
Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 66 (1992)

Artikel: Initial flaws distribution and size effect of fatigue fracture

Autor: Bolotin, Vladimir V.

DOI: https://doi.org/10.5169/seals-50687

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-50687
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


75

Initial Flaws Distribution and Size Effect of Fatigue Fracture
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SUMMARY
A survey of random factors influencing the reliability and lifetime of structural components is presented with an emphasis
on the initial flaws distribution and specific difficulties in the extrapolation of laboratory data to in-service conditions of
full-scale structures. A far-reaching generalization is suggested of the probabilistic models of fatigue taking account of
sets of initial and newly-created flaws as well as loads and actions randomly varying in time. Special attention is paid to
the prediction of the fatigue life of ropes and cables consisting of a large number of wires. The influence of the wires'
interaction on the size effect in ropes and cables is discussed.

RÉSUMÉ

Une approche des facteurs aléatoires qui interviennent sur la fiabilité et la durée de vie des composants structurels est
ici présentée en mettant l'emphase sur la distribution des défauts initiaux et sur la difficulté particulière d'extrapoler les
résultats obtenus en laboratoire aux structures réelles en conditions de service. On propose une généralisation des
modèles probabilistiques de fatigue en tenant compte des défauts initiaux et des défauts d'apparition ultérieure. On prête

une attention spéciale à la prédiction de la vie de fatigue des filins et des câbles formés d'un grand nombre de fils
A ce sujet, une discussion est engagée sur l'influence de l'interaction des fils sur l'effet d'échelle des différents câbles.

ZUSAMMENFASSUNG
In einer Übersicht der zufälligen Einflüsse auf die Zuverlässigkeit und Lebensdauer von Traggliedern werden die
Verteilung anfänglicher Fehlstellen und die besonderen Schwierigkeiten bei der Extrapolation von Labordaten auf die
Betriebsbedingungen in wirklichen Strukturen hervorgehoben. Eine weitreichende Verallgemeinerung der probabilistis-
chen Ermüdungsmodelle berücksichtigt Gruppen bestehender und frischer Fehlstellen sowie stockastische
Einwirkungen. Besondere Aufmerksamkeit gilt der Vorhersage der Ermüdungslebensdauer von Seilen und Kabeln mit
zahlreichen Drähten. Dabei wird der Einfluß der Drahtinteraktion auf den Maßstabseffekt diskutiert.
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1.INTRODUCTION

Fatigue failure is a phenomenon not easy to describe and predictquantitatively in a precise and reliable way even in the frameworkof the modern fracture mechanics. This phenomenon consists of
several stages: dispersed microdamage accumulation, initiation ofnuclei of macroscopic cracks, development of short cracks and thefurther formation of macroscopic cracks propagating up to the finalfailure. In wires, ropes and cables composed of thin fibers,fatigue failure is a result of fracture of a certain number of
neighbouring fibers. Interaction between the fractured and wholefibers during the damage process is a complicated phenomenon fromthe viewpoint of structural mechanics, too. Additional complications

arise due to the large statistical scatter of laboratory andfield data, and that makes the application of probabilistic models
necessary for the prediction of reliability indexes and lifetimefor full-scale engineering systems.

Experimental analysis helps only partially since only comparativelyshort specimens could be tested meanwhile wires and cable used
in large engineering systems are many times longer. Probabilisticmodels based on simple and transparent concepts often fail to
predict more or less precisely reliability indexes for much lonqerstructural components. The same situation takes place in predictionof the service lifetime using results of short time testing.The problem of reliable extrapolation of laboratory tests data on
much longer structural components and much longer times is in factthe central point of this Workshop.

Random factors influencing on fatigue failure can be divided inthe three groups: randomness of material properties; random fiawsand imperfections of structural components; random loads, actionsand enviromental conditions. In turn, each group consists of several
subgroups. For example, it is expedient to distinguish therandomness inherent to the microstructure of materials, and thebatch-to-batch scattering of properties of commercial materialsborn from instabilities and imperfections of the manufacturing

process. Flaws and imperfections of different origin and variousshape, size and position enter in the second group of random
factors. At last, loads and actions form a broad variety with randomand/or uncertainly defined parameters.

The discrepancy between the predicted fatigue life of structuralcomponents and that observed in field condition is born from
different sources. Among them is the difference in behaviour of shortlaboratory specimens and long structural components originated, inparticular, from the differnce in load transfer and the relativeinput of the anchorage into the resulting reliability. Enviromental

conditions are difficult to reproduce in laboratory tests,moreover, their long-time effects on mechanical properties. Non--stationary random loading influences on the fatigue life, and often
in a non—trivial way (as example, effects of overloadings maybe mentioned). Contrary to that, most laboratory tests are performed
in stationary, regular cycle loading. Another obstacle toperform a reliable extrapolation of laboratory data is born from theuse of oversimplified probabilistic models and nonadequate statistical

techniques. The trust in universality of Weibull's model andthe brave extrapolation of statistical data obtained from poor
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samples are, probably, the most evident examples of such oversimp-
1 ification.

Later on, the following items concerning the problem of strength,lifetime and reliability prediction of long structural components
are discussed: (a) probabilstic models of structural reliabilityin the presence of sets of randomly distributed flaws; (b)
probabilistic models of the fatigue crâck growth with the special
attention to various sources of scattering of results; (c) interaction

between single wires in ropes and cables and its account in
probabilistic models; (d) some aspects of the extrapolation of
short specimens and/or short-time fatigue tests.

2. RELIABILITY AND LIFETIME IN THE PRESENCE OF RANDOM SETS OF FLAWS

Consider a structural component or a specimen (later - a body)
under, generally, nonstationary cycling loading. The body contains a
number of cracks, cuts, pores, and flaws that can develop in macroscopic

cracks which growth results into the final failure of the
body. The flaws differ in origin (initial, new-born, detected and
admitted during inspection, non-detected), and in size, shape and
position. Later on, all crack-like flaws of macroscopic size, say,of the order of 1 mm and more are called cracks. Unite the cracks
with similar features in sets. To identify cracks in their position,

divide the body into domains M^, that are, generally,
may overlap. Dimension of this domains may be different. For
brevity, use the same notations for domains and their measures, e.g.for the length of one-dimentional domains, for the surface of two-
-dimentional ones, etc. Choose a standard measure Mq^ for each
domain, say, the unit of the corresponding measure. For simplicity,let cracks of each set are described with a single size parameter
aij> i l, ...,J where j is the number of j-th set, and J is the
total number of sets. Assume that the failure of the body occurs
when a£ least one of the cracks attains the corresponding criticalsize ® Then the reliability (survival) function is

f max a. .(x,t) < a* (x t ; x M. 1

R(t) P 4 13 13 1
J- (l)i. i—l, I; j =1, J J

Here P{ Ï is probability of the event in braces, x is reference
vector.

If the density of macroscopic cracks is sufficiently low, it is
possible to neglect their interaction. Then Poisson model is valid

for each set of cracks, for each domain, and for a body as a
whole. Eq.(1 resuits into

R(t) ex p
I

- S
1=1

J
s

3=1
^13(a135t) M? J (2)
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where t is the expected number of cracks from j-th set

Eq.<2) presents a far going generalization of probabilistic modelsof reliability against fatigue failure based on Weibull's or double
exponential (Gumbel's) distributions [10,il]. In particular,Eq.(2) takes into account nonhomogeneities that may be both continuous,

accounted with integrals, and discrete, accounted with thedivision of the body into domains. One can to present Jl. .(a. st)1 J 1 Jin the form

where ls the expected total number of cracks from the
considered sets, and F^^(a^ 15 the probability distribution function

of crack sizes up to the time t. Determination of and

FiJ^aU5 iS subject of the probabilistic fracture mechanics.
Many aspects of the reliability assessment can be taken into
account with this model since it includes the cracks initiation and
growth, inspection procedures, decision making, replacement ant
repair, etc. We do not go here into details that can be found inbook [5j and paper [6].

3. RANDOMNESS OF MATERIAL PROPERTIES AND FATIGUE CRACK GROWTH

To estimate functions Hi:)(t) and entering into Eqs.(2)
and (3), solution are to be found of certain stochastic equationsdescribing the evolution of cracks and crack-like flaws. A numberof studies have been performed during the last decades dedicatedeither to the randomization of the known (deterministic) equationsof fatigue crack growth or to the use of (also already known)
mathematical models describing such irreversible stochastic processesthat may be interpreted in terms of fatigue damage. A veryimportant question of the real origin of randomness, as a rule,remains out of the area of these studies. Meanwhile, it is necessary

to make difference between the inherent randomness of thematerial s microstructure which we call within—a—specimen scatter,and batch-to-batch or even specimen-to-specimen scatter. In addition,
there is such an important factor as randomness of initialconditions - that of the size, position and shape of flaws at thebeginning of the considered time segment. This factor tales anintermediate position between the two kinds of randomnesses. In

our opinion, since the initial flaw distribution varies signifi—cally between specimens (and, moreover, between components of realstructures), this type of randomness is to be attributed to speci-men—to-specimen randomness. In fact, the crack tip blunting due tocorrosion or overloading in the previous life can effect essentially
on the duration of the initiation stage and on the earlycrack growth rate.

in i-th domain which size a
at the time t.

(3)
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The influence of initial conditions on the fatigue life has been,
generally, underestimated and almost not investigated. Consider,
for example, the papular experimental data by Viraler et al. [12]
(see Fig.1„a where sample functions of fatigue cracl growth are
shown schematica11 y). One cannot miss a striking point! the lines
corresponding to specimens cut from the same sheet with the same
initial crack size and tested under strictly controlled conditions
intersect rarely. It means that the scatter of crack growth is born
not only from the point-to-point randomness of mechanical properties,

but also, and not in a lesser degree, from the specimen-to-spe-
cimen scatter. It is strange that, to the author's knowledge, it
has not been emphasized by those who made the comparison of
theoretical models with experimental data. For example, in book [1]
where a Markov type model was proposed for damage accumulation
processes, both Virkler's and the correspponding simulated sample
functions are presented. The latters are shown schematically in
Fig.l.b. There is an evident difference in the behaviour of sample
functions: opposite to the experimental curves, the simulated ones
intersect violently. It means that Fig.l,a and b represent quite
different random processes although the single-point cumulative
distribution functions F(N|a) and F(a|N) fit the experimental data
satisfactorily.

N

a) b)
N

Fig_. 1 Schematic comparison of experimental (a) and simulated
(b) sample functions of fatigue crack growth

A special analysis is required to understand this phenomenon more
profoundly. A large volume of numerical simulation has been performed

recently by author and his associates with the use of equation
[4,8]

da A.r Ak - Al
ÎÛ Î (4)

dN [(1 - I2 /I 2 )1/Ct - U.(a.N) I

max Xc x

Here Afc is stress intensity factor ranges ^th. and ^sIc are



80 INITIAL FLAWS DISTRIBUTION AND SIZE EFFECT OF FATIGUE FRACTURE

terial properties parameters, i.e. fatigue toughness, threshold
fatigue toughness and fracture toughness, respectively; \ is scale
parameter of the order of material's local nonhomogeneities, m anda are positive power exponents; ü)f(a,N) is the measure of microda-
mage accumulated in the far field, before the material s particlesapproach to the crack front. Eq.(4) tales into account the microda-
mage accumulation both in the far field and in the processing zone.In addition, the energy balance in the system cracked body —

loading is included into Eq.(4). Thus, the equation is valid as atthe low stresses, near the threshold fatigue toughness, as well as
on the terminal stage when a crack advances in an accelerated way.

Some numerical results are presented in Figs.2-4. They were obtained
in assumption that the fatigue toughness is a random function

along the path of the crack given in the form h f >: IQ + I,u(x)
Here I, f-"' ~0 M"

*q is the minimal toughness, 1^ is a measure cvf toughness
fluctuations, and u(x) is a stationary ergodic function of the
coordinate y. measured along the crack trajectory. A normalized Ray-leigh function with a broad-band power spectral density has been
used for modelling the point-to—point randomness. As to the otherparameters of Eq.(4), the magnitudes of A«.. and «' have beentil Icassumed connected deterministically with Kf, and for m and a
deterministic magnitudes have been taken. Since no information isavailable on the properties of the material at the tips of initiating

cracks, the stationary distribution has been taken for k^la^)
where aQ ls the initial crack size. Computations were made for
central opening mode cracks in specimens of the given fixed width.

sa.
eu

B
à
Si

so--

x( m
^*•9 • 2 Sample function of fatigue toughness along the crack path
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N-lcr6, cycles

Fig. 3 Scatter of the crack size versus cycle number due to the
influence of the point-to-point variability of mechanical
properties and of the initial conditions

0
&
1

i

F'ig • 4 Scatter of fatigue crack growth rate as function of the
range of stress intensity factor
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Fig.2 shows the variability of along the crack trajectory. At
the assumed nonhomogeneity scale of the order of 1 mm, sample
functions kj(x) appear to be well-mixed. Nevertheless, the sample
functions a(N) display a significant scatter (see Fig.3). This result
appears unexpected. More minute analysis shows that the curves go
apart at the earlier stages of crack growth. Hence, random initial
conditions are mostly responsible for the large lifetime scatter
at the later stages. Note that the "worst" and the "best" of 15
samples functions are plotted in Fig.3. At last, Fig.4 presents
the relationship between the crack growth rate da/dN and the range
Af of the stress intensity factor. Scatter of these sample
functions is hidden due to the log-log scale, and becomes very
significant on the terminal stage.

To close this brief discussion, we have to stress once again that
not only sizes, shapes and positions of initial flaws but also
material properties near the flaws can effect essentially on the
crack growth rate and the fatigue life.

4. STRUCTURAL MODELS OF FLOWS INTERACTION IN ROPES AND CABLES

Wires and cables are longitudinal items, and for a given cross section
a single scale parameter, the length L enters into the size

effect analysis. Therefore, it may be awaited that the size
strength effect is easier to describe and predict for wires and
cables than that for structural components of more arbitrary shape.

But in fact, ropes and cables consist, as a rule, of a large
number of thin fibres, strands, etc. interacting in a rather
complex way. In some aspects, fatigue and fracture of such composite

structures are more difficult to model analytically and
numerically than of monolithic bodies, even of complicated shape.

When single wires begin to fail, the load redistribution takes
place,and that influence on the fatigue life of neighbouring wires.
Moreover, the strength size effect is inherent not only to strands
and cables, but, in a larger degree, to single wires. The tensile
strength of single wire specimens of a comparatively short length
is higher than that of wires working jointly in a strand of the
same length. But on larger length, say, of the same order as that
in an actual structure, one can observe that the strength of a
strand is much higher than that of the summed strength of the
jointed long wires. This is an effect of interaction of wires,
when, due to the friction between wires, a Ilnd of redundancy
occurs increasing the load carrying capacity of long structural
components. The same conclusion concerns the fatigue life and the
reliability of wires and cables against fatigue failure. A rather
close situation takes place in fiber composite materials where
high performance fibers are connected in a monolith with a polymer
or metal matrix that redestrlbutes stresses around the ruptured
fibers. Statistical models were suggested in [3,73 to predict the
strength and fatigue life of unidirectional fiber composites under
tension along fibers. Analogous models were used [5] to assess
reliability of the core of the nuclear reactor composed of a large
number of fuel elements. Later on a preliminary discussion is
presented how to extend these models upon ropes and cables.
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V

—1

—-Jl

Fig. _5 Interaction of single fibre rupture in a parallel bundles
X triB transfer length of load re-distribution

For simplicity consider a parallel strand composed of n wires where
n 1 (Fig.5). Denote with G the nominal normal stress uniformly
distributed upon the summed cross section of wires and with the
ultimate friction stress between wires. When a wire is fractured,
its load is to be redistributed among the neighbours, and the
half-length of the redistribution domain may be estimated with the
order of magnitude as [3]

\r " <5>

Here r is radius of wires. The stress in neighbours becomes X O
where SB is stress concentration factor.

The transfer length X^ plays one of the main parts in the interaction
between wires or fibers in threads, ropes and cables. Let,

for example, the short-time strength G of single wires satisfy the
three-parameter Weibull distribution

r * r° - °o ia iF(O) 1 - exp - (6)
L *0 I» °c J i

Here X is the half-length of the wire segment, Xg is scale parameter,

e.g. Xg r, and Gg, (X are material parameters of wires.
At G ^ Og we put instead of Eg.(6) F(O) s 0.

It is very probable that when parallel wires interact in a strand,
their individual input into the «-trand strength is characterzed
with Eq.(é>) where X is evnlmted from Fq.(5i. In fact, if -» single
wire ruptures, the "naU'tl" length of the ntx hbnuring wires ; s nf
the order of X^. The same situ-'inn take piac^. in fatigue damage.

One of the simplest models is related to Weibull distribution
of the fatigue life, i.e. analogous of Eq.(6):
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KiHfK^n -
Compared with the notation of Eq. (6), s is characteristic magnitude

of cyclic loading, say, the stress range in wires. Material
constants sß, Sq, N^, Nq, a and ß are related to fatigue lifetime
distribution of single wires with the length \. At s < Sq or N * Ng
one have to put F(N|s) s 0.

Let a bundle (strand, cable, etc.) composed of n parallel wiresfails when at least one of its segment with the length con-trtains at least n^ ruptured wires. Then the probability distribution
for the fatigue life of a bundle of the length L may be

estimated as [7]

(8)

Some conclusions can be made from Eq.(S) concerning the size
effect due to the wires interaction. For example, the shape
parameter of the fatigue life distribution is ßn# for bundles instead
of ß for single wires. The shape parameter of ultimate stress is(<X - Dn^ instead of (X, respectively. To describe more intimate
mechanisms of interaction, the load redistribution and stress
concentration during the sequential ruptures of single wires areto be taken into consideration. The simplest way to account forthe load redistribution is to replace s in Eq.(8) with (« s)/(l -- n^/n). Such an approach is similar to the well-known "bundle-of-
-fibres" model by Daniels. There is no place and time to go intofurther details, and we send the reader to the survey paper [7]where other references can be found.

5. THE PROBLEM OF EXTRAPOLATION OF SHORT-LENGTH AND SHORT-TIME TEST
RESULTS UPON FULL-SCALE STRUCTURES

It has beeh shown above, and maybe, not for the first time, thatthe extrapolation problem is complicated with a number of factorsthat are not yet have been studied sufficiently and even not
understood completely. Among them are the presence of cracks and
cract-like flaws of different origin, shape, position and sizesthe complex mechanisms of macrocracl initiation and growth due tothe random scatter of material properties, initial conditions,loads and enviromental actions! and at last, the interaction
between flaws and ruptures of single wires and fibers composingfull-scale ropes and cables. In the present dicussion, let limitourselves with the role of diversity of flaws properties.
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Return to Eq.(2) which is of a rather general nature. To make the
discussion more concrete, consider the two special cases of Eq.(2)
the Wei bull-type equation

l|s) exp £ - — f N, s JR N j s ex p I — f N, s I (9)

and the Gumbel-type (double-exponential) equation

R(N|s) exp £ - — |l - exp { f(N,s) 3 J J (10)

where the notation is used

i i
i=1 J=1 1 sCij J CiJ J

(s - sq1j)H(N - N0±j) m f N s

11

with Heaviside function H(-). Eqs.(9)-(11) correspond to a stationary
loading with a single characteristic stress parameter s. All

the flaws are related to the total cable length L with the reference

length assumed equal to the all sets of flaws. The meaning

of other parameters in Eq.(lO) is understandable from the
comparison with Eqs.(2), (3), (7) and (8). Account of different
thresholds and is a reasonable assumption since for each

type of wires and each kind of flaws a certain minimal stress level
and a certain minimal cycle number are required to produce

macroscopic damage. For those who want to argue this point, it is
enough to remind the low-cycle and high-cycle fatigue mechanisms
with their own areas on s,N plane C9]. In addition, various damage
mechanisms are expected in exterior and interior wires of ropes
and wires, in wires of spiral cables with various angles, etc.

Let is the specified reliability index. The admissible pairs of
s and N satisfy to equation

^"O
f(N,s) - — In R^ (12)

in the case of Eq.(9), and to equation

f(N,s) In ^ 1 In R# j (13)
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if Eq (10) is preferable. Thus, the size ratio L/'Lq and the specified

reliability index R^ enter into equations with respect to the
admissble stress level (at a given cycle number) or to the admissible

cycle number (at a given stress level).

The difficulties of extrapolation of short specimens tests on much
longer, full-scale structures are obvious even from a such elementary

consideration. Let LQ is the length of a specimen, and L is
the full-scale length. To ensure a confident estimation of the
left-hand side of Eqs.(lO) and (13), the non-failure probability
of specimens should be of the order

VL
R0 R,U (14)

For example, if R 0.999, and L 210 L,^ _ __ _q, Eq.(14) yields Rf) f* 0.9.
It means that tests are to be performed at stress levels much
higher than that in the actual structure. On the other hand, at
the higher stress level quite different mechanisms of damage begin
to act, arid that makes the extrapolation procedure rather questionable.

F(N|s)

N01 ^02 N 0 N

a) b)

Fig _6 Fatigue fractile curves (a), and probability distribution
functions of fatigue life (b) at various lengths L 5 L L

The situation is illustrated in Fig.6,a where fatigue curves are
shown schematically corresponding to a given R and various lengths

1 2
another

When a curve goes from one region s N0 to-g. -Q
its character changes. No similitude is awaited of fati-
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gue curves at the same R^ and at various L. This discrepancy
appears in probability distribution functions, too, as it is shown
in Fig.4 b.

Conclusion

It has been shown that the problem of extrapolation of laboratory
fatigue tests of specimens upon the large-scale engineering structures

meets significant difficulties. They are born, in particular,
and probably in the first line, from the existence of several

mechanisms of fatigue damage which relative inputs into the lifetime
vary when the size of a structural component varies. Therefore,

the coarse extrapolation upon much larger sizes and/or much
larger lifetimes is awaited to be unsatisfactory. To overcome these

difficulties, the following ways may be used:

- experimental study of the size effect on fatigue in conditions
most close to the field ones including the pilot tests (very long
specimens, very long durations, modelling of environmental actions,
etc s

- monitoring of loads, actions, stress-strain fields, flaws
distribution and damage in existing and new-build structures;

- development of advanced probabilistic and structural models of
fracture and fatigue of wires, threads, ropes and cables with
account of all random factors effecting on their lifetime and structural

reliability.
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