Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte
Band: 67 (1993)

Rubrik: Session 2: Analytical evaluation of structures

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

101

SESSION 2

ANALYTICAL EVALUATION OF STRUCTURES



102




103

KEYNOTE SPEAKER



104




m 105

Evaluation of Reserve Capacity of Frames
Détermination de la réserve de capacité portante des cadres
Bestimmung der Tragreserve von Rahmen

Alan Kemp obtained BSc & MSc degre-
esin civil engineering from the Universi-
ty of the Witwatersrand and PhD from
Cambridge University. Before becoming
Professor of Civil Engineering at the
University of the Witwatersrand, he
was Group Consulting Engineer of
Dorman Long (Africa). He is a past
President of the S A Institution of Civil
Engineers.

Alan R KEMP

Prof. of Civil Eng.

Univ. of the Witwatersrand
Johannesburg, South Africa

SUMMARY

Twin algorithms are described for separating linear and nonlinear moment-curvature characteristics of sub-
members and then using these characteristics in elastic-plastic frame analysis with two submembers per
frame member. Provision is made for complete stress-strain curves, residual stresses, shrinkage, plastic
local and lateral buckling, interface slip and combinations of permanent and imposed load properties, as
well as end connection flexibility. An example shows the enhanced ultimate load capacity that can be
achieved in continuous structures and the required rotations of plastic hinges that are checked using a
limit states criterion of ductility.

RESUME

L'auteur expose des algorithmes doubles en vue de séparer les rapports courbures-moments de types
linéaires et non linéaires dans les éléments porteurs secondaires, puis d'appliquer ces caractéristiques au
calcul élastoplastique de cadres & deux éléments porteurs secondaires. Cette méthode prend en compte
la totalité des diagrammes contrainte-déformation, les contraintes résiduelles, le retrait, le voilement et
déversement local plastique, les surfaces de contact a glissement, la variation des propriétés sous charges
permanente et utile, ainsi que la flexibilité des assemblages bout & bout. Un exemple met en valeur, d’une
part |"augmentation de la charge portante ultime de structures hyperstatiques et, par ailleurs, les relations
requises par les rotules plastiques qui sont vérifiées a I'aide d'un critére de ductilité a I’état ultime.

ZUSAMMENFASSUNG

Es werden Zwillingsalgorithmen zur Trennung der linearen und nichtlinearen Momenten-Krimmungsbe-
ziehungen von Rahmenbauteilen mit zwei Untertraggliedern beschrieben. Sie beriicksichtigen vollstindige
Spannungs-Dehnungskurven, Eigenspannungen, Schwinden, értliches plastisches Beulen und Kippen,
gleitende Kontaktflichen, Anderung der Eigenschaften unter Dauer- und Verkehrslast, sowie Nachgiebig-
keit der Endverbindungen. Ein Beispiel belegt die gesteigerte Grenztragfihigkeit statisch unbestimmter
Tragwerke und die bendtigte Rotationsfahigkeit der plastischen Gelenke, die mit einem Duktilitdtskriterium
Uberprift werden.




106 EVALUATION OF RESERVE CAPACITY OF FRAMES A

1. INTRODUCTION

Structural frames often possess load-resisting capacity above that assessed in the original design

due to the following reasons:

® Semi-rigid end-connections that may provide continuity where simple-supports were assumed.

® Stress-strain properties of materials, including nonlinear effects, that differ from those
originally assumed (conservative properties and partial material factors may be adjusted after
in-situ testing).

® Partial composite action in structures where this was neglected.

® Benefits of limit states design codes allowing for redistribution of moments and ultimate
(stress-block) resistances compared to older allowable stress codes, but also requiring more
comprehensive analysis including non-linear P-A effects and ductility criteria.

If adequate analysis procedures are available, these factors will often lead to an assessed increase
in load capacity. This may be improved further by strengthening procedures that enhance flexural
resistance and stiffness, introduce additional continuity and load paths, or prevent secondary modes
of strain-weakening behaviour.

The first two sections of this paper describe moment-curvature and frame analysis algorithms that

link together to provide a computational method of allowing for all these nonlinear characteristics

without the need for finite-element analysis involving numerous elements both across the sections
and along the length. Features of this approach include:

1. In the frame analysis each "member" is represented by only two "sub-members", each
reflecting the integrated non-linear behaviour between an end and the internal section of
maximum moment (or the midspan if no maximum internal moment exists), without further
discretization in inelastic regions.

2. The frame analysis identifies not only the ultimate load capacity, but also the plastic rotations
at each critical section before loss of moment resistance, that are required to check the
ductility, as described in the third section of the paper.

3. The behaviour of each element in positive and negative bending is determined in the moment-
curvature algorithm allowing for nonlinear material behaviour, shrinkage, creep, interface slip,
residual stresses and other effects.

4. This moment-curvature algorithm minimises the number of "elements" representing the cross-
section because it is not necessary to subdivide for strain gradient through the depth.

5. Strain-hardening followed by strain-weakening behaviour beyond the elastic region is
represented by an idealised elastic-perfectly-plastic moment-curvature relationship for frame
analysis, together with expressions for determining the available plastic rotation prior to the
moment falling below the design resistance.

The moment-curvature and frame analysis algorithms and the limit states criterion for ductility are
illustrated by the example of a three-span composite beam in Fig. 1. Although this is a relatively
simple structure, the approach has been applied to more complex sway structures involving frame
instability [1,2]. This example is also used at the end of the paper to illustrate the reserve capacity
that can be mobilised by allowing for nonlinear characteristics, including continuity in a previously
simply-supported beam using the semi-rigid end detail reflected in Figs. 1b and c.

2. MOMENT/CURVATURE-ROTATION-DEFLECTION RELATIONSHIPS

2.1 Stress-strain models of material behaviour
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The moment-curvature method described in this paper has L New end
its origins in some of the many stress-strain models that =——= plate
exist [3], but has been developed and tuned progressively o '
over the last decade by the author to represent t; Saction dimensions
consistently the inelastic behaviour of a wide range of
structural components. Importantly, the results may be
integrated to determine the element properties required
for nonlinear frame analysis, including the assessment of | Mpc
required ductility using a mixed method of analysis that T T 0. r
is described in the next section. 5 ‘A i
5] /
Any stress-strain curve is subdivided into three regions as § / Slope = C = 83000kNm/rad
illustrated in Fig. 2. Each region is represented by a j (Connection stiffness)
local curve with an origin at the start of the region and a !
relationship in region i of the following form: ]
Ao, - EAe + D(Ag)" (1a) Rotation 6
Ae - ¢ - ¢ (1b) c) End connection M - O curve

Fig.1 Composite beam example

which Ao; and Ag, are the changes of stress
and strain at strain € from the origin of the
region, ¢,  is the strain at the origin, E, is the
slope of the stress-strain curve at the origin
and D; and n; model the observed
characteristics of the material.

Stress

The general Eqns. 1a and 1b for each of the
three regions are particularly useful in
calculating the moment-curvature relationship
because at any extreme fibre strain & the
average stress under the curve @, the location
of the centroid of this area ¢ = foede/ae? ' 3

Region 1 i s i
and the tangental slope E, may be expressed o Sljg:i‘ . »le Region 2 e Region 3 N
in simple algebraic form as follows: pe = Slope = Eg
o =X A /e (2a) Fig.2 Stress-strain curves
A - o Ae + EAe? / 2 + D(Ae)"" " /(n+1) (2b)

Y [Ag, + o, Ae? /2 + EAe’ /3 + D(Ae)" */in + 2)]  {(2¢)
ae?

E - E +nD, (Ae)"" (2d)

c
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in which the summation extends over all regions i up to and including the region containing the
strain €, g,  is the stress at the start of the region and A, is the area under the stress-strain curve
in any region given by Eqn. 2b. The index n, is calculated from a known change of slope (E, -
E) over Ao, and Ae, from Eqns. 1a and 2d:

n - (E - E) Ae / (EAe - Ac) (2e)

The material properties that need to be specified to determine the unknowns E;, D, and n; in the
three regions of the curve apart from continuity are shown in Fig. 2 and Table 1. This table also
includes in brackets typical design values, incorporating partial material factors, that are used in
the example of Fig. 1.

2.2 Moment-curvature relationships

Any cross-section of a structural element comprising one or more materials and subjected to
bending with or without coincident axial force, may be subdivided into an appropriate number of
equivalent rectangular elements or concentrated areas to represent the geometry of the cross-
section. This subdivision does not have to be sufficiently fine to neglect the strain gradient because
of the availability of expressions for average stress and lever-arm of the resultant force vector
given by Eqns. 2a to 2c. Thus a steel I-section may be represented by three equivalent rectangles
and a reinforced concrete beam by one rectangle and one concentrated area, whereas a circular
cross-section may require twelve rectangular elements.

A linear distribution of longitudinal strain is considered through the depth of the section and the
strain gradient is assumed equal to the curvature. Considering any rectangular element j shown
in Fig. 3 of breadth b, thickness t and depth of centroid y, from an arbitrary reference level (the
top surface), the axial force supported by the element and its moment of resistance may be
determined directly from the stress-strain properties of the material described previously. The
resistance of the rectangle under consideration ABCD may be represented by the difference in
resistance of the rectangles ABEF and CDEEF in this figure. For the strain distribution shown,
representing a curvature or strain gradient ¢:

Material Mod. of Proportional Strain hardening/weakening
(Fig.2) Elasticity limit £,
E Onset Slope

1. Structural f,=f, e,=(5-15)e, E,=E/(30-100)
Steel (206 GPa) (f,=235MPa) (e,=10e,) (E,=E/100)

2. Metal f,=0.8f, e,=(1.5-2)f /E | E;=E/(30-200)
(reinforcing) (200 GPa) (f,=390MPa) (e,=2f,/E) (E,=E/200)

3. Concrete E=20-35GPa | f,=(0.5-0.8)f, e, @f, = E,=-E/(3-50)°
(Compression) | (E=24GPa) f.=15MPa 0.002-0.0025 (E,=-E/5)

f,=9MPa (e, =0.0022)

4. Concrete E as for f,=f=0.3(f)*" | e,=G-8)f/E |[E =0

(tension) compression f,=1.8MPa (e,=4f /E)

Depends on extent of triaxial restraint provided by reinforcement

Table 1. Material properties for stress-strain curves in Fig. 2
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surfaces of the rectangle defined as | Rectangular | Y L

- ) c! _Element Ip £,
positive below the neutral axis, €, and y. _ _ | il .
e, are the corresponding strains and y, AWA B : &
is the depth of the neutral axis below b
the reference level. Fig.3 Assessment of element ABCD

The axial force F,; supported by element j is given by the difference in axial forces on the two
rectangles ABEF and CDEF:

F, = b (ay, -oy) (4)

in which G, and G, are the average stresses under the stress-strain curve given by Eqns. 2a and
2b at strains €, and €, respectively.

The moment of resistance M; of the element about the centroid of the complete section is given
by the difference in moments of resistance of the two rectangles ABEF and CDEF:

M - b (o,c,y’, ~ocy’) +F ly -v,) {5)

in which ¢, and c, are the centroidal ratios given by Eqn. 2c and y, is the depth of the centroid
of the section from the reference level. Similar expressions may be derived for concentrated areas
such as reinforcement [4].

In all of the above equations the assumed sign convention is stress, strain and force positive in
tension, curvature and moment positive in sagging bending and depth y positive below the arbitrary
reference level. The expressions apply whether the element is above or below or cut by the neutral
axis. For materials such as concrete the form of these equations also enables different stress-strain
curves to be adopted under compression and tension by referring @,, ¢, and G, c, to the properties
of different materials if the neutral axis falls within the depth of the element.

In Eqgns. 3 to 5 it is assumed that the depth of the neutral axis below the reference level y, is
known. At inelastic levels of stress and strain, y, is determined iteratively to satisfy equilibrium
between the net axial force resisted by the section, }'F;, and the external axial load N applied to
the section.

The method has been applied [4] to & wide range of structures and elements of different materials

at serviceability and ultimate load and has been adapted to model the following important aspects

of structural behaviour:

® Prestressing and shrinkage in concrete elements, by introducing initial values of strain in the
relevant elements.

® Residual rolling or welding stresses, by providing additional elements with different initial
strains to reflect the residual stresses approximately, based on proposals such as Young [5].

® Interface slip in composite beams with partial shear connection, by introducing slip-strain
increments at the interface that are a function of curvature and, when integrated over the half-
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span of the beam, provide a total end slip that is consistent with measured behaviour in push-
out or beam tests.

® A combination of differing section configurations and stress-strain properties under permanent
and imposed loads.

® Strain-weakening due to interactive local and lateral buckling of yielded steel sections based
on a semi-empirical model described by Kemp [6].

2.3 Idealisation for frame analysis

The moment-curvature relationships for the composite beam example shown in Fig. 1b, with
material properties defined in brackets in Table 1, are illustrated by the solid lines in Fig.4 for
positive and negative bending. The ultimate design resistance M, is an important parameter that
is determined from code rules in this case, or other considerations. These curves include the
effects of residual rolling stresses, interface slip due to a 50% partial shear connection and
interactive plastic local and lateral buckling at high moments in the negative moment region. The
region of the beam adjacent to the semi-rigid end connection shown in Figs. 1b and c has been
modelled by assuming that the steel section cannot resist tension.

In the three-span continuous beam of Fig 1a, the first regions to develop plastic hinges are adjacent
to the internal supports. Uncertainty exists over the moment-curvature path followed by sections
in the inelastic region adjacent to these supports (represented by portion PM in Fig. 4b) once the
structure is loaded under displacement control beyond the maximum moment and experiences
strain-weakening with the section of maximum moment following portion MM' in Fig. 4b. Based
on a qualitative assessment of test behaviour it is proposed that the distribution of curvature in this
inelastic region at the load level at which the maximum moment at the internal support falls to the
design resistance M, may be modelled simply and approximately by the line P'M'. This implies
that curvature is a linear function of moment and the available inelastic rotation 8,, is given by the
shaded area in Fig. 4b as:

' !
8, = 0.5M_(m -1) [¢! - ¢, (m +1) / 2m)/mV, '6)
2a0 - T T T T T 100 T T L T ) T T ]
= = Mp=88 —— ,
E 200 |- Z e P M, =76 Mo
= = O S S s
160 |- mg"\l;‘m—WEakemﬂg
- + 80 - After str .
= 7]
g 10 = 8,, =shaded area
g . € 40 |- .
o o | Elastic slope 1 @ — — - Idealised
£ =E1=13000kNm ot
o T 20 =
c 40t 1 5
@ e 0 @m
)
O”OIIZD { 1 1 L 1 7] 0»], - 1 1 1 1 1 L:“
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
Curvature  (m-1) curvature (m-1)
a) Positive (sagging) bending b) Negative (hogging) bending

Fig. 4 Moment-curvature relationships for example of Fig. 1
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in which V, is the shear force at the section of maximum moment and m = M, /M, in Fig. 4b.

On this basis the behaviour of elements of the structure between sections of zero moment and
adjacent sections of maximum positive or negative moment (or adjacent joints) may be modelled
in the frame analysis described subsequently as the superposition of the following effects:

1. Elastic behaviour is represented by the slope of the dashed elastic region of the idealised
moment-curvature relationship OP in positive bending EI = M,/¢,.

2. Inelastic behaviour is modelled by the horizontal dashed line PM' representing a concentrated
ideally-plastic hinge of moment capacity M, with an available rotation capacity 8,, equal to the
shaded area in Fig. 4b and given by Eqn. 6.

3. Differences in stiffness between positive and negative moment regions including cracking of
concrete adjacent to internal supports, is represented by an additional component of available
plastic rotation 0, . given approximately by the integration of a linear difference in flexural
rigidity between the positive moment EI and the cracked negative moment EI', as follows:

6, -0, [1 - (M_/M)?([E/E -1] (7)

in which 8, is the calculated elastic rotation in the negative moment région and M,, is the
moment at which cracking occurs.

4. Semi-rigid end connections are represented by an idealised elastic stiffness C in Fig. 1c and,
in cases where the connection rather than the adjacent member is the critical flexural element,
by identifying the available plastic rotation 6, of the end connection prior to the moment
falling below the design value M, as shown in this figure.

3. FRAME ANALYSIS

3.1 Mixed flexibility/sway-deflection method

The selection and development of a mixed flexibility/sway-deflection method of analysis arose

primarily from convenience in modelling elastic and inelastic behaviour, differences in negative

and positive moment characteristics and semi-rigid connections, as outlined in the previous section

[1,2]. By selecting end moments and independent sway-deflections as unknowns in frame analysis

all of these properties including the development of plastic hinges can be considered on a consistent

basis without changing the number or location of the unknowns. Additional benefits of this

approach include:

® In nonlinear analysis the use of end moments as unknowns rather than joint displacements is
likely to lead to more stable and sensitive solutions.

® Axial forces in members are determined from equilibrium considerations rather than as a
stiffness function of axial distortions.

® The unknown independent sway-deflections are all directly related to the plastic and instability
mode shapes of the structure and therefore relevant to inelastic P-A methods.

The method is described firstly in terms of the unknown end moments and then in terms of the
additional unknown, independent sway-deflections.

3.2 Solution equations for unknown end moments

In the substructure shown in Fig. 5 that is used for illustrating this approach, ij is one of the two
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sub-members representing member ijn between sections of maximum moment (or midspan if there
is no internal section of maximum moment). The matrices relating end rotations 8 to end moments
M and relative end deflections due to sway &, (all positive anti-clockwise) in ij are:

[eij] L [by3 —bZ/Gl [Mij] . [b‘i‘,/L] (8)
eji E i

-b,/6  (b/3 +f)| (M, 3, /L
in which L and EI are the length and elastic flexural rigidity of the member, b, and b, are Berry
stability functions [7] that allow for increased flexibility due to axial force and have values of unity
when second-order P-A effects are neglected and f is the non-dimensional flexibility ratio of the
end connection expressed in terms of the elastic stiffness of the connection, C in Fig. 1c :

f-E/CL (9)

The following equations are used for solving the n unknown moments at the ends of the n members
meeting at joint i in Fig. 5a (n = 4 in Fig. 5a) :

1. One equation representing equilibrium of
the moments, M at the ends of the
members meeting at joint i

Z M =M +M +M, +M_ -M (10) } ; j

in which M'; is the magnitude of any K 1
external moment applied to joint i.

2. (n-1) compatibility equations expressing
the equality of rotations at the ends of
each pair of members meeting a joint i
(three compatibility equations for joint i
in Fig. 5a representing equal rotations at
end i of members ij and ik, ij and if, and
ij and im), as follows:

6‘1 - Eik ’ 6ii = Bu and Hij - Bim (1)

a) Substructure and sub - members

in which, for example in sub-member jj,
6, =6, + 0'; + 6, and B is the
superposition of 8; (the end rotation due
to unknown end moments given by Eqn.
8), 6'ij (the end rotation due to member
loads with end moments equal to zero - Fig.5 Sub-member ij at joint 1
i.e. simply-supported) and 6, (the
required plastic rotation of a hinge if it
develops at this section, as discussed
subsequently). In considering P-A effects
the end rotations 8' may be amplified due
to axial force using Berry functions [7].

b) Sub - member ij
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The only exception to this subdivision of equilibrium and compatibility equations occurs at a fixed
support where all n equations will be compatibility equations.

3.3 Solution equations for unknown sway deflections

The independent modes of sway are treated as additional unknowns and the approach therefore
becomes a mixed method combining unknown end moments with unknown independent sway
deflections.

In a structure with j joints, m members and r constraints to global translation at support joints
(horizontal and vertical components), there are s independent components of sway deflection given
by:

s=2j-m-r (12)

A systematic approach has been developed by the author [1] for identifying the most appropriate
unknown joint translations to represent these s unknown modes of sway and their relationship to
the other joint translations. Typically there is one mode of sway representing plastic collapse of
each member and one representing each mode of sway instability. In this algorithm conventional
sway-equilibrium equations are used to solve for each unknown sway deflection and are derived
by the Principle of Virtual Displacements applied to a virtual free body displacement of the
structure in the mode of sway. These sway equilibrium equations are expressed in terms of:

® the unknown end moments in the sub-members,

® P-A terms for elastic or inelastic stability analysis in which P are the axial forces extrapolated

from the previous iteration and A are the unknown sway deflections normal to P.

3.4 Application of this frame analysis method

This mixed flexibility/sway-deflection method may be used in the same form for elastic, elastic-

plastic and elastic-plastic-instability (P-A) analyses as follows:

1. Elastic analysis (including elastic connection flexibility) : The unknown end moments are
solved using the idealised (dashed) elastic properties in Fig. 4a and the joint equilibrium and
compatibility Eqns. 10 & 11 and the unknown sway deflections using conventional sway-
equilibrium equations.

2. Elastic-plastic analysis : After the elastic analysis, plastic hinges may be introduced at critical
sections either by defining the ultimate design resistance M,, or by identifying a specified ratio
between the moment capacities at two sections and the location at which a hinge is expected
to develop. In either case the moment at the plastic hinge is then known and is replaced as
unknown by the required plastic hinge rotation 6, (forming part of Eqn.11) to accommodate
the necessary redistribution of moments, as discussed subsequently.

3. Elastic-plastic-instability and P-A analyses : The elastic-plastic analysis approach is extended
to include the Berry stability functions in Eqns. 8 & 11 and the P-A term in the sway-
equilibrium equations. The member axial force is extrapolated from the previous analysis step
introducing a limited iterative procedure.

4. REMAINING CAPACITY ASSOCIATED WITH REDUNDANCY

A significant source of reserve or remaining capacity may exist in redundant structures if they
possess sufficient ductility to redistribute moments from heavily stressed sections, at which the
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ultimate stress-block moment M, is achieved, to less heavily stressed sections as the load is

increased. The two preceding parts of this paper have described relatively simple algorithms for

determining results that are directly relevant to assessing ductility, namely:

1. The available inelastic rotation 8, at plastic hinges prior to the moment falling below the
ultimate resistance M, and made up of components due to plastic behaviour 6,, (Eqn. 6),
inelastic rotation of end connections 6, (Fig. 1c) and reduced stiffness due to cracking of
negative moment regions, 0,., (Eqn.7).

2. The required inelastic rotation 6, at the same plastic hinges from the frame analysis of the
redundant structure for specified loads and ultimate resistances M,

A general limit states criterion of ductility has been proposed [2] for determining how much
capacity exists in indeterminate structures to redistribute moments. This requires that the available
inelastic rotation 6, at each plastic hinge should be greater than the plastic rotation 8, required to
achieve the specified level of moment redistribution or hinge development:

i.e. LIMIT STATE OF DUCTILITY : (0, /v, ) > 6 (13)

in-which y_, is a partial material factor to allow for the considerable uncertainties in assessing 6,
and 6, in the range 1.5 to 3 depending on whether it is a ductile or brittle mode of failure. This
criterion may be expressed non-dimensionally in terms of rotation capacity by dividing both sides
by the elastic rotation at M, between the plastic hinge and the adjacent section of zero moment.
The criterion conforms to limit-states terminology by having a resistance on the left hand side and
an action effect on the right hand side, and may be applied to any mode of failure inhibiting
ductility for all types of structural materials.

5. EXAMPLE

Consider the three-span steel beam illustrated in Fig.1 that was originally designed as non-
composite and simply supported with cleat connections only resisting shear, but is to be considered
for upgrading into a continuous composite beam. The slab contained 0.4% longitudinal
reinforcement over the internal supports for crack control and this will be utilised. The spans are
about 2/3rds of a typical full-scale beam, but reflect the dimensions of a similar specimen tested
by the author for available plastic rotation [8]. The nominal load carrying capacity of the existing
beam is 6kN/m of permanent and 2 kN/m? of imposed load on the basis of an existing allowable
stress code for steel, assuming the compression flange is restrained against lateral buckling.

Upgrading will be achieved by cutting out slots in the concrete above the steel beam to accomodate
a partial shear connection capable of mobilising 50% of the ultimate slab force in sagging bending
and the full effective area of reinforcement over the internal supports (500 mm?). Each beam will
be propped at midspan during casting of the grout around the shear connectors and welding of the
end plate to the bottom flange of the steel beam and adjacent web as shown in Fig. 1b. This end
plate provides a semi-rigid end connection with moment resistance made up of the reinforcement
in tension and the bottom flange in compression when the prop is released [8].

The evaluation of the enhanced load-carrying capacity at the ultimate flexural limit state is

undertaken as follows:

® The properties of rows 1 to 4 of Table 2 are determined using the moment-curvature results
in Fig. 4 allowing for interactive plastic local and lateral buckling in negative bending and
concrete crushing in positive bending.
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The properties in rows 5 and 6 of this table are calculated from these values using Eqns. 7 and
6 respectively.

The elastic flexibility ratio f of the end connection (row 7) is determined from experimental
results (Fig. 1¢) using Eqn.9 : no significant nonlinear component of connection rotation was
apparent at the level of moment developed in the adjacent member, so 6, = O in this case.
An ultimate load capacity of the three-span beam of 41.8 kN/m associated with plastic hinges
at the internal supports and midspan region of the outside spans, is determined from the frame
analysis, in two steps (elastic and plastic) using 6 sub-members (Fig. 1a) and 12 unknown end
moments and 3 unknown sway deflections. This represents a more than three-fold increase
in the existing imposed load capacity of this beam.

Required plastic hinge rotations in the outside spans adjacent to the internal supports 6, =
0.0135 rad. are obtained from the frame analysis and are used as the action effect in Eqn. 13
to check the ductility involved in plastic moment redistribution. A partial material factor of
Yma = 1.5 is adopted for ductile failure due to local and lateral buckling and the resistance
effect is the available plastic rotation 6, = 0.0216 rad. made up of 8, (equal to zero), 6, and
8,, (from Table 2, rows 5 and 6).

Limit States Criterion (Egn.13) : (0.0216 / 1.5 > 0.0135)

The available plastic rotation 6, compares favourably with tests on composite beams with similar

semi-rigid end connections [8].

This excellent ductility is explained in this reference by the

location of the plastic neutral axis being close to the compression flange which severely inhibits

local and lateral buckling.

Moment-curvature properties (Fig.4) : +ve Moment Region | -ve Moment Region
1. Elastic flexural rigidity EI (kNm?) 13000 13000 (+ve moment)
2. Ultimate design resistance M, (kNm) 152 76 (semi-rigid)
3. Maximum moment M, (kNm) 200 88
4. Falling branch curvature ¢'_ (m™) 0.56
Assessed properties:
5. Plastic rotation (Concrete cracking) N/A 0.0017
0,.. Eqn.7 (rad.)
6. Plastic rotation (yielding) 8, Eqn. 6 N/A 0.0199
(rad.)
Experimentally measured properties:
7. Elastic flexibility ratio of end
connection f = EI/CL (Eqn.9) N/A 0.05

Table 2. Properties required for frame analysis

6. CONCLUSIONS

A significant source of reserve capacity exists in many structures if the implications of inelastic
material behaviour, continuity and plastic redistribution of moments as well as the ductility
requirements, can be assessed analytically without resorting to finite elements models that require
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numerous elements both across the section of the members and along their length. A twin
algorithm is illustrated in this paper for assessing firstly the inelastic section properties of two sub-
members per frame member, and secondly the elastic-plastic-instability analysis of frames
comprised of these sub-members. These analyses also identify the available and required plastic
rotations that are used to check adequate ductility using a simple limit states criterion involving
material plasticity, inelastic properties of end connections and differing flexural rigidities in
positive and negative bending.
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SUMMARY

This paper deals with the way in which an existing and so deteriorated structure of sheetpiling can be
evaluated. Applying more advanced structural methods than the ones used in the design stage will
uncover hidden structural reserves and together with the once more adjusted safety margin it may give
a new residual lifetime. To stretch this 'life after death’ a range of possible maintenance actions, inclusive
‘doing nothing’, should be weighted against cost and ectended lifetime.

RESUME
Cet article traite de la vérification de structures existantes comportant des réseaux de palplanches
dégradés. Il est possible de mobiliser des réserves latentes de résistance, donnant ainsi A ces

constructions une longévité supplémentaire, par I'utilisation de méthodes de calcul plus affinées,
contrairement aux hypothéses de calcul et aux coefficients de sécurité admis a I'origine. Cette
prolongation de durée de vie devrait résulter de la comparaison de mesures d’entretien possibles, y
compris de ne rien faire, avec les colts correspondants et le supplément le longévité ainsi acquis.

ZUSAMMENFASSUNG

Der Beitrag behandelt die Uberpriifung bestehender, verfallener Spundwandskonstruktionen. Werden
gegenuber den urspringlichen Berechnungsannahmen und Sicherheitsbeiwerten verfeinerte Nach-
weisverfahren angewendet, kdnnen versteckte Tragreserven fir eine neue Restlebensdauer mobilisiert
werden. Um sie zu verldngern, sollten mégliche Unterhaltsmassnahmen (entschliesslich der Option der
Untétigkeit) gegen die Kosten und die verlingerte Lebensdauer abgewogen werden.
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1. INTRODUCTION

All civil engineéring structures deteriorate, so don’t trust the one who
tries to sell you a ‘maintenance-free’ structure.

Only the scale of time in which the ageing-processes takes place can vary
and so can save or foolish us.

The ancient pyramides, though still in function if we have not robbed them,
suffer from a substantial surface-damage when given a nearby view.

For the more ordinairy structures of our times we don‘t have to wait so
long.

Civil engineering structures like roads have the shortest lifecycle (15 -
25 year), primairy caused by the wear and tear of the traffic, but speeded
up by the ever growing intensity and a bad quality of subsoil.

Sheetpiling-structures, allthough designed for a fifty years or more, often
appeares to have a much shorter lifetime (10 - 25 year), because of the
much more aggressive environment.

Corrosion-velocities of 0.25 mm per year with maxima in the order of 0.5 mm
are measured, not only along the seashore but also for inland polluted
canals.

When design or building-failures makes airsupply to the backside of the
sheetpiling possible, these velocities will nearly double.

So even heavy walls with a steel thickness of 10 mm or more are in that
case of ‘a short breath’.

Most of our civil engineering structures have a protection layer on the
actual bearing construction. For example a paint-coating on a steel bridge,
a concrete cover on buildings or the armour-blocks on the slope of a dike.
So degradation is from a so called ’‘two-stage-mechanism’, in which the
damage of the first stage is a warning-bell for the starting attack of the
second underlaying structural more essential part.

In contrary a sheet-piling structure most of the time is from the type
‘one-stage-mechanism’, that is degradation (corrosion) allmost starts from
the very early beginning.

It‘s a lucky circumstance that in contrast with others, this degradation
(corrosion) is rather easy to measure by way of ultrasonic waves or more
destructive by drilling or oxygen burning followed by a normal thickness
measurement.

So on the side of ‘the assessment of the condition-parameters’ there are
less problems than on the side of ‘the assessment of structural (reserve)
capacity’ but above all ‘the adjustment of acceptable risk’!

Fig.l Structural reserve and acceptable risk
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2. THE STANDARD DESIGN METHODS

In normal practice a sheetpiling wall is at best designed as a two-dimen-
sional structure, which has an infinite extent in the third dimension.

The .variation in this third dimension, with respect to loads, geometry,
soil and construction properties is considered to be small or to be brought
into account in the variation of the other two dimensions.

Even local loads or anchors are translated in a kind of equivalent line~
loads, so the third dimension can be neglected.

For the two-dimensional computation of sheetpiling walls there are a few
analytical or grafical methods available, like Rowe, Brinch Hansen, Blum.
Because the mechanical problem is in fact staticaly indetermined, these
methods give approximate solutions under certain assumptions like infinite
rigid piling and only hydrostatic active or passive earth pressure.

More recently developed computer programs (like the dutch programs MSHEET
or DAMWAND/3) do take into account the stiffness of the sheetpiling and the
stiffness of the soil by bi-linear springs (dependent on the horizontal
displacement they come at last in the active or passive plastic stage).

The input for these computations is in general as follows:

Given or assumed by experience: - GEOMETRY (H,h,a,f)
- SOIL PROPERTIES (é,c,v,6)
- LOADINGS (q,F)

Estimated by rules of thumb : - SHEETPILING (1,1I)

Than computation results in : - BENDING MOMENTS M(z)
- SHEERFORCES D(z)

With the admissible stresses : - MODULUS OF RESISTANCE (W min.)
- THICKNESS OF BODY (t min.)

If the estimated profile doesn’‘t fit, design is repeated with a better one.

losses ->
e e —_

|'”

<- residue

Fig.2 General sheetpiling wall Fig.3 General corrosion profile

The actual sheetpiling profiles are mostly heavier than strictly needed
with respect to the computation.

If extensive corrosion is expected the designer will take a few millimeters
more (if he is aware of the phenomenon and in the possition to do so!).

But in fact at that moment he has first to answer the difficult question:

What could and should be the minimum thickness of flange and body at
the end of the designlife in relation to the function of the sheet-
piling, so the consequencies of failure, the influence of inspection
on this, the ability of a new (more plastic) equilibrium, etc.

If ram-ability of the sheetpiling in that specific soil is expected to be a
problem, this can result in a heavier profile too.

The sheetpiling that finally will be found at location still can differ
from the one selected above, because of delivery problems, sheetpiles in
stock of the contractor, problems with achieving the right depth etc.

This ‘as build’ data should be saved well in a kind of birth-register
because it is of great importance for the reassesment of the structure!
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3. THE DEGENERATION PROCES

In the case of sheetpiling composed of steel profiles like Larssen, Hoesch
etc. the degeneration process is mainly ordinairy corrosion. Besides steel
there are two elements needed for the initiation and the continuation of
this corrosion process, namely oxygin and water.

So in general a vertical corrosion profile is found with two maxima, one
just beneath the low water level and one in the splash zone (Fig.3).

The first is limited by the amount of oxygin, and the other by the amount
of water.

Also in horizontal direction there will be found a wide spread in loss of
material.

The first fluctuation is measured within one single plane of a sheetpile
and may be in the order of 100 mm due to local steel properties.

The next fluctuation is found between flanges, bodies and edges. Especially
for cold-rolled profiles at the deformed outward corners, the grid is ’‘open
for corrosion’, so warm-rolled profiles are prefered in cases of extensive
attack.

Over the sheetpiling wall there may be spots working like anodes and others
like cathodes, caused by the metal composition, deformations and soil
properties. The addition of copper and other more precious metals ment to
prevent or to decrease corrosion, after some times proves to intensify this
anodic and cathodic spots perhaps due to unequal alloys.

The largest fluctuation in horizontal direction may have its origin in the
location or use of the sheetpiling wall. Tidal streams in combination with
fresh water tonques, manoeuvring ships, etc. may cause a tendensy to vary
over distances in the order of a 100 meters.

It will be clear that there is a discision problem. On the one hand in the
case of too little information (thickness measurements) it is impossible to
make distiction between the sources of above mentioned fluctuations.

So this ‘all on one heap’ approach will lead to an overestimated loss of
thickness and so to an underestimation of the remaining strength.

At the other side more information will ask for money, but may lead to a
better understanding and probable to a longer residual service life.

The smallest fluctuations over one plane are just of interest for the
moment that minimum thickness will become zero and so loss of soil material
may start, because strength will depend on the mean value.

The largest fluctuation in the order of the construction length, sometimes
will lead to a seperate consideration and perhaps measurements for parts of
the wall.

So in that case only the spread in the midrange-variations remains of
direct interest for the reassesment of sufficient strength.

Besides the decreasing thickness (that influences strength), the geometry
and the loads may change in time too.

Geometry may differ from design because of dredging, scouring, additions,
so in case of doubt measurements like sounding the bottum can give insight.
Keep in mind taht the computation and so the behaviour of sheetpiling is
more sensitive to the retaining height H than to the thickness t!

Loads may differ from design because the destination of the adjacent site
may be different (gravel storage is not covered by the often arbitrairy
chosen one ton per sgquare meter!).

Allthough soil properties will hardly change, original design assumptions
may be of an arbitrary or global level. Supplementary measurements may give
a better insight in the present situation.

After the state of the sheetpiling wall is well mapped, the evaluation will
finally start.
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4. THE REASSESMENT OF SHEETPILING WALLS

4.1 The general concept

In principal during the design stage of a structure there ought to be made
a weighing between the initial investment plus expected maintenance cost of
this new structure on the one hand versus the risc involved with the loss
of functions on the other hand and so looking for the total cost optimum in
the life-cycle.

Allthough this is a sound economic concept it is hardly been done.

As in most of the cases there are design codes or at least practical rules
that relieves the designer of this difficult economic approach.

These codes of practice prescribes certain safety-margins that covers the
above mentioned balance ‘on the safe side‘’, that is a rather 1low risc
gained by a little bit more investment (Fig.4).

The consequencies of this practical concept is that during lifetime the
risc won‘t dominate so fast and we may say ‘nature is mild’!

These safety-margins are historically grown and reflects the level of pros-
perity and the aversion of society against structural failure, because this
risc is extremely low in comparison with others [1].

For existing structures things have changed even without deterioration!

Design values for geometry, loads, soil and material properties may be
known better by measurements, deteriorated construction properties are more
scattered than before, consequencies of failure can be better estimated but
in comparison with design, cost of adjustment are now of higher order.

Yet for existing structures the engineer still tries to hide behind design
codes, because that is the easiest and common way but unfortunately in many
cases no more practicable.

As special codes or rules for existing structures are hardly available at
this moment, every engineer has to do this unknown exercition himself.

First he tries to uncover all hidden structural reserves. Material reserves
like differences between ‘as build’ and ‘as needed’ profiles or mechanical
reserves applying more advanced models. But if deterioration is extensive
this won’t be enough.

Then trying to exploit reliability-reserves, he will be confrontated with
the basic questions about safety-margins and acceptable reliability-levels
for existing structures in relation with design-values.

The considerations may be:

- Well known loads and resistance by way of measurements may lead to
less variation so to a smaller safety-margin with equal probability
of failure (Fig.6)

- A shorter residual lifetime may lead to lower extreme loads (if time
dependend) and less loss of material so to smaller safety-margins,
ending up with a margin for temporary sheetpilings (if known!).

N More costly maintenance measures together with better known failure
consequencies may lead to a higher probability of failure (Fig.5) so
to a smaller safety-margin but should not exceed other social riscs.
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4.2 The evaluation of a sheetpiling wall

The reassesment of a sheetpiling wall follows the above given concept.

First the engineer tries to interprete all the thickness measurements in
terms of a ‘representative value’ at the different levels. For instance
using the 5%-value of the normal probability function. So overthickness
given in design or construction stage will be included. With this new
adjusted values and all others like in design he tries to passes through
the ‘design-loop’ with the ordinairy two-dimensional computation.

If this still doesn’t satisfy the present-day design rules, the more hidden
and so less computable structural reserves will be taken into account.

In vertical direction there may be a certain redistribution of moments, if
a more plastic behaviour of the sheetpiling in the computation is possible.
There are computer programs written for the design of concrete retaining
walls, that can handle yielding moments (for example the dutch program
DIEPWAND/1). Yet reduction of the fieldmoment leads to increasing (accepta-
ble?) moments and forces about tie level and the fixed end (Fig.7).

Also in horizontal direction there is a possibility of a certain redistri-
bution between the individual sheetpiles.

Less corroded piles will take over a part of the load on heavy attacked
sheetpiles. In fact in the third dimension the wall can be seen as a struc-
ture with a certain amount of parallel elements. What exactly will be the
zone to be mobilized by a weak pile depends on the given local situation.
The stiffness of the wale, the geometry and the soilproperties play an
important role in this.

A three dimensional computation (with the dutch program DIANA) has proved
that in particular for the case of an anchored sheetpiling this horizontal
redistribution may be considarable (Fig.8) [2].

Though this mobilized zone is in the order of the retaining height of the
sheetpiling it has not been possible yet to derive a general rule of thumb.

The expectation is that within this 2zone short and midrange fluctuations
may be ignored and only the mean value of the thickness have to be taken
into account.

So in opposite if combined measurements are always done for such a to be
mobilized zone, the mean value of that thickness may be of direct use in
the normal two-dimensional computation.
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Fig.7 Redistribution of Fig.8 A 3-dimensional FEM-model
bending moments of a sheetpiling wall.
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Now a lot more hidden structural capacity is brought into sight it is pos-
sible that the sheetpiling wall satisfies the present-day (!) design rules.

If not it has been argued that for existing structures and time passes by
safety-margins may decrease with relation to the original design-values.
The arguments already given above are shortly:

1. A better knowledge about strength and loads so less uncertainty.
2. A shorter residual lifetime so less extreme loads and losses.

3. More costly (maintenance) measures i.r.t. design changes.

4. Better known failure consequencies i.r.t. design starting-points.

Quantifying these arguments leads to:

ad.1 Main contributions to the failure of a sheetpiling are given by the
soil properties (¢,c), the retaining height (H), the thickness of
the sheetpiles (t) and if applied the anchors.
Measurements may give the actual coéfficient of variation (0.1-0.2),
so with reliability theory it may be possible to check if an other
safety-margin may be applied (Fig.6). But since design was based on
traditional building codes, first a calibration is needed to know
the hidden starting-points in terms of coé&fficients of variation.

ad.2 As sheetpilings usually are not designed for time varying loads, the
only benefit could be the time dependend loss of material. But again
in the traditional design it is not clear which part of the total
safety margin was reserved for this.

ad.3 In general maintenance measures are from a higher order (factor 10)
in relation with design measures having the same effect on risc.
So the new cost optimum will result in an higher probability of
failure (factor 5) and so in a reduced safety-margin (factor 1.1).

ad.4 If failure consequencies are from a lower order (factor 10), the
probability of failure may rise with the same magnitude for constant
risk. This may lead to a reduced safety-margin (factor 1.2). But
again the original starting-points are not known.

Although tendencies are clear, the traditional safety-margin used like a
‘dust-bin’ makes it hard to pay the individual aspects.

Only calibration of traditional designs based on probabilistic methods
taking into account al relevant parameters and used mechanical model may
give better insight! In Holland this study is now underway [3,4].

So in the meantime a more arbitrairy reduction factor up till 1.3 1is used
now in practice, mainly affected by the consequencies of failure [5].
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5. STRETCHING THE REMAINING LIFETIME

Now it has been proven by measurements and calculations that there is still
any ‘life after death’, the responsible authority should be informed about
the best way to manage that structure in the future. So the next step is
the weighing of alternative scenarios.

There are a few technical possibilities to stretch the residual lifetime of
sheetpiling by applying a (combination of) preventive maintenance action(s)
like the wellding of plates or beams to seal and strengthen the sheetpiles,
painting and cathodic protection to slow down the corrosion proces, ground-
injection to stop losses of soil etc.

Each alternative has his own cost and expected stretch of lifetime.

Cost may be the direct cost of the maintenance action plus cost ahead to
sustain or maintain this action.

Cost also contains the risk involved with this solution, by which risk is
the probability times the consequences of function loss (inserviceability
or failure). On its turn this probability is dependent on the frequency of
inspection, which again represents cost.

On the other hand the expected lifetime is inflenced by these inspection
and maintenance actions too.

It is up to the engineer to bring all this in the right weighing within one
scenario and next to balance these scenarios against the zero option ‘doing
nothing’, so replacement after certain time [6].

Now this complex desicion may be sustained by some analytical or Markovian
models which brings into account cost, lifetime and interactions [7,8].

Nevertheless this rational approach there are often practical restrictions
like budget-shortage and traditional philosophies that dictates the real
life, especially when no one is responsible for the total life-cycle cost!
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SUMMARY
Existing older structures are sometimes hard to evaluate, due to certain limitations in identifying their
physical properties. It is shown, however, that the application of known forces at the nodes, together with
the measurement of the associated displacements, leads to the retrieval of the physical characteristics
of the structure, namely the stiffness matrix.

RESUME

Il est parfois difficile d'évaluer les anciennes structures, en raison de certaines restrictions a identifier leurs
caractéristiques physiques. Il apparait toutefois que I'utilisation de forces connues aux noeuds, combinée
a la mesure des déplacements correspondants, permet de de déterminer les caractéristiques physiques
de la structure, notamment la matrice de raidissement.

ZUSAMMENFASSUNG

Die Mdglichkeiten zur Eruierung der physikalischen Eigenschaften bestehender alter Tragwerke sind
naturgemass beschrdnkt. Wie jedoch gezeigt wird, kann aus der Applikation bekannter Krafte an den
Knoten und Messung der zugehdrigen Verschiebungen die Steifigkeitsmatrix des Tragwerks gewonnen
werden.
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1. INTRODUCTION

Environmental attacks, corrosion and prolonged use of existing structures make their structural
evaluation rather limited because their members’ properties may not conform to the design values.
Hence, classical methods of structural analysis become inadequate to tackle and overcome the
difficulty involved. Therefore, it is both necessary and prudent to improve such methods. In this
study, system identification techniques are introduced. In such techniques, the structural stiffness
is recovered from known forces and known associated displacements. Once the stiffness matrix of
a structure is determined, the internal design forces due to any loading condition can readily be
obtained.

2. STATEMENT OF THE PROBLEM AND THE SOLUTION

Present methods of structural analysis are primarily based upon the stiffness methods of analysis
in which the input is a family of stiffness coefficients presented in a matrix form and the loading
conditions entered in a vector form. The unknowns are displacements and subsequently internal
forces. The standard mathematical representation of these three variables is:

{A - KW (1)

in which
F is an Nx1 loading vector
K is an NxN stiffness matrix
x is an Nx1 system displacement vector
N is the number of degrees of freedom

In the traditional approach to structural analysis, {x} is the unknown, whereas in this study the
unknowns are the elements of K , which in some sense represent the characteristics of the
structure. A process that has been developed for other engineering disciplines, but which is being
introduced in structural engineering, is generically referred to as "System Identification". It is an
attractive procedure to formulate and improve mathematical models.

To illustrate the derivation of the stiffness of the structure in terms of the applied force vector and
the associated and measured displacements, the following situation is used:

—F —F2
-—->X' ——+XZ

§ K, Kz ks

Figure 1

Figure 1 shows a two-degree of freedom system in which two lumped masses are attached to three
linear springs with stiffnesses k,, k,, k; .



A A. HELOU 129

The force displacement relation for this situation is written in the following form:
{,:1} _ k+k -k {X1} @)
F2 -k kik | |%
For an exact solution, the following statement holds true, i.e.
{,:1} k1 +k2 ‘kz {X1 } {0} (3)
F -k k||| |0
However, when this is not the case equation error vectors can be defined as:
Bl R %

-k Ktk
To obtain an error function the right hand side of equation (4) is squared and the result is then
summed over the number of degrees of freedom. For the present case, the squared error function
becomes

- BB (5)

The problem now is reduced to that of minimizing the error function with respect to the unknown
stiffnesses. This is achieved by taking the derivative of E? with respect to each unknown element
stiffness and setting it equal to zero. This leads to a set of linear equations equal in number to the
number of elements.

Taking the first derivative of equation (5) with respectto k;, k, and k; vyields the following set
of equations written in matrix form

X
‘ Fi-(h+ kX +lox | [0 ©)
X=X —XtX% -
Fo+ kX - (I + k)X, 0
0 X,
which may be further reduced to
X, 0 k, X, 0
Xy X% 0 F (7)
Xj=Xp XX kot = X-% -X+X%
0 -x+x X F,
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Defining a Jacobian matrix [J] as follows

9E, OE, OF,
- :k, ok, ok, )

E, 9E, 9E,

ok, ok, ok

It is readily noticed that equation (7) can be written in the following form

[T[V{K} - [AT{F} ©)

From which {k} can be solved for directly

{K = (A7 AT {F (10)

The following example illustrates the solution. In this example a determinate truss configuration is
chosen for simplicity in which displacements were actually computed using the standard Direct
Stiffness Method. This is a numerical experiment meant to test the proposed method for the retrieval
of the structure’s unknown element stiffnesses. It must be mentioned, however, that for a
determinate truss no such elaborate procedure is necessary because the problem in such a case
is reduced to the solution of a system of linear equation.

For an indeterminate truss the inverse of [J]7[J] upon which the solution hinges is not
guaranteed. To circumvent such a situation and to assure the existence of a solution two or more

loading cases must be used and the squared error function given in equation (5) can be formally
written as

NLC N N 11
E2- % XZ|F -2 Kyx/ (11)

n=-1 /=1 =1

inwhich N is the number of degrees of freedom and NLC is the number of loading conditions.

From which the solution for the element stiffness may be written as

LC NLC
{k}-:g[mn’uu]“ PAUMGE 16 (12)

3. EXAMPLE

The determinate truss shown in figure 2 is used to test the
procedure. The truss is composed of 3 elements of cross <E\ , 2'] m ! _j /
sectional area equal to 25 cm®. The modulus of elasticity !

is 200 x 108 _Ig_Vz_ . The truss has 3 unrestrained degrees
m
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of freedom with the following reduced stiffness matrix derived with the standard Direct Stiffness
Method for pin jointed trusses and written in terms of the unknown element stiffnesses.

0.36k,+0.36k,  0.48k,-0.48k,  -0.36k,
[K] - | 0.48k,-0.48k,  0.64k,+0.64k,  0.48k,
-0.36k, 0.48k, k; +0.36Kk,

The applied loads are writte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>