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AN 15

Design and Construction: Recent North American Experience
Projet et construction: expériences récentes en Amérique du Nord

Entwurf und Erstellung: neuere nordamerikanische Erfahrungen
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other structures. He has
presented over fifty technical
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other topics.

Man-Chung TANG

President
DRC Consultants, Inc.
Flushing, NY, USA

SUMMARY

By absorbing ideas from abroad and by developing new technigues of their own, engineers on
the North American Continent have constructed many beautiful bridges successfully in the last
two decades. Some of them were built under severely restricted conditions. This significant evo-
lution will be described by using several special projects as examples.

RESUME

Gréce a certaines idées provenant de |'étranger et au propre développement de nouvelles tech-
nologies, lesingénieurs d’Amérique du Nord ont réussi a construire de nombreux ponts admira-
bles au cours des deux derniéres décennies. Certains ponts furent d‘ailleurs érigés dans des
conditions extrémement sévéres. Le présent article expose cette évolution significative en
s’appuyant sur la description de divers projets spéciaux.

ZUSAMMENFASSUNG

Die Ingenieure in Nordamerika haben durch Aufnahme von auslandischen Ideen und durch
Eigenentwicklungen neuer Technologien in den letzten zwei Jahrzehnten erfolgreich viele
schone Brucken gebaut. Einige dieser Briicken sind unter extrem einschrankenden Bedingun-
gen gebaut worden. Diese bemerkenswerte Evolution wird anhand einiger spezieller Projekte
beschrieben.
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INTRODUCTION

The bridge industry in North America went through a significant evolution during
the last two decades. Not a single suspension bridge was built in this period
of time. The last one was the Newport Bridge in Rhode Island which was completed
in the late 1960’s. Cable-stayed bridges became popular. Their span limits have
been increased to a great extent to encompass very wide crossings. Prestressed
concrete gained significant inroad into the area of long span bridges. The
versatility of segmental bridges both in form and type gave many bridge
structures in North America a pleasant new loock.

In the area of short span viaducts, engineers are experimenting with optimization
as an alternative to the AASHTO precast girders.

Steel construction is now slightly less competitive. However, the Toad and
resistance factor design (LRFD) method now introduced to the steel bridge design
should achieve better economy.

Several bridges were successfully built in extremely environmentally sensitive
areas - representing the innovative answer of the engineers to meet the
challenges.

Generally speaking, the new generation of bridges are more economical to build,
their structural behaviour more predictable and are aesthetically more pleasing.

The following are brief descriptions of some significant developments.

PRECAST I-GIRDERS:

Although the AASHTO Type Girders are still being used very extensively for short
span viaducts, many States have developed more optimum cross-sections. The most
popular tendency is to stretch the height of the AASHTO girder to get them to
bridge a longer span. The bulb tee section is the Tatest development in this
direction. These precast girders are comparatively light and have been used for
spans up to 50 meters. Very often post-tensioning tendons were used to make the
originally simply supported beams into continuous girders.

The design method of these types of structures has also been more refined by
using grid analysis or finite element method to calculate the stresses and Toad
distributions of the structure.

Precast girders are more adaptable to areas 1ike Florida and Texas, where access
to the construction site is easy. In the Northeastern areas such as New York
City and Boston, it is very difficult to deliver them to the site. Therefore,
their use are less common.

PRECAST SEGMENTAL BRIDGES

A large number of precast segmental bridges have been completed in North America
in the Tast two decades. Considering that this type of construction actually
started only in the early 1970’s with the Bear River Bridge in Nova Scotia and
the JFK Memorial Bridge in Texas, the speed of its development and application
is very significant.

Several relatively small segmental bridges were built in Indiana and Colorado
after the above two introductory projects. They were all erected by balanced
cantilever method.

The first overhead erection gantry was used in the Kishwaukee River Bridge in
I11inois, Fig. 1. This twin five span (51.8 + 3 @ 76.2 + 51.8 meters) structure
used Dywidag bar tendons for the Tongitudinal prestressing. The erection was
extremely swift. The speed of seven segments a day was restricted by the ability
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to supply the segments from the yard to the site and the design of the single
shear key before the filler epoxy had hardened. The overhead gantry was used to
build one superstructure first and then rotated at the abutment to build the
second superstructure.

Overhead gantry was also used in the Islington Avenue Bridge and, subsequently,
in the Twelve Mile Creek Bridge, both near Toronto, Canada.

Then Zilwaukee Bridge, one of the largest precast segmental constructions in
North America, was built in Michigan. But construction was delayed for a Tong
time.

Confidence in this type of structure expedited its wide acceptance in the last
decade. Starting with the successful completion of the Florida Key Bridges: Long
Keys, Channel V and Seven Mile Bridges, precast segmental bridges have gained
high visibility and popularity in the North American continent.

The development and application of external tendons in conjunction with span by
span construction offered a good solution for both economy and aesthetics.

Fig. 1 Fig
Kishwaukee River Bridge I-7

.
5/1-595 Interchange, Fort Lauderdale

Florida now has the most precast segmental bridges. The recently completed I-
75/1-595 Interchange in Fort Lauderdale, Fig. 2, is another story of success.
With detailed planning and good knowledge of precast construction, the contractor
was able to reduce 300 days from a 1050-day construction schedule.

Many other States, such as Texas, Colorado, California, etc., are building major
precast segmental bridges. It is a good alternative to the precast I-Girder
construction.

CAST-IN-PLACE CANTILEVER CONSTRUCTION

The first free cantilever bridge in North America was the Knight Street Bridge
in Vancouver, Canada. It has a main span of 110 meters and was built by the end
of the 1960’s.

The Pine Valley Creek Bridge, Fig. 3, with a span of 137 meters in Southern
California was the first one built in the United States. This bridge was built
in an environmentally sensitive area. The access to the 120-meter deep valley
is limited. To reduce the possible disturbances to the valley, to save travel
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time and to make material transport easier, a steel truss alongside the
superstructure was used to carry personnel and material from pier to pier.

Fig. 3
Pine Valley Creek Bridge
California

Since then cast-in-place cantilever construction has pushed the prestressed
concrete box girder span further and further. In the United States the 620 feet
Snake River Bridge in Washington was completed in 1982. The Koror-Babelthuap
Bridge in the Trust Territory with a world record span of 241 meters was
completed in 1977 and the Houston Ship Channel with a main span of 229 meters was
completed in 1982. In Canada, the longest span is the 213-meter Shubenacadie
Bridge in Nova Scotia, completed in 1978 which surpassed the Grand Mere Bridges
(181-meter span) in Quebec.

The basic concept of the cast-in-place cantilever construction in North America
is the same as that in other countries. It was originally developed in Germany.
A difference in the industry is that in North America, contractors usually do not
have their own formtravelers. In most instances, they rent their formtravelers
from prestressing material suppliers.

Concrete strength used for most cast-in-place cantilever bridges is 5000 psi (34
mpa cylinder strength). The early bridges all used Dywidag bar tendons. Later
bridges, however, have practically all changed to seven wire strands for economic
reasons. Transverse tendons are mostly three or four 0.6" dia. seven wire
strands. Dywidag bars are still most common for vertical tendons in the webs.
To avoid corrosion, PE ducts were introduced to replace the spiral metal ducts.

Due to the further development of cable-stayed bridges, prestressed concrete box
girders for spans over 180 meters became less competitive in recent years.
However, under various conditions prestressed concrete box girders are still
being built for this range of spans. A good example is the Acosta Bridge over
the St. John’s River in Florida, Fig. 4. Although a cable-stayed alternate was
studied in the preliminary stage, it was felt that a girder bridge will be more
appropriate at this inner City site. The bridge has an unsymmetrical span of 192
meters. The unsymmetrical shape was derived so as to accommodate the restriction
of the existing navigation channel. It Timits the construction depth of one end
span to approximately 2.9 meters. This limits the length of this end span to
about 83 meters. Consequently, the main span of a symmetrical configuration
would only be able to reach approximately 170 meters economically.

To bridge over the 192-meter main span, an unsymmetrical configuration with an
83-meter end span at one side and a 110-meter end span at the other side to
balance the Tlarger mid span results in a structurally satisfactory solution.
This bridge is under construction at this moment using classical cantilever
method.
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Another noteworthy structure is the West Seattle Swing Bridge over the Duwamish
River in Seattle, Fig. 5. The 152-meter span, double swing bridge is being built
by means of cast-in-place cantilever method alongside the river bank. Upon
completion this will be the Tongest concrete swing span. As most movable bridges
are steel bridges, this concrete alternate was quite a surprise because of its
competitiveness against all other steel proposals.

To avoid possible uneven deformation due to creep, the design provided slightly
more prestressing forces in the deck to reduce the bending moment to a minimum.

Fig. 4
Acosta Bridge, Florida

Fig. 5
West Seattle Swing
Bridge, Washington

ARCHES

There are many beautiful old arch bridges in the United States. The Bayonne
Bridge in New York City is one of the most well-known arches in the world; the
New River Gorge Arch in West Virginia is a steel truss arch built in the 70’s;
the Freemont Bridge in Portland, Oregon is a cantilever tie arch completed in
1978.

Because failure in the tie member may cause collapse of the whole bridge system,
they have become less popular in the United States. This is mainly because tie
arches do not possess the redundancy most engineers now prefer. However, the
proposed use of multiple ties with higher safety factors, although reducing the
competitiveness of this type structure slightly, may provide the expected
redundancy to render the arches as a more acceptable bridge form for the
engineers.

The new steel arch over the Roosevelt Lake Dam is a very nice looking structure.
This steel arch is erected on a concrete base which is sometimes submerged in the
water.
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STEEL TRUSSES

Steel trusses are quite popular for long span bridges. But due to the difficulty
in painting and maintainance they are often not the preferred bridge type of many
engineers. The very variable steel prices also made them less competitive
against other forms of long span bridges.

The philosophy of design and construction of steel truss bridges has not changed
much. Box type members have been used to offer better maintenance and
aesthetics.

CABLE-STAYED BRIDGES

Cable stayed bridges are usually considered of European development. But there
had been various examples of applications of cable-stayed concepts to bridge
construction in many parts of the world. The Brooklyn Bridge in New York, for
instance, built over a hundred years ago has inclined cables that carry part of
the load of the suspended bridge girder. The Bentone City bridge in the State
of Washington with rolled steel members as cables, was built in 1957. There are
also many examples of cable-stayed wood bridges built by the forest industry.

The more systematical application of the cable-stayed concept in North American
construction started in the late 1960’s with the construction of the Sitka
Harbour Bridge in Alaska, and the Papineau Bridge in Quebec. Since then many
cable-stayed bridges have been completed. Some others are under construction or
in the design stage.

Categorizing them by type of construction material, they can be separated into
four basic groups: 1. Steel; 2. Composite - steel frame with concrete deck; 3.
Cast-in-Place Concrete, and 4. Precast concrete.

STEEL CABLE-STAYED BRIDGES

In North America, steel orthotropic deck had not been competitive due to the high
cost of labor. There is only one major steel cable-stayed bridge in North
America built in the last two decades - the Luling Bridge.

This is a high Tevel bridge over the Mississippi River with a vertical clearance
of 41 meters. The bridge girder is composed of two single-celled boxes; the deck
is an orthotropic plate with trapezoidal ribs. An inclined steel flairing plate
is attached to the outside of the box girder along the main span to achieve
better aerodynamic stability. Cables consist of parallel wires with Hi-Am
anchorages. They were encased in polyethylene tubings and were grouted with
cement after the bridge was completed. The erection was done by cantilever
method utilizing a custom made barge mounted derrick crane which was capable of
erecting a total steel segment at a time.

Certain problems developed in the PE pipe during grouting. Cracks appeared. To
avoid possible corrosion of the cable tendons, two layers of PVF tapes were
applied afterwards.

After the completion of the Luling Bridge, no other steel cable-stayed bridge was
built in North America. It will probably take some time until significant
improvements in welding techniques are made before steel cable-stayed bridges can
be competitive once more against composite or concrete structures.

COMPOSITE CABLE-STAYED BRIDGES

The first composite cable-stayed bridge built in North America was the Sitka
Harbour Bridge in Alaska. It has a main span of 137 meters and side spans of
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45.7 meters.

The Annacis Island Bridge, Fig. 6, was completed in 1986. This world record span
has a main span of 465 meters. The side spans are 182.75 meters Tong. It has
a vertical clearance of 56.4 meters at the main span. The towers are concrete
box sections constructed in vertical 1ifts by jump forms. The girder consists
of two steel edge girders with steel floor beams spaced at 4.5 meters on center.
The 215 mm deck slab is precast concrete supported by the floor beams, the edge
girders and a longitudinal stringer at centerline of the bridge deck.

This cable-stayed bridge is a very flexible structure. It is important to use
the lightest equipment possible for construction. Otherwise, additional weight
may require additional maneuvering during construction such as cable adjustments,
restricted working cycles, etc. This is because both the girder and the cables
may experience higher stresses during construction than in the final stage under
service loading.

Comparison of the various Tifting equipment resulted in the selection of the
American derricks. To facilitate movement from segment to segment, each derrick
was seated on a steel frame anchored to the bridge by tie downs.

One derrick crane was placed at the tip of each cantilever to erect all the steel
elements piece by piece. It was also used to pick up the precast panels and
placed them on the steel frame. A segment is approximately 18 meters long.
Cables were delivered to the site in reels, and placed on the deck at the
cantilever end. They were then pulled up to the tower by an electric winch.
Stressing was done at the tower end after the precast deck panels were erected.
The joints were filled with a non-shrinking concrete. The derrick was moved
ahead to the next segment after the filler concrete had gained sufficient
strength.

Fig. 6
Annacis Island Bridge
Vancouver, B.C.

A full model wind tunnel test was carried out for the construction stages to
study the buffeting effect. The test found that the bridge would respond
violently during construction if it was built as simple cantilevers. Therefore,
diagonal and vertical cables were used to tie down the bridge girder in order to
increase its stiffness, thus reducing the buffeting effect.

The Quincy Bridge, Fig. 7, over the Mississippi River in I11inois has a main span
of 274.4 meters and side spans of 134 meters. It has concrete towers of box-type
sections. The bridge girder consists of two steel edge girders connected by
915mm deep floor beams at 3.81-meter spacings. Five 457mm deep stringers run on
top of the floor beams supporting a 25.4mm thick precast concrete slab. The slab
panels were precast six months ahead of erection. They run full width across the
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bridge deck with pockets blocked out at Tocations of the stringers and the edge
girders to allow welding of the shear studs. These pockets were grouted after
completion of the deck section to achieve composite action between the deck slab
and the stringers as well as the edge girders. In addition, a grout Tayer was
provided between the deck slab and the top of the stringers and the edge girders
to assure full support. The cables are 0.6" dia. seven wire strands grouted in
a polyethylene pipe. The pipe was welded into the required length at the site
from 12-meter sections. The cables were grouted after all permanent loadings
were in place.

Again, erection of the girder was by means of derricks placed at the tip of the
cantilevers. In addition, a barge mounted crane was used to erect part of the
steel sections to expedite the operation. Since the towers were not designed to
support the unbalanced loading during construction it required back and forestay
guide cables for stability.

Fig. 7 Fig. 8
Quincy Bridge over the Mississippi River Baytown Bridge
IT1Tinois Texas

The Baytown Bridge, Fig. 8, across the Houston Ship Channel in Texas has a main
span of 381 meters. Each of the twin decks is 24.1 meters wide. This bridge
will be the Targest cable-stayed bridge in the world after its completion with
respect to deck area. The twin pylons are diamond shaped. They are connected
to each other at the deck level. The tower legs have concrete box sections.
The deck consists of two main girders connected by floor beams spaced at 5.34
meters on center.

The original design called for fabricating a complete section of the deck,
approximately 15 meters long and 24 meters wide with a cast-in-place deck slab
completed before transporting to the site for erection. The floor beams were not
designed to support the dead weight of the concrete. They were to be supported
during the casting of the concrete. This reduced the steel quantity of the floor
beams to a minimum.

To simplify construction, the contractor modified the construction method by
erecting the steel frames alone. The concrete deck now consists of precast
panels. They are to be erected by means of a derrick crane mounted at the end
of the cantilevers. The steel floor beams are strengthened to carry the weight
of the concrete top slab before they become composite.

Due to the special configuration and flexibility of the towers and the twin deck
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sections, extensive aerodynamic testing was carried out to assure the stability
of the structure under hurricane. Section model testings and full model testings
were carried out for both the completed and the partially completed structure
during construction stages. Diagonal and vertical tie downs will be used to
stabilize the bridge against buffeting during construction. It is worth
mentioning that full model wind tunnel tests confirm the theoretical analysis
using data collected from the sectional model wind tunnel tests.

CAST-IN-PLACE CONCRETE CABLE-STAYED BRIDGES

There are three cast-in-place concrete cable-stayed bridges in North America :
The Dame Point Bridge in Florida, the Talmadge Memorial Bridge in Georgia and the
Cochrane Bridge in Alabama.

The Dame Point Bridge, Fig. 9, has a main span of 396.34 meters with side spans
of 198.17 meters. Although the original design called for precast concrete floor
beams the actual construction has the full concrete deck cast-in-place using a
specially designed formtraveler. The towers consist of vertical columns of solid
sections. The cables are 32 mm diameter Dywidag Threadbar tendons encased in
steel pipes. The pipes were grouted after all permanent loads were in place.
The concrete deck is 30.5 meters wide. The cables are spaced at 5.33 meters on
center. The 115-ton formtravelers were designed to allow casting of the complete
segment of 30.5 meters by 5.33 meters. To reduce the bending moment due to the
weight of the concrete and the equipment, the formtraveler was supported by the
permanent cable during the concrete casting operation. This enabled the
formtraveler to de designed much lighter and, consequently, very easy to
maneuver.

Fig. 9
Dame Point Bridge
Florida

The steel cable pipes were welded on the deck to their final lengths. A1l welds
were tested to assure their quality The bar tendons were then pulled into the
pipe as they were coupled in 18-meter Tengths by couplers to their required
lengths. Cables were erected by cranes on the deck. Erection of the cables had
been very swift. Stressing of the cable was done by stressing individual bars.
To assure that the bar tendons were stressed to the right force, each bar was
verified by a 1ift-off test after the stressing operations were completed.

The Talmadge Memorial Bridge in Savannah, Georgia, Fig. 10, has a deck
configuration similar to the Dame Point Bridge. It consists of two uniform 1.37
meters deep and 1.37 meters wide solid edge girders. The 280mm thick top slab
is supported by transverse floor beams spaced at 8.92 meters in the main span and
8.61 meters in the side spans.
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The center span is 335.37 meters flanked by two side spans of 143.19 meters each.
It is a high level crossing with a vertical clearance of 56.4 meters.

0.6" dia. seven wire strands were used for the cables. They were encased in a
PE pipe which was grouted after all permanent loads were in place. The cables
were stressed at the tower end anchorages. The anchorages were designed such
that adjustments are possible at a later date. White PVF tape is used to wrap
the cables after the grouting operation.

The bridge was built in cantilever method using formtravelers which allowed
casting of a complete segment in one operation. The formtravelers were basically
the same as those used in the Dame Point Bridge. But water ballast was used to
reduce the requirement of some cable adjustments so that the cables could be
stressed close to their final forces before the segment was poured. Water
ballast tanks were placed in the formtraveler. The weight of the water was
approximately 70% of the weight of the concrete. The water was released as the
casting of the segment progressed.

Vertical and diagonal tiedowns were used for stabilization of the bridge against
dynamic wind vibrations during construction.

The Cochrane Bridge has a 238-meter main span. It has a double box cross-section
with transverse diaphragms. Due to the stiffness of the boxes, construction was
done by using two formtravelers similar to those used on box girders.

Fig. 10
Talmadge Memorial Bridge
Georgia

PRECAST CONCRETE CABLE-STAYED BRIDGES

The Pasco-Kennewick Bridge in the State of Washington was completed in 1978. The
bridge has a main span of 299 meters and side spans of 123.9 meters. The bridge
girder is 24.4 meters wide and 2.13 meters deep. It is 17 meters above the water
level.

The cables consist of 6mm parallel wires with Hi-Am anchorages. The wires are
encased in polyethylene pipes. They were preassembled in the factory and
delivered to the site on reels. The cables were grouted with a cement grout
after all permanent loads were in place. PVC tape was used originally to wrap
the PE pipes. It deteriorated under the weather and, new PVF tapes were used to
retape the cables.

The girder consists of a 200mm thick sTab supported by floor beams spaced at 2.74
meters on center. The edge girders are triangular box sections which give it
excellent aerodynamic stability. The girder is composed of match-cast segments.
Each segment is 8.23 meters Tong and weighs about 3 tons. The towers are simple
portal frames. The pier table, that is, the first segment on top of the pier,
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was cast-in-place on local falsework supported by knee bracings. A starter
precast segment was placed at each end as bulkhead forms of the cast-in-place
pier table. Other segments were delivered and 1ifted from a barge underneath by
lifting jacks attached to an erection traveler at the end of each cantilever.
The erection traveler was supported by an erection cable suspended from the top
of the tower. Due to the Timited flexural capacity of the bridge girder, several
cable adjustments were required in each operation to control the bending moment
due to the load of the newly added segment.

The pylons were stabilized by temporary back and forestay cables to reduce the
unbalanced bending moment during construction.

The East Huntington Bridge has a main span of 274.4 meters and an end span of
185.4 meters. It has only one tower which is 88.4 meters high. A variable depth
girder of 91.4-meter span is located at the other end of the main span. The 12.2
meters wide bridge deck is very narrow for such a Tong span and, therefore, an
A-frame tower is used to provide the required Tateral and torsional rigidity.
Cables are parallel wires with Hi-Am anchorages grouted inside a PE pipe. The
PE pipes are further protected by wrapping with tedlar tape. The white color of
the tape also offers good aesthetic appearance.

The bridge deck consists of 20mm thick sT1ab supported by steel floor beams spaced
at 27.4 meters on center. The edge girders are 1.52 meters deep and 1.22 meters
wide constant through the total stayed portion of the bridge. The girder is made
up of 13.7 meters long precast segments weighing approximately 250 tons.

Original plans recommended to build the bridge in the same manner as the Pasco-
Kennewick bridge. Although the weight of the segment is similar, the length of
the segment (45 feet vs. 27 feet) increases the local bending moment during
construction significantly. The contractor decided to erect the segment by a
barge mounted crane. The segments were match-cast in a Tong Tine and brought to
the site by barges. The crane picked up the segment and attached it to the
previously erected cantilever by means of a hinge mechanism. The segment was
suspended by the crane until the permanent cables were installed and stressed.

The East Huntington Bridge was completed in 1985.

Fig. 11
Sunshine Skyway Bridge
Florida

The Sunshine Skyway Bridge, Fig. 11, is kilometers long across the Tampa Bay in
St. Petersburg, Florida. The cable-stayed precast concrete structure has a main
span of 365.85 meters flanked by two side spans of 164.43 meters each. It is a
high level bridge with a vertical clearance of 53.35 meters. The bridge is very
similar to the Brotone Bridge in France except that the segments in the Sunshine
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Skyway were fully precast in one piece. These precast segments are 28.96 meters
wide and 3.66 meters long. It is a single-cell box with struts to transfer the
cable forces from the anchorage point at the top slab to the bottom of the
girder. The segments weigh approximately 175 tons each. They were lifted to
position from barges by a pair of winches attached to the end of the cantilevers.
A 300mm wide gap was provided at each segment joint to avoid possible deviations.
This gap was filled after the segments were erected. Cable spacings are 7.32
meters on center. Therefore, cables are anchored at every second segment of the
deck. The cables consist of 0.6", seven wire strand tendons encased in steel
pipes for corrosion protection. The cables were grouted with cement grout after
all permanent Toads are in place. In order to introduce a compressive stress in
the grout, the cables were overstressed before grouting and then released after
the grout had set.

The steel pipes for the cables were welded together on bicycle supports. They
were then connected to saddle pipe which run through the tower. The strand
tendons were pulled from one end of the anchorage up the saddle to the other end
anchorage by means of a Lucker cable puller. To facilitate this erection scheme
the strand tendons were preassembled in the yard to full bundles and the ends
were welded together and attached to a pulling device. These tendons were pulled
directly from the barge at the beginning but were later on pulled from reels
placed on top of the deck instead.

The Sunshine Skyway was completed in 1987.

Fig. 12
ALRT Fraser River Bridge
Vancouver, B.C.

The ALRT Fraser River Bridge in Vancouver, Fig. 12, is a precast concrete cable-
stayed bridge providing two tracks of rapid transit across the Fraser River. It
has a main span of 340 meters with side spans of 180 meters. It’s vertical
clearance is 45 meters above the high water level. The piers are diamond shaped
to provide lateral and torsional rigidity for the very flexible girder. Cables
consist of preassembled long-lay wire strands in a PE pipe. The cable spacing
at the deck level is 11 meters.

The bridge deck is a solid slab section with 1.4 meters wide by 1.1 meters deep
edge girders above the deck forming a widened U section. The total width of the
bridge girder is 12.4 meters. The segments are 5.5 meters long. Cables are,
therefore, anchored at every second segment of the deck. The match-cast precast
deck segments were delivered to the site on barges. They were lifted into
position by winches attached to an erection traveler. The traveler was supported
on the deck and by an erection cable suspended from the top of the tower. The
division of the segment into 5.5 meters instead of 11 meters lTong resulted in the
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equipment being much Tighter and easy to maneuver.

Cables were erected by pulling directly from reels delivered by barges to the
site. To prevent the cables from rubbing against the deck, a minimum cable force
was maintained during the whole operation of erection.

BRIDGES IN ENVIRONMENTALLY SENSITIVE AREAS

Protection of the environment against the disruption of construction has been
figured prominently 1in various projects in North America. Discovery of
archeological artifacts have forced many bridges to change alignments.
Protection of local vegetation has required some bridges to be built without any
disruption of the site. The bridge engineer, however, has met all these
challenges successfully every time and have provided the public with the bridge
structures they need. Some examples:

The Denny Creek Bridge, Fig. 13, is in a scenic region where the rock formation
is very unstable so that the footings must be excavated manually and no falsework
support was allowed for this 51.3 meter-span, 1100 meters long, multi-span
bridge. To accommodate these restrictions, a special staged construction was
developed.

Fig. 13 Denny Creek Bridge
Washington

The superstructure was designed in such a way that the bottom sTab and the webs,
forming a U-shaped section was made stable by itself after post-tensioning and
was capable of supporting the inside of the foundation from the middle part of
the top slab. The box girder thus created supported an after runner to cast the
overhang slabs. The first-stage construction of the U-section was done by an
overhead truss. The basic idea of this construction was to allow the use of a
relatively 1light truss for the construction of the U-section which weighs only
approximately 30% of the total cross-section. The division of the work into
three separate locations, namely : the U, the middle part of the top slab and the
wing slabs, made the utilization of labor crew much more efficient.

The Linn Cove Viaduct, Fig. 14, poses even more restrictions to construction by
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not even allowing access for the construction of the piers and foundations. The
bridge, therefore, had to be constructed from one abutment to the other
successively from overhead. The original design called for a special custom-made
segment erector for the construction of the superstructure. This equipment,
however, would not have provided the capacity for the construction of the
foundations. The contractor, in close cooperation with the construction
engineer, selected an American derrick S20 with an additional boom. This derrick
not only was capable of erecting the segments successively, but also had
sufficient boom to reach to the next pier for the construction of the next
substructure.

Due to the severe superelevation of the superstructure, the derrick was supported
by a steel frame. The steel frame could be adjusted to provide a horizontal base
for the derrick. Although the requirements of the geometry control were very
severe due to the sharp curvature of the superstructure construction was very
successful.

Fig. 14
Linn Cove Viaduct
North Carolina

CONCLUSION

Due to the separation of engineering and construction firms in the North American
construction practice, contractors were quite reluctant to take on a complicated
construction task such as cable-stayed bridges at the beginning because these
projects require a significant amount of construction engineering. Actual
problems encountered in some early projects. To help them build the more
complicated structures, the contractor usually engages the services of a
consulting engineer to provide them with the required construction engineering.
This generally includes the construction stage structural analysis, camber
calculation and equipment design or selection. Close cooperation between the
parties and thorough planning is the key to the success of construction projects.

With more of this type construction being successfully executed, many contractors
now have gained confidence. They are more familiar with these types of
structures so that the competition has increased significantly. The contractors
and engineers also become more innovative in their construction planning and
execution, thus, contributing to the progress of the Construction Industry.
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