obtained;

= 10_' — 3/2 —
E = de le=0 - afm (2 2)

Based on experimental information[ 1],the statistical value of a is 370. As we know ,the
(lateral)rigidity K is equal to the ratio of lateral load to displacement;

1 1 Et
e = 2 —3
73 RE 73 1. 2k R, n
1281 T GA B T 0.3Em B’ TG

1
K_E_

Substituting equation (2 — 2)into formula (2 — 3), the ralation bettween rigidity and
compressive strength can be got.

af¥t

K =— 3
(3)[(3)2 + 4]

@2 — 41

in which,t,h and b are the thickness,height and width of masonry wall respectively.

2. 2 Shear strength and rigidity

Researching the hysteresis characteristic of masonry wall[ 1] [2][ 3], the statistical
skeleton curve of hysteresis loops are shown in Figure 1,it is indicated that in the initial
stage the load —displacement relationship is linear and after cracking the displacement in-
creases significantly with appeared and developed cross cracks. Defined P, as the ultimate
load, Au as the displacement in regard to p,,and o. is the normal stress of masonry wall.
The skeleton curve can be expressed as follow .

ERPYPAVAY Ay —
(D P/P.=2.62 (0<P/P.<0.78,0 < =< 0.3) (2— 5
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A A

2> P/Pu=0.69+0.315 (0.78<P/P,,<1;0.3<E<1)
2 — 6)
(3) p/P, =1+ 0.44(1 — 0. 0850,) — 0.44(1 — 0. 0850.) ZAz_t
@2 -7
P/P. <11 <L <0.3)
(4) P/P, = 0.55 4+ 0. 040, 2 — 8)
From formula(2—5) ,the rigidify K can be written )
as follow also. &
o,
P P £.8b <
K=Z=2'6Au:2'6—A_u(2—9) —
w
where, f, is the shear strength of masonry wall. Ac- o
cording statistical analysis, the ralationship bettween
f, and Au is;. o

2. 3.0 A/Au
Au = (3 4+ 4.5£,)Y2/(0. 45 + 0. 050.) 0 1.0 2.0
2 —10) Fig. 1 Skeleton curve of
masonry wall

Thus,

_ (1.17 + 0. 130) f.tb

K h— (3 + 4. va)l/z (2 - 11)

Equation (2 — 11) illustrates the ralationship bettween the rigidity K and the shear
strength f,.

2. 3 Rigidity deterioration

Looking Fig. 1 again,it can be found that as increasing of displacement the stiffness of
masonry wall decrease obviously. The stiffness K' at any displacement many be calculated
from the following empirical formula.

K = 0.0017(A/H)*"K (AN/H > 1/1000) 2—12)

In other word, formula(2— 12)show the deteriration of rigidity as increasing of displace-
ment /\ under later load.

3. ACCUMMLATED DEFORMATION ENERGY AND DAMAGE INDEX

3.1 1Input energy of perunit mass

The problem related to the strength and stiffness of masonry wall in serviceability state
are discussed above. In order to predict the damage degree of masonry structure,
accumulated deformation energy should be stuided,because any damage by earthquake is
the result of accumulated deformation in wvabration process Assume that w is the
accumulated deformation energy(*®l. As for one —freedom system,in general,

W — —é—me,,m 3 —1
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where , X.mis the maximum value of elastic vabration velocity of system,and,
Xemaz = ?}maz/zl/z (3 - 2)

Ymax iS the maxiumum velocity of earth’s surface vabration. Substitute formula (3 — 2)
into formula (3—1),then,

W = %m;}zw = mH, (3 — 4)

E, can be defined as the input energy of perunit mass. From statitical analysis,E, can be
formulated as follow

B, — %y,z,,, — exp(l. 3851 — 6. 39) (3 — 5)

Where, I is the earthquake intensity.

3. 2 Damage index of masonry structure

The vabration equilibrium equation of ith storey for multistorey masonry structures can
be expressed (damp is neglected) ;

L] n—1 i
Ma( D85+ §) My (D35 4 §) + weeees + m( QD + ) = fi(z)
j=1 =1 j=1
(3 — 6)

Multiplying the equation by x,dt=dx;,and integralling the equation in the whole vabra-
tion time,thus

FCO MY ) dn + 2D mgdt = [fi(x)xdt 3 -7
k=i j=1 k=i

It is noted that.
fxidz; = fxidx; = fr;de; = fzidx; = 0
fyzidt = [z dzx;
x = hax, /Iy

therefore,

L] . » . . L] }
wi = [fi(zddzn = Emkjydx.- = kaj' %xldx.» = Em; iEo 3 — 8
k=1 k=i

k=1

h;,h is the height of storey.

Assume that n, and n are the ratio of ultimate deformation energy to elastic deformation
energy and the ratio of deformation energy to elastic deformation energy respectively.
According to experimental date,n, is about 12 refer to masonry structures. 1; can be wrote
as follow;
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Nk Nk '
m=Wi/Wy = 2D m 32Ee/PoNer = 2K, 3ym 7oBo/ (f.)* (3 — 9

k=i

v is a statitical factor which is equal to 0. 78. Let B express the damage index of masonry
structures by earthquake,then,

W-—w, n—1

B=WP_W1_77?“‘1 (3 — 10

From experimental and earthquake damage information[ 2, 3,6 ],it can be defined that.

£=1.0 partly collapse
0.90<<p<<1.0 serious damage
0.50 <<p << 0.90 moderate damage
0.15<<p<C0.50 slight damage
0<<p<<0.15 intact state

4. APPLICATION

4.1 Application

Up to now, we discussed the strength, rigidity and accumulated deformation energy. In
this section, we will discuss how to evalute the strength of masonry structures in service.
Serviceability state and how to predict the damage of masonry structure by earthquake.
As we know that structure’s natrual frequency and mode of vabration can be measured
and analyzed from ambient vabration. So the rigidity of structures can be identified using
the date of natrual frequency , mode of vabration and equibibrium equation of vabration.
Since the rigidity can be indentified,substituting the rigidity into formulae (2—4)and(2
—11). Using formulae (2— 1)and(2— 3) ,the compressive and shear strength of mason-
ry structures can be evaluted. On the basis of these results, it can be found that which
storey is the weak part in serviceabilty state or under earthquake circumstance. Applying
(3—9)and (3—10),it can be pridicted that which degree of damage will be caused
under grant earthquake intensity.

4. 2 Example

A multistorey masonry structure. Seven storey ,the height of storey is 2800mm. it’s plane
figure refering to Fig2. The thickness of outer horizatal wall is 490mm, inter horizatal
wall are 370mm (the first floor) and 240mm (from the second to the seventh). The
thickness of outer transerve wall is 370mm. The results of measured date from ambient
vabration are show in table 1. Using the date of table 1 and the method discussed above.
The distribution of rigidity ,strength and damage index under seven degree of earthquake
intersity etc are caculated and shown in table 2.
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Table 1. The results of ambient vabration

Floor weight (kg) Ai(mm) K,(KN/m)
1 6. 928X 10° 0.019 8.75X108
2 6. 566X 10° 0.038 8.53X10°
3 6. 566X 10° 0. 061 6. 74108
4 6. 566 10° 0.16 1. 42X 10° O — 7
5 6. 566 10° 0.18 55. 43X 10°®
6 6. 566X 10° 0. 20 33.50X10¢
7 4.156X10°% 0. 26 1. 49X 108
nate frenquence f,=2. 832HZ Fig. 2 Plane figure of example
Table 2 The results of evalution
Compressive shear compressive earthquake | Damage
. Ki(KN/m) strength (MP,) |strength(MP,)| stress(MP,) shear stress index
1 8.75X 108 2.80 0.47 0. 47 0.15 0
2 8.53X10° 3.62 0. 599 0. 55 0.29 0. 44
3 6. 74X 10°® 3.10 0. 440 0. 46 0. 26 0.13
4 1. 42X 108 1. 10 0. 076 0. 36 0.23 7.10
5 5.43X10° 2.68 0. 332 0. 27 0.18 0.20
6 3.50X108 2. 00 0. 200 0.19 0.122 0. 30
7 1. 44X 108 1. 13 0. 092 0. 09 0. 05 0. 26
note; 1. earthquake intensity is seven degree.
2. earthquake shear stress caculated by equivalent base shear method.
t~ =
B g
© 5 g
\ Z 3 & 2
w4l S £ &
\ 2 5 w
g w1\ 5B S S
g \ g & 8 % G
% oo | s £ &
\ v O i
ST !
\ 1 |
Ny ;
|
L 1 i " -
0 1 2 3 4.0MP» 0. 5(MP,)

stress: and strength
Fig. 3 Distribution of compressive

strength and stress

stress and strength
Fig. 4 Distribution of shear
strength and stress
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6. CONCLUSION AND DISCUSSION

@ Above,the strength,the rigidity,the deformation energy and the damage index of
masonry structure are studied. Ralationship bettween them are given also.

(@ Using the ralationship and date from ambient vabration, the serviceiability state of
existing masonry structures can be asserted,and the damage index by earthquake can be
predict also.

(® Based on experimental statisfical information and structural dynamic analysis. The
method reflect every aspect involved in masonry structure and suggest a way to examine
the existing masonry structure comprehensively.

@ Example show that the compressive strength,the shear strength and the damage in-
dex evaluted by the mathod are in good agreement.

® Examples show that the mathod are feasible. The assertment results of existing ma-
sonry structure are reliability.

® Further investigation should be carried and make the mothod more perfecter.
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SUMMARY
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A new method to evaluate stress in tensile reinforcement and compressed concrete of reinforced concrete
members is proposed. The method is based on principles of crack propagation theory in brittle bodies. The
stresses are estimated by taking into account external force action and the parameters of cracks.

RESUME

L'article propose une méthode précise de calcul des contraintes d'armature longitudinale tendue et du
béton comprimé dans des éléments en béton armé. On détermine les contraintes sur la base des efforts
externes et des paramétres de la fissure normale. La méthode de calcul se base sur la théorie linéaire de
rupture mécanique dans un corps fragile.

ZUSAMMENFASSUNG

Es wird eine relativ genaue Methode vorgeschlagen, um bei bestehenden Stahlbetontragwerken die Zugs-
und Druckspannungen in gerissenen Querschnitten zu ermitteln. Basierend auf der linearen Bruchmechanik
fir spréde Kérper werden die einwirkenden Krifte und Kenngréssen der Biegerisse berlicksichtigt.




142 STRESS ASSESSMENT OF REINFORCED CONCRETE STRUCTURES WITH CRACKS A

1. INTRODUCTION

Evaluation of existing reinforced concrete structures is very important for
maintenance, renovation and reconstruction of industrial and other in-service
buildings. There are several methods to evaluate stress and strains in structures
using their examination data. In the case of reinforced concrete structures with
normal cracks in tensile zone it is possible to evaluate stress by the crack parameters
measured during the examination of these structures. The degree of crack
development is considered as a result of existing stress - strain state in the
member [1]. In this paper a posibility to employ classical theory of crack propagation
in a brittle body for calculation of tensile reinforcement stresses at the cross
section through crack is investigated.

2. REINFORCEMENT AND CONCRETE STRESSES IN CROSS SECTION
THROUGH CRACK

Within the limits of assumed model of a brittle body in the case of macroscopic
cracks the following equation is valid [2]:

. K
lim (Vs o, }= T (1)
where s is the distance of body points situated in the crack plane from the top
of the crack; o,  is breaking stress for a member with macroscopic crack of 2/,
length and K is modulus of bond. It is shown in [2] that stresses in body out51de
the crack (x>/) due to any normal pressure acting in the banks of this crack may

be expressed by formula, see Fig.1(a):

jRENEE -

Oy n\/x RE

Due to limitation of stress o in the body for the case of x—/ the following

R y(x,0)
equation must be observed:

EWNEE
lim —H—E—— (3)

Boundary conditions for the function of the normal pressure p (&) in the tensile
zone of a reinforced concrete member, see Fig.1(a), may be written as follows:

P& l&l=<c

p, (&)= |0 & 1< 1,-c
£, L<=x<1 4)
BB ax<

where p (&) is arbitrary function of pressure applied on banks of the crack and
estimated as a resultant of stresses acting in
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Fig.1 Models of normal crack in tensile zone of reinforced concrete
member: a - for evaluation of reinforcement stress intensity coefficient;
b - for assesment of tensile reinforcement stress in crack

continuous concrete of the crack zone |[x| </; f is tensile strength of concrete;
o [/« is stress at the level of tensile reinforcement; « = E /E; B =125 p and
is used when longitudinal reinforcement ratio p = A4_ /(bd) is small when
p =0.008, B =1.

2 2

Usi\?g equation (4) and considering that s = x-/, x? - 17 =
= Vs Vl, + s, equation (3) may be rearranged into the following form

2oB (5)

lim (Vs 0,.,,} ~ar
From equations (1) and (5) tensile reinforcement stress

_ _Ka 6
G T 2BVt ©
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and critical steel stress intensity factor
K_=16f \/?% 7

where f, is strenght (yield limit) of reinforcement steel. Values greater than
critical K values leads to the fracture of not overreinforced concrete member
with tensile steel.

By similar method as in [2] assuming bodies as isotripic expression of the
modulus of bond K for reinforced concrete member has been deduced. A fictitious
cross section of the depth /4, was assumed, see Fig.1(b), the centroid of which
coincides with the central axis of the member. The depth 4, is obtained from the
following expression:

h +h, =3- (8)

where S, is statical moment of ficticious cross - sectional area 4, in respect to
the centroid of longitudinal tensile reinforcement.

Modulus

M _ - AM N L
= O - to —_— 9
K = (—<5 !;)\/hr 5 )

1

where M, , = M - Pe_ and is the total moment in relation to the centroid of
the real cross section of the member, see Fig.1; P is longitudinal reinforcement
prestressing force; e_ is the eccentricity of P, AM = N_, (a,-a,) and is the
increase in bending moment due to deviation of centroid of fictitious cross
section from the centroid of the real cross section of the member; N, = P =+ N
and is the total longitudinal force acting in the centroid of the real cross section.
Compressive N force is positive; W, =/ /(0.75h_+h_ ) and is modulus of cross
section ; /, is inertia moment of fictious cross section in relation to the neutral
axis situated at distance 2 +4_ from the tensile face of fictitious cross section;

h, = & h_ /w and is the depth of concrete tensile zone above the crack, see [1].

ct

The critical width of the crack end

3.5 - 100 p,
35 - 100 p,

§.=0.00012 a Y$ M (10)
where @ is bar diameter of tensile reinforcement in mm,; 77 is factor for consideration
of bond between concrete and reinforcing steel; p, = A4_/ [bh+(bf - b)hf] <0.02
and p,= A_/ (bh) < 0.02 and they are longitudinal reinforcing factors; b - and h X
are width and the thickness of the flange in the tensile zone of the member.

Substitution of modulus K value by (9) into formule (6) gives the final expresion
of tensile reinforcement stress value
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M+ AM)0.75h_ + h N
O.S — [( tot %( T ct) _ At:t ]% ’\/_le (11)
1

1

If the neutral axis is located extreme compressed concrete fiber stress o, may be
calculated by the equation:

_M (h-h -h) (12)

C

red

where / ,is inertia moment about neutral axis of transformed cross section by
reducing its area by 4_, = hb.

For concrete coefficient

K, =VS Ef, (13)

cr cct

where £_and f are modulus at elasticity and tensile strength of concrete respectively.

3. RESULTS OF EXPERIMENTAL INVESTIGATION

Special test specimens, beams and eccentrically compressed reinforced concrete
members, were investigated. Prestressed concrete beams of rectangular cross
section b x h = 100 x 180 mm, span /l = 1800 mm, longitudinal prestressing steel
ratio p = 0.8 - 0.95 %, prestressing force P = 41.2 - 132.5 kN were subjected
to two concentrated forces at 1/3 distances from supports. Electrical resistance
gauges were used to measure steel strain in the cross section through crack. The
parameters 2 and w of crack in pure bending zone of beams were measured by
24 times magnifying microscope and concroled by electrical resistance strain
gauges closely spaced on beam face along its height.

Results of special tests on beams reported in [3] also are employed to evaluate
theoretical proposotions of this paper. Reinforced concrete beams of rectangular
crosis section b x h=120 x 300 mm, span length | =2000 mm, longitudinal tensile
reinforcement ratio p = 0.48 - 3.83%, without prestress were loaded by two
concentrated forces at 1/3 distances from supports. Special notches were formed
in the test beams to locate the main cracks. Steel strain in the main crack and
parameters /#_and w of this crack were measured.

Eccentrically compressed members of rectantgular cross section
bx h = 100 x 150 mm, length [ = 1000 mm, tensile reinforcement rat io
p = 0.46 - 1.26% were tested by the authors of this paper. Notches in the middle
of the member length from tensile face up to longitudinal reinforcing bars deep
were formed. Crack parameters were measured by a microscope magnifying 24
times and by a dial gauge at the level of tensile reinforcement.
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The values of tensile reinforcement stresses obtained by tests o, and calculated
by equation (11) o, are compared, see Fig.2. In the case of eccentrically compressed

S
P>
€ o
6\
Y
¢
™
= 3 a - ®
~ () o o]
- - — — — - — — - _Q____Q____o_o _______
3 9 8 o o)
00 OO ¢ R [ Je) Py
o °
=
03 0.5 07 M/Mu (Ne/Mu)

Fig.2 Comparison of measured in tests o, , and theoretical o, calculated by
formula (11) tensile reinforcement stress values: ® - prestressed concrete
beams; o - reinforced concrete beams; o - eccentrically compressed
members

members ratio o, , / O, is plotted in respect to quantity Ne / M, where N is
external force acting at distance e from centroid of tensile reinforcement and M
is the ultimate bending moment of the cross section.

Theoretical values o, calculated by (11) are on the average 7% higher than o,

s,0bs

measured in tests. The variation coefficient of the ratio o, , / 0,is equal to 0.15.

Experimental values of concrete extreme fiber stress o, , obtained from tests [3]
were compared with theoretical values o, of this stress calculated by equation
(12). Theoretical values o, on the average are 3% higher than experimental values

o, ,, of this stress. Coefficient of variation of the ratio o, , / ©, is equal to 0.11.

4 CONCLUSIONS

Contour of through normal crack in tension zone of a reinforced concrete member
always is continguous to tensile concrete and to reinforcement. The latter has
substantial influence on rupture strength of tensile concrete. Parameters of this
strength K and &, expressed by (7), (10) and (13) define correctly character of
stable crack propagation observed in tested samples.



“ P. PUKELIS - V. JOKUBAITIS - K.A. KAMINSKAS 147

Calculation of stresses in tensile reinforcement by (11) and in extreme fiber of
compressed concrete by (12) makes it possible to assess stress state of reinforced
concrete structures in service with sufficient accuracy.
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SUMMARY

A method for identification of local structural changes in terms of storey stiffnesses of buildings is
proposed here. Static condensation is applied to reduce the size of system for identification, while
stiffness changes are determined recursively in a remedial model by the extended Kalman filter. The
efficacy of this "improved condensation™ method under various noise levels is illustrated numerically by
an example of a twelve-storey plane frame building.

RESUME

L"auteur présente ici une méthode pour identifier les faiblesses structurales locales des batiments. Il se
base pour cela sur la détermination de la rigidité des étages par identification du systédme, appliquée 2 un
modele réduit par compression statique, en procédant par la méthode itérative de Kalman de filtrage non
linéaire. Il démontre ainsi I'efficience de cette méthode de compression améliorée en |’appliquant a un
batiment de douze étages a ossature plane en portique, sous niveaux différentiels de perturbations.

ZUSAMMENFASSUNG

Es wird eine Methode zur Auffindung értlicher Tragwerksschwichungen in Hochbauten vorgestellt. Sie
basiert auf Ermittlung der Stockwerkssteifigkeit durch Systemidentifikation an einem durch statische
Kondensation reduzierten Modell, wobei iteraktiv mit einem erweiterten Kalman-Filter vorgegangen wird.
Die Effizienz dieses verbesserten Kondensationsverfahrens wird an einem zwdlfgeschlossigen ebenen
Rahmentragwerk fir unterschiedliche Storsignalpegel demonstriert.




150 DETECTION OF LOCAL STIFFNESS CHANGES OF BUILDINGS A

INTRODUCTION

In recent years, application of system identification (SI) to damage
assessment and safety evaluation of civil engineering structures has received
considerable attention (e.g. Natke and Yao 1987; Agbabian et al. 1991). Based
on input and output measurements of dynamically excited structures, structural
parameters such as stiffnesses are determined and then compared with intended
design values. In this manner, periodic monitoring of state of structures can
be performed for detection of structural changes due to damage or
deterioration. However, several problems have yet to be resolved before this
methodology can become viable for actual structures.

One of the problems reported by some researchers 1is that current SI
techniques have not been satisfactory in detecting local damages. Modal
parameters as determined by frequency domain analysis are not sensitive to®
local damages, except for small structural systems or unless high modes are
taken into account. The accuracy of high modes is, however, often difficult
to achieve because of measurement noise. Hence, there is apparently a trend
that researchers prefer time—-domain SI approaches, among which the extended
Kalman filtering (EKF) originally developed by Kalman and Bucy (1961) is
perhaps most widely used. Nevertheless, it has been found that the change in
stiffness matrix due to member stiffness changes in the locality tends to
“spread out" or "diffuse" into adjacent structural members (herein referred to
as ‘"stiffness diffusion"), thereby making 1local damage identification
difficult (Natke and Yao 1987).

In addition, from the viewpoint of structural safety evaluation, it is
important to estimate the confidence level (or reliability) of identified
parameters taking into consideration measurement noise as well as modeling
errors. In this aspect, Agbabian et al. (1991) has applied least-squares
approximation methods to successive time windows of input and output (I/0)
time histories. In their numerical studies, the effects of I/0 noise have
been taken into account. However, to the authors’ knowledge, modeling errors
have thus far not been considered in the confidence estimate of identified
parameters.

IMPROVED CONDENSATION METHOD

The problem of local damage detection is aggravated by the large number
of degrees of freedom (DOFs) in modeling an actual structure. When applied to
a complete structural model involving all DOFs, the EKF and other time-domain
SI approaches alike are often found to be numerically inefficient in terms of
accuracy, convergence and computation speed. Alternatively, a "reduced" model
with a smaller number of DOFs can be considered. For instance, if
quantification of storey stiffness changes of a building suffice for the
purpose of damage detection, a simple lumped mass model can be used to reduce
DOFs. Unfortunately, as a result of considerable modeling errors, diffusion
problem of storey stiffness into adjacent storeys would render local damage
detection ineffective.

As an attempt to detect the location of damage and quantify the magnitude
of damage in terms of stiffness reduction of a building, an improved

condensation method (ICM) is proposed here. For illustration purpose, a
single-bay n-storey plane frame building as shown in Fig. 1(a) is considered.
Axial and shear deformations are assumed to be negligible. Static

condensation is first conducted, reducing the complete structural model to a
“condensed" model with a significantly smaller number of DOFs [Fig. 1(b)]. In
this study, columns are considered to be the critical elements where damages
are likely to occur and affect the overall performance of the building.
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Non-critical elements (beams) are assumed to be undamaged and any difference
in storey stiffness is solely due to changes in column flexural rigidities
(EI). In order to narrow the gap between the condensed model and the actual
structure (upon which I/0 measurements are taken), a ‘"remedial" (or
correction) stiffness

3n-2 3n-1 matrix KR is derived

P =3 —=n —=0n based on a lumped
mass model as shown
in Fig. 1(c). By
applying the EKF on a
time window of data,

= > P :‘:
T 1 1 the stiffnesses of
A ’)5-——5 S I this remedial model
11 2 are identified and
D3 —_ —_ then used to update
the condensed model.
This process is
repeated for a
(a) (b] (c) specified number of
FIG. 1. (a) Complete Model; (b) Condensed Model; time windows (or

(c) Remedial model. (Numbers indicate DOFs). until Convergence)

The procedure of the ICM for damage detection of the building considered
is described below.

(1) Divide the excitation and response time histories into time windows.

(2) Form mass matrix M (3nx3n) for the complete model based on known mass
distribution. Given flexural rigidities of the "undamaged" building, form
complete stiffness matrix K (3nx3n) encompassing all DOFs, i.e. two joint
rotations and one horizontal translation per floor [Fig. 1(a)l].

(3) Damping matrix € (3nx3n) is constituted by adopting Rayleigh damping ,
assuming that damping ratios of two vibration modes are known. (This
assumption can be relaxed by including damping ratios as additional
unknown parameters to be identified.)

(4) Perform static condensation to obtain condensed mass matrix Mc,damping
matrix Cca.nd stiffness matrix Kc’ all of size nxn [Fig. 1(b)].

(5) The improved condensation model is derived by adding the remedial
stiffness matrix KR (as explained earlier) to the condensed stiffness

matrix KC. Elements in KR are the unknown parameters to be identified by
the EKF, while KC remains unchanged.

(6) Compute stiffness correction factor nj for the j-th storey as follows:

N

\ %4
n. = Z e1 ) E e ) (1)
where U denotes the undamaged quantity, R denotes the remedial quantity
and Nw is the current time window number. Since the remedial model is

derived from a, shear building, the remedial flexural rigidity is given by
(EIR)J.=(KR)J. lj / 12, where (KR)J. is the corresponding storey stiffness in

KR, and ‘lj is the column length. The updated flexural rigidities
EI. = (EI ) .(1 + q.), =1, ... , n (2)
J v’ j M J

are then used to compute the complete stiffness matrix K.
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(7) Repeat step 3 to step 6 for all time windows considered. The severity of
the damage in each storey is finally given by the end result of nj.

ADAPTIVE FILTER

In SI techniques employing the EKF, uncertainties in terms of variances
of identified parameters are supposedly reflected in the error covariance
matrix. The error covariance is dependent on the output noise covariance and
the system noise covariance in the EKF algorithm. The variances of input and
output noise can be estimated from resolution and accuracy of instruments and
data acquisition system. The main problem is the difficulty in estimating the
variance of system noise which includes modeling errors as well as input
noise. In application of the EKF, the uncertainty in the system noise causes
the divergence phenomenon, especially when the input noise is small 1in
comparison with the modeling errors.

An adaptive filter was developed by Jazwinski (1969) as an algorithmic
attempt to control .divergence in Kalman filtering of orbit determination
problems. In this paper, this adaptive filter is modified to suit SI problems
for the purpose of obtaining statistically consistent variances of identified

parameters.

Determination of System Error Covariance Q

Consider a time window beginning with k-th time step. The predicted
residual vector at p steps later (i.e. time tk+p) is defined as
Chep = Yiep™ H(tk+p)X(tk+pItk) ) (3)
where yk+p is an observation vector (mx1), X(tk+pltk) is an expected state
vector (nx1), and H(tk+p) is an observation matrix (mxn). The covariance of
the predicted residual vector can be derived by means of the EKF algorithm as

T _ T T
E{rk+prk+p} = H(tk+p)¢(tk+p,tk)P(tkltk)Q (tk*p'tk)ﬂ (tk+p)
p

+Ht, M Ve, .t .t e (t, ,t, W' (t, ) +R (4)

k+p izl k+p’ "k+i k+i-1 k+p’ k+i k+p k+p

where E{-} denotes expectation operator, ¢ is a state transition matrix (nxn),
P is an error covariance matrix (mxn), Q is a system noise covariance matrix
(nxn), and R is a measurement noise covariance matrix (mxm). Q is determined
by ensuring consistency between the residuals and their statistics such that

p
1 T _ T
5 Z CreiThei = E{rk*prk*p} (5)
i=1
Equation 4 can thus be written as
p p
T T _ 1 T _
H(tk+p) izlé(tk+p’tk+.i )Q(tk+_i—-1)¢ (tk+p'tk+i) i (tk+p) - T z t.k+1'rk+i
= i=1
T —
E{rk»prk+p|Q(tk+p)"0} (6a)
where
T _ _ T T
E{rkﬁprk+p lQ(tk+p)—0} = H(tk+p)¢(tk}p’tk)P(tkltk)é (tk+p’tk)H (tk+p)
+ R (6b)
k+p
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. . T .
In the present formulation, only diagonal elements of rk+prk+p are considered
whereas all off-diagonal elements are assumed to be =zero (i.e. no

- 5 T
cross-correlation between residuals). Let Q(tk+p) equal to Gk+ka+ka+p where

Gk+p is a distribution matrix. The left hand side of Eq. 6(a) can now be
expressed as Ak+pd1ag[Qk+p] where
2

Aep =12—:1 [H(tk+p)d>(tk+p, tk+i)Gk+1._1] (7)
Hence, the diagonal terms of Eq. 6(a) can be obtained from
Ak+pd1ag[Qk4_p] = B (8a)
where p

s 1 T _ T _
8k+p = dlag[Tizlrk”.rk“. E{Pk+prk+p IQ(tk+p)—-0}] (8b)

It is reasonable to assume that Q remains constant in a time window of N
sampling p01qts, i.e. Qk= Qk+1=' .= Qk+N' The system noise covariance in this
time window is given by

T -1, T
Qo = B w AN Aow Sk

where Ak N is an Nmxn matrix and ek N is an Nmx1 vector written as follows
T

O B TS LR S N By gyt (9b, c)

The main procedure of adaptive filter is schematically explained in

diagl (9a)

T

Fig. 2. For purpose of discussion, we now let 6 denote a vector of parameters

PN

to be identified, such as unknown stiffnesses, and x contains only response
variables (displacements and velocities). Initially the EKF may be carried

out once (not shown in Fig. 2) to obtain a better guess of 90. An adaptive

filter cycle comprises two processes: (a) determination of Q by enforcing
statistical consistency of residuals wusing N sampling points, and (b)

determination of x, 6 and P by the EKF using M sampling points.

N samples delay Q(klk)
A

8(kIk)
P(kIK) )
X(k+M lk+ M)
A
B (ks M ke M)
A A
qary |18 S0K1K), G=0p(k1k Determine | Q EKF P(ke M 1ke M) 8(sls)
art Q Algorithm Psls)

=Kk+M

FIG. 2. The Adaptive Filter Procedure.

NUMERICAL EXAMPLES AND DISCUSSIONS

In our examples, the input is a force comprising several (five or more)
harmonics of frequencies covering the first few significant vibration modes of
the structure. Added to input and output time histories are independent
Gaussian noises with zero mean and standard deviations equal to certain
specified percentages of their respective unpolluted root-mean-square values.
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Example 1 (ICM)

The procedure of ICM is illustrated by considering a 12-storey plane
frame building. The “complete" plane frame model has a total of 36 DOFs {two
joint rotations and one horizontal translation at each floor). The mass
matrix and stiffness matrix for the undamaged building are derived from a
small-scale steel laboratory model. The damping ratio is 0.5% as determined
by free vibration tests of the laboratory model.

We now consider the building to be "damaged": the column stiffnesses in
the first, fourth, eighth, ninth and eleventh storeys are reduced by 10, 15,
30, 20 and 25 per cents, respectively. An excitation force is applied at the
top floor and horizontal responses at all floors are measured. Total
observation time history of 2 s at a sampling rate of 0.0005 s is divided into
20 windows. All rotational DOFs are eliminated in the condensed model and the

remedial model thus has 12 DOFs.

Following the procedure of the ICM described earlier, storey stiffnesses
of the damaged building are identified without I/0 noise and with different
noise levels. The ratios of damaged storey stiffnesses to the corresponding
values of the undamaged building are computed and summarized in Table 1. In
the ideal case of zero 1/0 noise, the identified stiffnesses are almost exact
(error < 1%) for all twelve storeys and the stiffness diffusion problem is
negligibly small. In comparison, if the lumped mass model were used instead
for the same conditions, the results (not shown in Table 1) would have been
disastrous with error as high as 60% at some storeys. For an I/0 noise level
of 20% which is considerably high in practice, the identified results are
remarkably good (with error ranging from 0.2% to 6% only) in view of the
fairly large system for identification.

Story

1/0 1st 2nd 3rd 4th Sth 6th Tth 8th 9th 10th| 11th] 12th
Noise

0% 90.0{ 99.6( 100.5| 85.0/ 99.9( 99.8| 100.0{ 70.1}] 80.3| 99.9{ 75.0| 99.6
10% 89.7| 97.2( 103.4| 87.6] 100.7| 99.6| 99.8| 72.8( 83.6| 97.7| 76.8| 100.3
20% 90.9( 97.1 95.8| 86.9| 100.2| 101.9| 100.7| 74.1| 83.4| 97.1| 76.0| 101.2
20%" 88.5] 120.8| 126.0] 91.0} 92.9) 115.1] 140.0]| 79.7| 78.6] 97.8] 79.4]| 76.9
20%"" 90.6| 99.6| 105.5| 86.9| 97.5| 104.5| 101.0( 72.3| 81.0| 97.5| 78.4| 94.2
Exact 90.0| 100.0| 100.0|f 85.0; 100.0| 100.0| 100.0| 70.0| 80.0| 100.0/ 75.0( 100.0

* Six horizontal response measurements at alternate floors.
+ Averaged results based on twelve different time histories of excitation with same noise level

TABLE 1. Percentage Ratio of Damaged Storey Stiffness to Undamaged Storey Stiffness

In terms of computation time, the ICM requires only 20% more than the
lumped mass approach in this example, whereas a complete structural
jdentification with 36 DOFs would be very time consuming (easily ten times
more) if convergence can be achieved at all. The ICM is hence a simple and
yet effective approach to determine local structural changes with virtually no

stiffness diffusion problem.

Example 2 (Adaptive Filter)

In this example, the adaptive filter procedure is applied to an 1-DOF
system to obtain error variances of identified parameters under the influence
of I/0 noise. The mass is known and has a value of 1 whereas the stiffness
(K) and damping coefficient (C) are to be identified. Assuming independent




A G.K. CHAN - M.S. LIN - T. BALENDRA 155

system noises for all state variables, the distribution matrix G is simply a

unit matrix. Initial conditions are: X =y, XY, x5=100, x;=1, P3 3=400 and
P44=0.1. The sampling numbers are N=20 and M=3. Total observation time is
22.5 s at a sampling rate of 0.075 s.

To evaluate the statistical consistency of estimation error, the

following performance index is defined: 1

k -
_ 1 _z 2 2
v —{ [—k i;[xy(ti) x (t;1t;)] ] / [Pw.w(klk) ] } (12)

where ¥ =1, 2, 3 and 4 denote displacement, velocity, stiffness and damping,
respectively. Due to randomness, the performance index fluctuates with k and

it would be desirable
10 to have the index

o Adaptive Filter (a) | averaging about one.

8- A EKF The performance of
A the adaptive filter is
compared to that of the
EKF with zero system
— force noise(Q=0). The perfor-
K,C mance index for stiff-
L ness is shown in
Fig. 3a for 10% 1I/0
noise and in Fig. 3b
) 5 for 30% I/0O noise. It
o0 o°° S 0000000°° AO00 can be seen that the
O0_O~ performance index
0o | * 1 1 | 1 diverges in the case of
10 the EKF. This means
. ) (b) that the error variance
o Adaptive Filter are statistically
8+ » FKF inconsistent and thus
do not truly reflect
A the confidence level in
6 the 1identified para-—
A meter. The performance
indices in the case of
LA the adaptive filter
AéQ clusters around 1,
which is an indication
2+ 00 ° of good statistical
© Op0000 . 600000 2000 consistency of error
,00~ ~oP %00~ ©0090,0Y 09000 covariances determined
0 1 1 4 : ! in the SI process.

FIG. 3. Performance Indices for Stiffmess (a) under 10% 1/0
Noise and (b) under 30% 1/0 Noise.

o
>$

I ﬁ’pl

Example 3 (ICM with Adaptive Filter)

The last example demonstrates the combined application of the ICM and the
adaptive filter for identification of local structural changes with confidence
estimates of a three-storey plane frame building which has the same damping
ratio, columns and beams as in Example 1. The excitation forcé is applied at
the top floor and horizontal responses at all three floors are measured.
Total observation time is 2 s at a sampling rate of 0.000S s. In the
application of the ICM, the observation time history is divided into 20 time
windows.
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For simulation of structural changes, we consider a damaged building with
column stiffnesses at the first and third storeys reduced by 15% and 30%,
respectively, and the second storey undamaged. These results in terms of
percentage ratios relative to the "undamaged" values are summarized in Table
2 It can be seen that the effect of stiffness diffusion into the second
storey is very small. Specifically, under a 0% noise level, the identified
stiffness change of the supposedly undamaged second storey is only about 1%.
The severity of damage in the first and third storeys is accurately reflected
even for I/0 noise level as high as 20%.

In the absence of I/0 noise, the standard deviation of each identified
stiffness ratio (in %) is about 0.8. The variability of identified results in
this case is primarily attributed to the modeling errors. With 20% I/0 noise,
the standard deviation increases and thus the reliability of identified
results is less. If randomness of an identified parameter is approximated by
a Gaussian distribution, the reliability can be translated into a maximum

likelihood range corresponding to a specified confidence level. As an

illustration, 95% con-

170 Stiffness Standard 95% fidence ranges based on

Noise Storey Ratio Deviation Confidence range +1.960 are presented in

1st 86.3 0.8 84.7 - 87.9 Table 3. Hence, with

0% 2nd 101.2 0.8 99.6 - 102.8 the determination of

3rd 69.7 0.8 68.1 - 71.3 identified stiffnesses

1st 86.7 5.8 75.3 98.1 and their respective

20% 2nd 95.1 5.8 83.7 - 106.5 variances, the combined

3rd 70.5 5.8 59.1 81.9 application of the ICM

ist 85.0 and the adaptive filter

Exact :23“: 128'8 - - would be useful for the

= - reliability analysis

TABLE 2. Percentage Ratio of Damaged Story Stiffness to and safety evaluation
Undamaged Storey stiffness and their Confidence Estimates of buildings.

CONCLUSIONS

Two issues, namely (a) local damage detection and (b) confidence
estimation of identified parameters, have been dealth with in this paper.
Firstly, an "improved condensation" method is proposed to identify the
locations and magnitudes of structural stiffness changes of buildings.
Secondly, confidence levels in identified parameters are estimated by means of
an adaptive filter which ensures statistical consistency of error covariances
in the application of the EKF. The application of the proposed procedures to
numerical examples have shown their potential as an effective tool to identify
local structural changes of buildings with consistent confidence estimates.
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SUMMARY

Interface elements enable the modelling of existing cracks as well as potential failure mechanisms within
conventional FEM computations. If used to investigate limit equilibrium states without knowing the
cracking process in detail, several tacit assumptions are made as to the load redistribution capacity of the
structure. This bears a certain similarity to plastic limit analysis, which also features kinematical
discontinuities, albeit with more idealized constitutive models. The discussion is followed by two simple
applications involving a voussoir arch and a beam.

RESUME

Les éléments joints permettent la modélisation des fissures existantes aussi bien que des mécanismes de
rupture potentiels dans la méthode des éléments finis (FEM) conventionelle. Dans le cas ol on les utilise
dans la recherche des états limites d’équilibre sans connaitre le processus de fissuration en détail,
certaines hypothéses tacites sont faites concernant la capacité de la structure a redistribuer les charges.
On retrouve ainsi certains aspects de la méthode de la charge ultime de plasticité, qui elle aussi, considére
des discontinuités cinématiques, avec toutefois des modéles constitutifs plus idéalisés. La discussion est
suivie par deux applications simples aux arcs et poutres en voussoirs.

ZUSAMMENFASSUNG

Trennflichenelemente gestatten die Modellierung bereits existierender Risse wie auch mdglicher
Versagensmechanismen innerhalb der herkdmmlichen Finite-Element-Methode (FEM). Falls mit ihrer Hilfe
Grenzgleichgewichtszustidnde ohne genaue Kenntnis des Rissprozesses untersucht werden, unterliegen
sie einigen stillschweigenden Annahmen hinsichtlich der Fahigkeit des Tragwerks zur Kraftumlagerung.
Darin dhnelt die Methode dem plastischen Traglastverfahren, das ebenfalls kinematische Diskontinuitéts-
linien kennt, allerdings mit weitergehender ldealisierung des Trennfldchenverhaltens. Auf die Diskussion
folgen als einfache Anwendungsbeispiele ein Bogen und ein Balken in Blockkonstruktion.
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1. INTRODUCTION

The finite element method (FEM) is widely used for the assessment of material damage by following
the gradual development of deterioration in structures in a step-by-step procedure. Usual material
models are based on incremental plasticity, damage theory or smeared cracking, where for monotonic
loading the anisotropy of damage is often neglected to avoid overstiff numerical results; such overstiff
behaviour is absent in discrete crack models [1]. Apart from distributed ageing phenomena as con-
tinuum deterioration, the inspection of deficient structures may reveal a number of existing fractures,
which are possibly oriented oblique to the present stress regime and need be modelled as to their effect
on the stress redistribution and the failure mode of the cracked structure.

Through the joining of finite elements at their common nodes, the conventional FEM is basically
a continuum method. At least with nodal displacements as primary variables, equilibrium is only
satisfied in an integral sense: Although the displacement fields are compatible along the element sides,
the stress fields exhibit finite jumps at interelement boundaries, thus precluding the computation
of strict lower bound limit loads [2]. However, lines or planes of displacement discontinuity can be
introduced via double nodes with suitable constraint conditions and used to investigate the ultimate
bearing capacity of structures by means of postulated failure planes, a concept which is akin to the
kinematic approach of limit analysis in that one looks for the mechanism giving the smallest failure
load as upper bound to the true limit load.! The presence of an elastic compliance below the onset of
plastic deformation does not invalidate the limit analysis theorems as long as displacements remain
small [4]. It is rather the behaviour of the weak planes which infringes on certain vital hypotheses.

2. KINEMATICAL DISCONTINUITIES
2.1 The Concept in Limit Analysis

The general idea is that arbitrary velocity fields can be introduced, which do not need to satisfy
equilibrium and may be discontinuous as long as they are kinematically compatible. For instance it
is permissible to assume that large parts of the structure move as rigid blocks, separated by narrow
plastic regions of thickness ¢. These are characterized by a high homogenous strain rate, which is the
relative velocity between blocks per thickness, & /t. The discontinuities are supposed to consist of a
thin layer of material, which obeys a modified Mohr-Coulomb yield criterion (with associated flow
rule) and behaves just like a solid, except that the in-plane ‘stretching’ strain rate £,, is zero because
of the adjacent rigid bodies. Computing principal strain rates with £,, = %"y,,, (Fig. 1),

: : —_ b .
61,2 = %enn :l: ';' Enn + Tns = E (Slna :*: 1) (1)

their directions are found to bisect the angle between the n-direction and the velocity vector, resp.
between the s-direction and the normal to the velocity. While é; denotes a volume increase due to
shear dilatancy or opening, €, corresponds to a compression field in the adjacent block [5]. The latter
would only disappear for a pure cleavage at a = 90°, i.e. if the discontinuity were to coincide with a
mode-I crack (£; > é; = 0). Principal directions at 45° & § (with respect to s) characterize slip lines
in a state of pure shear.

The internally dissipated work per unit area is that of a ductile homogenous material, the band
thickness droping out during integration:

Wi (0161 + 0265) t = 160y (sinea + 1) + 180, (sina - 1) (2)
For a general a one obtains [6]
. . l1-sina sina — sin ¢
=4
W= b [f 4 ®)

! As stated in [3]: “The structure will collapse if there is any compatible pattern of plastic deformation for which the
rate of work of the external loads exceeds the rate of internal dissipation.”
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Figure 1: Strain rates and failure surface in band discontinuity

with the pure failure modi of shear and opening, using k = (1 + sin ¢)/(1 — sin ¢):
shear (a = ¢): V'I’l:%cifc(1~si11¢)zb"ccos¢ , opening (a = §): Wi =6f (4)

From letting ¢ — 0 in eq. (1) — for which é;,, grows to + infinity — it is concluded that the joint
material needs to be formulated for plane-strain conditions [7]. Together with the associated flow rule
arising from von-Mises’ postulate of maximum dissipation, this implies that a < ¢ is not permitted
by this kind of model; it would become feasible only in plane stress where another corner stress state
allows for simultaneous shear and compression failure [8].

2.2 Interface Element Formulations

The FEM knows a similar concept of degenerating a solid to a layer of finite thickness ¢, assuming a
strain-formulated layer material model for a constant strain gradient across the thickness [9):

{do} = [D° - D] {d6} (5)

The stretching strain component ¢,, is again assumed to vanish, because of the assumption ¢ < L,
the length of the layer element [10]. In view of the fact that also %D‘ grows to infinity with ¢ — 0, a
very thin layer would infact behave rigid-plastic if D were not corrected for the layer element aspect
ratio t/L [11]. With nodal displacements as primary unknowns, this is required by the finite-precision
arithmetic of the equation solver. Note that only the plastic strain components correspond to the
‘kinematic strains’ in limit analysis and dissipate energy on the stress state.

For a vanishing layer thickness the interface can directly be formulated in relative displacements
db = db° +dé®. The elastic stiffness of the bonded state is given by local penalty parameters x, = G/t
and k, = E/t, and the stress-strain constitutive model is just converted into a relationship between
tractions and relative displacements, the factor 1/t being virtually incorporated into D¢ and D?.
Because of the traction formulation plain-stress and plane-strain states can no longer be distinguished
in the joint. Whether or not a thin-layer element approaches indeed the slip behaviour of a zero-
thickness interface, depends on the form of stress evaluation: Unless the information of the interface
orientation is passed on to the constitutive routine, an ordinary principal stress criterion will result in
premature failure of the interface compared to Coulomb friction, because the shear planes in the layer
material are predicted according to eq. 1 as being inclined relative to the interface orientation [12].
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Figure 2: Modified Coulomb models in strains and relative displacements

A popular failure surface for combined slip and opening is the hyperboloid, which differs not too
much from the cone with spherical cusp in limit analysis (Fig. 2). The continuous curvature simulates
the added geometrical strength component resulting from the inclination of asperities with a mean
roughness angle ¥, which are overridden under small compression and become progressively sheared
off under high compression. With increasing |o,| the surface approaches the asymptotic friction cone
of a plane interface with a ‘basic’ friction angle ¢, and zero dilatancy. Since the ‘mobilised’ angle
of friction is of the form ¢mop = ¢u + ¥(on,8,), the flow (or slip) rule can never be associated [13].
For a rough surface the truncated friction cone is but a linearization, where the geometric stiffness
component is simplified to an apparent cohesion intercept.

Angles of 8” larger than v must contain an opening component. There is no reason why the
flow potential should display a smooth transition from shear to opening. More likely, the potential
surface for shear dilatancy forms a corner singularity with the n-axis. This allows to distinguish
irreversible opening due to override in shear from reversible gap displacements. If the interface is
initially cemented, a retractable tension cap extends into the tension /shear domain, furnishing a tensile
strength and a true cohesion. Both quantitites are destroyed together in any arbitrary combination
of tension and shear (area‘l’in Fig. 2 right) [14]. The roughness or apparent cohesion is treated
separately: As continued override wears the asperities down, the failure surface will shrink in function
of the accumulated sliding distance §, or, alternatively, of the plastic slip work W? (softening of area
2%).

3. LIMIT ANALYSIS VS. LIMIT EQUILIBRIUM METHODS

The theorems of limit analysis offer the great avantage that neither the initial conditions in the
structure nor the exact load path to failure need be known, provided the material is sufficiently
ductile and stable in Drucker’s sense. Concrete departs from the assumption of unlimited deformability
already in compression, such that a hypothetical plateau need be fitted at a reduced average stress
over a particular strain range [3], this reduction being commonly termed the ‘effectiveness factor’ [15).
Since the strain history differs for each particular problem setting (bending, shear, etc.), this factor
varies and accounts for different influences in a global manner. To confuse the matter further, also
the effect of construction joints is sometimes subsumed in there [8] even though it could be accounted
for by reduced material parameters in an explicitely modelled weak plane.

The definition of kinematical discontinuities ignores any dependence of the ductility on the angle
a, which would be valid only for the assumption of ‘unlimited ductility’ at zero tensile strength. Even
then a strain-capacity problem is present in the crack width across which shear stresses can still be
carried by aggregate interlock. Because the kinematical discontinuities are usually not identified with
cracks — except for socalled collapse cracks in pure tension [5] — plasticity theory tacitly assumes
that the compression struts (£, in Fig. 1) are not restrained by the crack pattern in their ability to
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For a joint inclined under the angle B to the horizontal, the external
work due to a uniaxial compressive stress o, is given (per width B and J' 1 ‘ J 1 J 1 J
unit thickness of the specimen) by

Wg =éo,sin(8—a) B
and the internal plastic work in the line of discontinuity

(1 -sina) B

Wr=6f 2cosf3

Equating external and internal work and minimizing with respect to 3,
one finds simply oy min = fe, just as for the associated case of a = ¢ [8], 1 1 1 T T 1 1 1 o,
only at a different critical orientation 8 = x/4 + a/2. Y

Figure 3: Analysis of a prism test with construction joint

adapt themselves to principal stress rotations during loading, cf. [16]. Interestingly, FEM interface
models may be liable to the same pitfall if the limitation of dilatancy by the height of asperities is
not incorporated in the constitutive model. This information need be supplied explicitely to force the
stress point during continued plastic shear flow to the apex of the failure surface (Fig. 2), where alone
subsequent gap can take place [17].

Neglecting the cementitious cohesion, the nonassociated slip rule and shear softening still violate
the assumptions of limit analysis [13]. Only in statical determinate situations, where the amount
of dilatancy does not play a role, certain limit load formulae remain valid (Fig. 3); but for highly
confined situations as typical in geotechnics the limit load decreases substantially with ¥ < ¢ [18].
Limit load theorems in their classical sense — i.e. the maximum lower bound and the minimum upper
bound converging to a unique value — are no longer valid but need be recast in a weak form furnishing
‘safer’ lower and higher upper bound values [19,20]. On the basis of associated flow, solutions with
finite element interfaces can still be obtained by optimization methods [21].

With the exception of blast loading and other energy-based design cases, upper-bound solutions are
of little value in civil engineering practise anyhow. Through the prudent choice of material parameters
one strives rather at obtaining conservative limit loads in spite of an underlying mechanism concept.
Very good results have been obtained with interface elements for difficult limit load problems [22].
Pre-inserting planes of discontinuity without tracking their formation (i.e. strain localisation) means
that part of the stress history is neglected in favour of a limit equilibrium analysis for a mechanism
which is not necessarily the one that would actually develop. As with plastic limit theory one must
therefore check also the yield criterion in the solid domains between the planes of weakness and the
strain limits and transient strength components, which — depending on the unknown stress history —
may undermine the full mobilisation of the mechanism’s resistance [23]. It seems thus very helpful if
interface element constitutive models dispose of an initial cementitious strength with the capability
for mixed-mode decohesion, so that they can be inserted in a mesh as ‘sleeping discontinuities’ in the
sense of Hillerborg’s fictitious cracks.

4. EXAMPLES OF VOUSSOIR ARCHES AND BEAMS

To conclude this contribution, two simple applications to arches are given, which are either supposed
to be constructed from independent blocks or to be radially cracked. Such voussoir arches are a
classical application of rigid-plastic limit analysis even though the modification of the plastic-hinge
concept to accommodate no-tension gaps between blocks seems rather bold [24]. The simplicity lies in
the fact that slipping of blocks is excluded from the catalogue of allowable mechanisms — postulating
a sufficiently steep orientation of the force resultant with respect to the interfaces —, that the stress
range is supposed to be low enough to avoid crushing of edges and that the joints have no tensile
strength. Therefore no energy will be dissipated in the mechanism, and the energy balance must be
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smeared cracking, 8 Gauss points through thickness

joints, 2x3 Gauss points through thickness

joints, 3 Lobatto points through thickness

Figure 4: Discrete joint model of a circular arch

maintained by passive external work of parts of the structure moving against the direction of loading.
According to limit analysis theory, any feasible thrust line which lies fully inside the arch would thus
give a lower-bound limit load, whereas any collapse mechanisms would give an upper-bound limit load
[25]. The added advantage of the FEM discretization of the joints is that the no-slip assumption is
checked automatically, i.e. La Hire’s vision of 1695 of arches as an assembly of wedges (viz. [26]) is
300 years later turned into a practical method.

The example in Fig. 4 shows a circular arch, which was tested in 1951 by Pippard & Chitty and
previously analysed by mechanism and continuum FE methods [27]. Modelling every segment as a
finite element separated by interfaces, it can be seen that the computed extent of joint opening — shortly
before the fourth mechanism is formed — corresponds quite well to the prediction by the smared-crack
model. This may surprise as it is often anticipated that the discrete model will automatically lead
to a concentrated mechanism, but it finds an explanation in the tangential orientation of the thrust
line and indicates that not all the joints would have to be included to catch the failure mechanism
[25]. Observe also that the distance between the two outermost integration points determines the
eccentricity of the pivot and hence the effective depth of the section in which the thrust line must
reside. Other integration schemes — among them a socalled floating point scheme, which contracts
the integration points into the remaining compression zone — have been tested [28], but the results for
only one joint element across the thickness are seen to be rather satisfactory if a 3-pt. Lobatto rule
(nodal integration) is used. Note also that the solids between partly open joints still exhibit tensile
stresses, due to the coupling of equivalent nodal forces through the shape functions; this emphasizes
once more the advantage of stress evaluation in discrete mechanisms.

The second case concerns the rather common problem of estimating the load carrying capacity
of an unreinforced concrete beam by considering a hidden arch, even though in this particular case
the ‘beam’ is a horizontal slice through a large concrete gravity dam under reservoir pressure [29].
According to the lower-bound theorem, any permissible stress field — i.e. not violating the yield limits
of the material anywhere — would give a safe estimate of the load carrying capacity, irrespective of the
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Figure 5: Hidden horizontal arch in a ‘tension-free’ beam

strain compatibility [3]. The maximum load will thus result from the arch with the largest camber,
so that paradoxically the (elastic) beam seems the stiffer the deeper it is cracked in flexure. In terms
of stress resultants, the arch is only stable if the bending moment does not exceed the normal force
times half the depth of the cross-section, as otherwise the thrust line would pass outside the structure
[25]. The problem with this particular loading is that the bending moment is already active before a
sufficient normal force can build up. It would not arise if the segments were wedges [30], but as the
joints are oriented parallel to the direction of loading, the thrust requires prying action in bending
which is unstable under small pressure (points ‘x’ in the graph). If one does not count on residual
prestress from joint grouting or cementitious cohesion — but takes rather some foregoing joint opening
due to shrinkage or cold temperature into account —, the only way how such a voussoir beam could
work without shear keys would be by means of considerable dilatancy developing during the relative
slip between blocks [31]. Even then an absolute limit would be given by the height of asperities as
previously mentioned.

5. CLOSING REMARKS

Interface elements to model weak planes or existing discontinuities are a very useful tool for limit
equilibrium calculations. The conceptual similarity to upper-bound limit analysis lies in the need
to perturbate prospective mechanisms for finding the most critical one, but fortunately there are
many situations (like well-shaped arches) which are rather insensitive to the assumed location of
discontinuities. However, phenomena of limited strain capacity and transient strength components
need be regarded if they are not to defy the analysis results. The influence of more realistic interface
constitutive models in the FEM may also be elucidating to limit analysis practise.
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SUMMARY

Remaining structural capacity of the turbine foundation frame in an old power station was assessed by
means of the nonlinear finite element analysis performed by a computer programme. The effects of the
quality of filler concrete of joints and of the boundary conditions were studied parametrically.

RESUME

L'article traite de la détermination de la capacité portante résiduelle d’une fondation sous portiques, prévue
pour des turbines dans une ancienne centrale électrique, au moyen de calcul par éléments finis non
linéaires. Les vérifications ont porté sur l'influence de la qualité du béton des noeuds des portiques et des
conditions aux limites.

ZUSAMMENFASSUNG

Die Resttragfdhigkeit von Rahmenfundamenten fir Turbinen in einem alten Kraftwerk ist mittels einer
nichtlinearen Finite-Element-Analyse bestimmt worden. Die Einfllisse der Betonqualitit in Rahmenknoten
und der Randbedingungen sind untersucht worden.
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INTRODUCTION

Heavy prefabricated reinforced concrete frames were typically used for construction of large
thermal electric power plants in Czechoslovakia in the 50s and 60s within an extensive energy-
production plan. These power plants burn low-quality brown coal and are the main source
of energy in Czechoslovakia. In the course of time number of problems have emerged in con-
nection with the servise of these plants. To mention only the most serious ones: uncontrolled
environmental polution and structural damages due to heavy service loading. The most ex-
posed structures are the reinforced concrete foundation frames of turbines. They are subjected
to large static and dynamic loadings, chemical and thermal effects. Today in many cases these
structures are also at the end of their designed life time. This life time is about half of that
of similar unexpposed structures. It is in the interest of the electric power industry to extend
the life service of these structures and thus to avoid building new plants. This tendency is
also evident world-wide. In this context the technical diagnostic is becoming the important
engineering branche. It is expoliting the reliability theory, the structural modeling and on
site investigations. The last two mentioned categories were used in the present report for the
diagnostic of the remaining structural capacity.

The concerned power plant is located in the North-West Bohemia and has been under recon-
struction. It had been subjected to the long term monitoring to determine the extent of wearing
after twenty years of service. In order to asses the remaining structural capacity of the turbine
foundation the structure was analyzed by the finite element program SBETA. The damage and
failure states of the structure were simulated. The goal of this analysis was to simulate the
effects of the poorly manufactured joints of the precast members on the load carying capacity.
The results served to design the measures for the necessary reconstruction.

2. PROGRAM SBETA

Program SBETA was recently developed at the Institute of Material Science of the University
of Stuttgart in cooperation with the Klokner Institute of the Czech Technical University in
Prague. It is a commercial program designed for the analysis of reinforced concrete structures
in the plane stress state. It can predict the response of complex concrete structures, with or
without reinforcement, in all stages of loading, including failure and post-failure. It can be used
to analyze the remaining structural capacity of existing structures. Details about the program
and its constitutive model can be found in papers [5,6] and documentation [8]. Here only a
brief description is given. The other applications of the program are reported in ref. [2,3,4,7]

The constitutive model in SBETA is based on the smeared material approach with isotropic
damage model in uncracked concrete and orthotropic damage after cracking. The behavior of
concrete is described by the stress-strain diagram, which is composed of the four branches: non-
linear loading in compression, linear loading in tension, and linear softening in both, tension and
compression. The parameters of this diagram are adjusted according to the plane stress state
using the biaxial failure function of Kupfer for compression. The mechanics of cracked reinforced
concrete, which is relevant to this study case, includes: (a) reduction of compressive strength
in direction parallel with cracks; (b) variable shear retention factor; (c) tension stiffening. All
these properties are controlled by the tensile strain, which reflects the crack opening. The
nonlinear fracture mechanics is introduced by means of the BaZant’s crack band theory [1).
The tension softening modulus is adjusted for each element according to the fracture enegry.
Both, fixed and rotated crack models are implemented. Reinforcement behavior is bi-linear.
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A four-node quadrilateral finite element is used for the concrete. The reinforcement can be
included either in a smeared form, as a part of the concrete element, or discrete, as a bar
element passing through the quadrilateral element. The updated Lagrangean formulation is
adopted allowing the modeling of a second order geometry effect. The non-linear solution
is performed by means of a step-wise loading and by an equilibrium iteration within a load
step. Newton-Raphson and arc-length methods are the options for the solution strategy in the
equilibrium iteration.

The program system SBETA includes a pre-processor, a solution program, and an efficient
post-processor. The finite element analysis can be interactively controlled and runs in several
levels of real-time graphics. Thus, the solution process can be observed and solution parame-
ters can be adjusted by a user if necessary. A restart option is available. The post-processor
generates automatically deformed shapes and images of stress, strain and damage fields (crack-
ing, crushing). All results of the analysis presented in this paper are produced by the SBETA
post-processors.

3. ANALYSIS OF DAMAGED POWER PLANT FRAME
3.1 Girder Joint in Precast Foundation Frame

The schematic plan view of the frame is in Fig.1. The precast reinforced concrete girders A and
B are supported by column. Each girder is formed by a couple of two identical girders, Ay, A2
and Bj, B;. The interaction of the coupling girders is assured by the slab, which is casted over
the girders. The joint of girdes is located above the column. During the construction a space
of 350 mm had been left between the vertical end faces of adjacent girders, the reinforcement
was welded and the space was filled by concrete. The location of the joint is denoted in
Fig.1. There were doubts about the quality and correct casting of the filler concrete and
about full interaction of parallel longitudinal girders. The diagnosis of the frame was done
by means of nondestructive testing methods combined with visual investigations supported by
endoscop. However, a detailed investigation of this joint was impossible because of technological
obstructions. The main purpose of the structural analysis was to make an estimate of the
function of the joint under various assumptions of quality of the filler concrete.

3.2 Finite Element Model

In the linear analysis of the whole space frame, which was performed also for other purposes,
the function of the structural detail of joint in the global structural system was studied. On
the basis of this global analysis the region of damaged joint was identified. From the complex
structure of the frame only a section adjacent to the joint was modeled. The surrounding
structure was approximated by appropriate boundary conditions and artificial springs.

The analytical model, its geometry, boundary conditions and reinforcing are shown in Fig.2.
The finite element mesh is shown in Fig.3. It has 387 quadrilateral elements. The vertical
stirrups were modeled by smeared reinforcement and all main horizontal and inclined bars were
modeled by discrete reinforcement. The concrete quality of girders identified from core-drilled
samples was 28 MPA. The nominal quality of filler concrete in the joint was 34 MPA. However,
there were doubts about the quality of its casting and its actual state could not be reliably
verified. Therefore, variable properties of the filler concrete were considered in this study by
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values of 1%, 10%, 60% and 100% of its nominal value.

Two alternatives of boundary conditions were considered for the modelling of the surrounding
structure. In the first one the column under the joint of the longitudinal girders was modeled
by springs and the continuity of the structure was modeled by conditions of the symetry in
the middle of the girders. In the second case the support on the column was rigid and the
continuity of the girders was modeled by the springs. This enabled the approximate simulation
of the axial displacements of girders due to flexibility of the frame structure.

The loading is due to technological forces which are trasfered through numerous fastenings as
indicated by vertical arrows in Fig.2. The force in the load-displacement diagram refers to the
sum of the technological forces. Two loading cases were considered. In the first loading case
the full interaction of girders A;, A; and B;, B; was assumed and the girders were loaded by
the half of the total technological load. (The structure was designed under this assumption.)
The second loading case assumed no interaction between the girders and the full technological
loading was applied on the internal girders. In both cases the dead load of girders was included.

The study was performed on the personal computer 286 under MS-DOS operating system.
Solution of one case on this computer took about 10 hours of computer time. (Of course in
case of PC486 the time would be much shorter.) In addition to the ultimate load capacity each
analysis provided ample of informations on stress and strain state, crack patterns and failure
mode. The fixed crack approach has been used in all cases.

3.3 Discussion of Results

The behavior of analyzed system is illustrated in Fig.4., which shows the crack patterns in
three load stages and the failure state with cracks, crushing and amplified deformations. The
load displacement diagram with the load levels corresponding to the stages in Fig.4 is shown
in Fig.5. The yielding of reinforcement is also graphically indicated (but apparent only from
coloured output). Strong shear behavior is evident from inclined cracking. The failure mode was
dependent on the degree of lateral constraint and the quality of the filler concrete in the joint.
In case of a high lateral constraint and the 100% quality of the filler concrete the maximum
load was 4.75 times of the admissible loading. The failure mode is of the concrete arch-type,
with crushing of the cracked concrete in the web and in the bending compression zone.

The effect of the filler concrete quality on the frame behavior can be seen from the comparison
of Figures 4(c) and 6. The load level is 2 times of the admissible load. The quality of the
filler concrete described by the compressive strength was 100% in Fig.4(c), 60% in Fig.6(a)
and 10% in Fig.6(b). In case of the lowest quality, Fig.6(b), the filler concrete in the joint
fails in compression and after that the behavior is fairly ductile with all major reinforcement
yielding. The ultimate load factor, (related to the admissible load) is in this case 3.5. The
reduction of load capacity was also caused by partially releasing the lateral constraint. In the
most unfavorable case, with the elastic springs modeling the lateral constraint and 1% of filler
concrete quality the ultimate load was almost equal to the admissible load with no marginal
safety.

The results of the numerical analysis were used to support the design of measures for extending
the service life of the frame, which were based on the restoring the full interaction of girders
and strengthening the space frame. They were also utilized in a reliability analysis. It was a
valuable contribution to the safety and economy of the engineering solutuion.
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4. CONCLUSIONS

The computer program SBETA was succesfully applied to the assesment of the remaining
structural capacity of the turbine foundation frame. The nonlinear finite element analysis
proved to be a rational method for determination of ultimate load capacity of this statically
indetermined structure, whose behavior significantly deviates from the simple design models
based on cross-sectional analysis. The FE analysis was used to design the economical and
rational repair measures .
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Fig.3 Finite element mesh of the structural model.
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SUMMARY

The development of rational measures for strengthening and retrofitting of existing concrete structures
depends on advanced methods of assessing their strength and stiffness. Thése methods should be capable
of predicting the future behavior of the entire structure based on information about the original design and
the current state of the structure. This paper presents a general frame member model based on the fiber
concept and capable of simulating the hysteretic behavior of concrete members under arbitrary histories
of biaxial moment and axial force.

RESUME

Les moyens de renforcement et de remise en état de structures en béton se basent sur des méthodes
avancées pour établir la résistance et la rigidité de ces structures. Ces méthodes devraient étre capables
de prévoir le comportement de toute la structure a partir d’'informations tirées du projet original et de I’état
actuel de la structure. Le présent article propose un modele général pour I'étude de cadres. Ce modéle
repose sur le concept de fibre et peut reproduire le comportement histérétique d'éléments en béton sous
I'action d’une flexion biaxiale et d'une force axiale arbitraires dans le temps.

ZUSAMMENFASSUNG

Die Entwicklung rationaler Methoden fir die Verstdarkung und Instandsetzung von gebauten Betontrag-
werken hiangt von Modellen ab, die imstande sind, die Tragfahigkeit und Steifigkeit ihrer Tragelemente
vorauszusagen. Diese Methoden sollten imstande sein, ausgehend von Information Gber den Anfangs- und
jetzigen Zustand des Tragwerks, das zukunftige Verhalten vorauszusagen. Diese Arbeit stellt ein
allgemeines Model fir Rahmenelemente unter allgemeiner Belastungsgeschichte von zweiachsiger Biegung
und Normalkraft vor.
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1. INTRODUCTION

The development of rational measures for strengthening and retrofitting of existing concrete struc-
tures depends on advanced methods of assessing their strength and stiffness. These methods should
be capable of predicting the future behavior of the entire structure based on information about the
original design and the current state of the structure. The latter can be usually approximated from
current measurements of material and structural properties using system identification methods. In
regions of high seismic risk the difficulty of the problem is compounded by the complex loading
history of existing structures, which might have experienced several small and moderate earthquake
excitations in their service life.

The evaluation of the future behavior of existing concrete structures depends on the development of
advanced analytical models, which describe the time and load dependent nonlinear behavior of the
structural members. These models should satisfy two basic requirements: (a) they should be reliable,
robust and computationally efficient and (b) they should be of variable complexity depending on the
degree of detail required from the analysis: while individual critical members of the structure can be
evaluated with sophisticated finite element models, the behavior of multistory buildings and multiple
span freeway structures can be described with sufficient accuracy with member models. In fact, the
ability to mix finite element models of critical regions of the structure with nonlinear or even linear
member models of the rest of the structure should be an important consideration in the development
of such models.

In the following, a new fiber beam-column finite element for the analysis of reinforced concrete
structures is presented. Contrary to most existing beam finite elements which are based on the defi-
nition of displacement shape functions, the element described herein assumes a constant axial force
and linear bending moment diagrams inside the element, thus assuming force shape functions. A
general overview of the element formulation and of the element nonlinear iteration scheme needed
for the element state determination is first presented, followed by the description of a few numerical
examples in which the element response is compared with experimental results

2. ELEMENT FORMULATION

The beam-column element is shown in the local reference system x,y,z in Fig. 1. The element is rep-
resented without rigid-body modes, thus forces and deformations are measured with respect to the
cord connecting the two end nodes. Forces and displacements are grouped in the following vectors:

Element force vector Q={0 Q0 O 0O Qs}T ¢))
Element displacement vector a={a @2 @ 9 qs }T )
Similarly, section forces and deformations can be grouped in the vectors:
Section force vector D(x)= {M1 (x) M,(x) N (x)}T 3)
Section deformation vector d(x)= {x, (x) Y2(x) E(x)}T 4
The element is composed of a finite number of longitudinal fibers Each cross section is therefore
described by the number of fibers, their area, location and force-deformation relations. Since the

element has been developed for the analysis of reinforced concrete structures, concrete and steel
constitutive models have been used [1]. Small kinematics are postulated and plane sections are
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assumed to remain plane and normal to the longitudinal axis. Consequently, the effects of shear and
bond-slip are neglected in the present model. The nonlinear nature of the problem depends entirely
on the nonlinear fiber force-deformation relations. The element formulation is based on the assump-
tion that the axial force is constant and the bending moment diagram is linear inside the element. In
symbols this translates to a simple relation between section and element forces:

D(x)=b(x)-Q and AD(x)=b(x)-AQ (5)

where A denotes increments and b(x) is defined by:

) @) o o o

bx)=| © 0 (i—l) (-’5) 0 ©
L L

L o

The force field, as defined by
(5), is exact as long as only
nodal forces act on the ele-
ment. Loads acting inside the
element can be easily intro-
duced using the procedure
described in [1].

The element is formulated
using the flexibility method
: rather than the classical stiff-
ness method, because of the
advantage of defining an
"exact" force field inside the
element. Calling P-Q the ele-
ment unbalanced  forces
z (difference between applied
and resisting forces P and Q

Ma(x), Xa(x)
Y

N{x), &x)

) M0 2,0
ifth) fier 4,
Amal

i=1.n

=

2
z

¥ x

respectively) and Aq the ele-

FIGURE 1 - BEAM ELEMENT FORCES AND DISPLACEMENTS WITHOUT . .
ment deformation increments,

RIGID BODY MODES IN LOCAL REFERENCE SYSTEM:

FIBER DISCRETIZATION OF CROSS SECTIONS the nonlinear system of equa-
tions at the element level is

written:
[F]'-Aq=(P-Q) )

In Eq. 7 the element stiffness appears as the inverse of the element flexibility to indicate that the
element is flexibility-based. The element flexibility matrix is determined integrating the section flexi-
bilities according to:

L
F= [JbT(x)-f(x)-b(x)-de ®)
0
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Section flexibility is obtained by inverting the section stiffness. The element is implemented in a stand
alone program organized along the lines of a typical finite element code. Loads are applied on the
structure and the program computes the corresponding displacements. The nonlinear solution proce-
dure is organized as follows:

Load increments AP are applied to the structure and a Newton-Raphson scheme is used to compute
the corresponding structure displacement increments. At every Newton-Raphson iteration it is neces-
sary to determine the element resisting forces corresponding to the updated element displacements.
This is a challenging task when working with a flexibility-based element, because force and not
displacement shape functions must be used. A new scheme has been developed for the proposed
element, based on residual section and element deformations. Given the updated element displace-
ments, the following steps are performed:

1) Compute the element linearized force increments using the last computed element tangent stiff-
ness, and update the element forces;

2) Compute the section force increment using (5);
3) Compute the section deformation increment using the last computed section flexibility;

4) From the new section deformations, using the hypothesis that plane sections remain plane and
normal to the longitudinal axis, compute the new fiber strains;

5) Compute fiber stresses and tangent moduli using the fiber force-deformation relations;

6) Compute the new section tangent stiffness, the section resisting forces and the section unbal-
anced forces, difference between applied and resisting forces;

7) Transform the section unbalanced forces into section residual deformations using the section
flexibility;
8) Integrate the section residual deformations to compute the element residual deformations;

9) Compute the element flexibility using (8);

-

10) Compute the new element force increments;

Step 10) is needed because the element residual deformations can not be applied to the element
alone, otherwise node compatibility would be violated. Forces based on the new element stiffness are
applied to the element in order to yield element displacements equal and opposite to the element
residual deformations. Correspondingly, force and deformation increments are applied to all sections:
these increments are computed repeating steps 3) through 9) until convergence is achieved. The ele-
ment converges when the unbalanced forces at all sections are sufficiently small. Element conver-
gence implies that the element resisting forces corresponding to the applied displacements have been
computed and the following Newton-Raphson iteration can be performed.

The new element convergence scheme is based on the equilibrium conditions (5). It can be shown
that during the iterations equilibrium and convergence inside the element is respected, and section
force-deformation relations are satisfied, at least within a certain tolerance, when convergence is
reached. More details on the approach and a thorough description of the iteration scheme are
presented in [1].

3. EXAMPLES

A series of comparisons between analytical and experimental results are used to study the element
performance. Four examples are illustrated in this section: these refer to three reinforced concrete
cantilevers discretized with a single beam-column element. Displacement control techniques have
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been used to match experimental and analytically imposed displacements: a very strong linear elastic
spring has been positioned at free end of the cantilever to control the tip displacements.

The first example shows the

30

uniaxial bending of a

20

cantilever beam R1 with a
rectangular cross  section
tested in [2]. The simulation
of the tip displacement

e
o
1

response in the strong
direction y is shown in Fig. 2.

o

Applied Load (kips)

Analytical and experimental
results agree well, especially
for displacements up to

yielding of the built-in end. At
this point bond-slip and shear
deformations become
important and since the

0 1 > 3 element does not include such

Tip Deflection (in) effects, the analytical and

experimental results show

FIGURE 2 - TIP LOAD-DISPLACEMENT RESPONSE OF CANTILEVER some discrepancy.
BEAM UNDER CYCLIC UNIAXIAL BENDING

The remaining examples refer

to the bending behavior of a cantilever under a compressive axial load and biaxial or uniaxial bending
moments, which was tested in [3]. Fig. 3 illustrates the uniaxial case in which a constant axial force
and a cyclic force along the weak axis z are applied at the tip of the cantilever. Displacement control
was not used in this example. Numerical and experimental results are very similar and show a stiffer
fiber model behavior, especially for low levels of lateral force at which "pinching" is evident in the

experimental results.

The same cantilever is
studied under biaxial
bending conditions. Two
cyclic transverse loads are
applied at the free end of
the cantilever. Displacement
control is used 1in this
example. Fig. 4 shows the
tip response in the strong
direction y. The correlation
between analytical and
experimental results is very
good both for small and
large displacements. When
the concrete is fully cracked
at the built-in section, bond-
slip effects appear in the
experimental data, but their
contribution to the tip
displacements is small.
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FIGURE 3 - TIP LOAD-DISPLACEMENT RESPONSE OF CANTILEVER
UNDER CONSTANT AXIAL LOAD AND CYCLIC UNIAXIAL
BENDING: NUMERICAL AND EXPERIMENTAL RESULTS
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FIGURE 4 - TIP LOAD-DISPLACEMENT RESPONSE IN THE STRONG
DIRECTION y OF A CANTILEVER BEAM UNDER CONSTANT
AXIAL LOAD AND CYCLIC BIAXIAL BENDING:
NUMERICAL AND EXPERIMENTAL RESULTS.

Finally, the same cantilever
beam is studied under both
cyclic bending and cyclic axial
force. According to the nota-
tion of Fig. 5, the following
load and displacement histories
have been imposed:

P, =-75%30kips
p, = 10.96in
p. =10.96in

Load and deformation incre-
ments are applied so that
cycles are simultaneous: all
three quantities reach their
maximum and minimum values
at the same time. This example
is particularly important to
show the capability of the pro-
posed element to represent
softening and stiffness degra-

dation without any computational difficulties. This is due to the fact that force equilibrium is always
maintained along the element. When softening initiates at the built-in section, the whole beam
unloads respecting the prescribed linear bending moment diagrams. All sections unload elastically
except for the built-in section, which softens. Correspondingly, the end curvature increases while

curvatures at all other sections decrease.

Load y (kips)

. P,=75+30 kips
B

iy

1 08 06 04 02 0 02 04 06 08 1
Tip Displacement y (in)

FIGURE 5 - TIP LOAD-DISPLACEMENT RESPONSE IN STRONG

DIRECTION y OF CANTILEVER UNDER CYCLIC AXIAL
LOAD AND CYCLIC BIAXIAL BENDING

4. CONCLUSIONS

To predict the response of
existing reinforced concrete
structures to strong ground
motions and to develop better
strengthening and  retrofit
measures for structures in
zones of high seismic risk inte-
grated experimental and ana-
lytical studies are very impor-
tant. The beam-column fiber
element presented in this paper
is part of an ongoing effort to
develop reliable computational
tools of different levels of
complexity and, thus, reliabil-
ity, for modeling reinforced
concrete structures. Most two-
node reinforced concrete finite

elements are based on the stiffness approach which postulates linear curvatures and constant axial
strain along the element. These deformation distributions do not represent the physical behavior
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when sections start yielding. The proposed finite element is based on the assumption of linear bend-
ing moment diagram and constant axial force along the element. This hypothesis is exact when no
load is applied inside the element. The computational cost for each element is higher when a flexibil-
ity based element is used, because of the iteration scheme necessary to compute the element resisting
forces corresponding to the applied displacements. However, fewer elements are needed to discretize
the structure, thus requiring a smaller number of total degrees of freedom. Further refinements of the
element are needed to include bond-slip and second order effects.
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