Zeitschrift:	IABSE reports = Rapports AIPC = IVBH Berichte
Band:	64 (1991)
Artikel:	Enhanced durability of post-tensioning tendons
Autor:	Fischli, Franz / Ganz, Hans Rudolf
DOI:	https://doi.org/10.5169/seals-49336

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 10.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Enhanced Durability of Post-Tensioning Tendons

Durabilité des fils d'aciers de post-contrainte Verbesserte Dauerhaftigkeit von Spanngliedern

Franz FISCHLI Civil Engineer VSL International Ltd Berne, Switzerland Hans Rudolf GANZ Dr. Sc. Techn. VSL International Ltd Berne, Switzerland

For many years the corrosion resistance of conventional prestressing tendons has been assumed to be adequate by virtue of the concrete cover and the embedment of the prestressing steel in grout. This is true for the majority of the structures but recent evidence of corrosion damages in many countries has created increasing concern among engineers. Corrosion protection measures are of particular importance for partially prestressed concrete structures. Cracks can occur already under service conditions, resulting not only in an increased vulnerability to corrosion but also in a higher stress range of prestressing steel and reinforcement. Plastic ducts are insensitive to most chemical attacks. They are elastic and are therefore able to adapt to local crack propagation, and - as extensive experimental investigations at ETH Zurich have indicated [1] - show almost a doubling of the stress amplitude which can be withstood.

2. DEVELOPMENT WORK PT PLUS ¹⁾

With the newly developed PT Plus duct (Fig. 1) a series of experiments were carried out and the behaviour evaluated.

a) Groutability: To have a direct comparison of the groutability of the PT Plus plastic duct and a conventional steel duct two 80 m long ducts with identical boundary conditions were grouted. Upon

hardening both ducts were opened and the Figure 1: PT Plus duct

grouted cables were visually inspected and assessed. Both injections were of good quality. Important was the fact that also the corrugations in the plastic duct were fully filled with grout. b) Bond behaviour: The bond between strands, grout mortar, duct and concrete ensures that, after cracking, cable forces can be activated which exceed the initial prestress. The question was therefore whether the polyethylene duct would be able to develop the yield strength of the prestressing cable. Results based on pull-out tests (with cables of 4 and 7 strands 0.6" dia., duct dia. of approx. 60 mm and 70 mm) allow the following statements:

- The yield force can be reached with this type of polyethylene duct.
- In the serviceability limit state the crack behaviour with a PT Plus duct is similar to the one with a normal steel duct.
- With a PT Plus duct the bond length required to anchor the force difference between the yield force and the actual prestressing force is about twice as big as compared to a conventional steel duct.
- In the ultimate limit state the crack widths are approx. double when comparing PT Plus and steel ducts.

c) Abrasion: The abrasion tests carried out at the ETH allowed a 0.6" dia. strand to be stressed to 75 % of its nominal tensile strength with a simultaneous simulating of an elongation of 1000 mm under various lateral pressures ranging up to 9 kN on a 25 mm specimen. With minimum tendon curvatures, depths of penetration of the prestressing steel into the duct wall of max. 0.5 mm to 1.0 mm are not exceeded. These values are clearly smaller then the wall thickness chosen for the new PT Plus duct and therefore an intact encapsulation of the prestressing steel is ensured.

3. CONCLUSIONS

The results of these tests show that the new plastic duct PT Plus can be safely used for posttensioning systems. Its application is recommended to wherever an improved corrosion protection is desired (i.e. bridge decks, parking garages, marine structures) but also for structures subjected to fatigue loading.

[1] Oertle J.: Reibermüdung einbetonierter Spannkabel (Fretting fatigue of bonded prestressed tendons). Institut für Baustatik und Konstruktion, ETH, Report No. 166, September 1988.