Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 64 (1991)

Artikel: Special methods of seismic bridge design in the USSR

Autor: Kozmin, Juriy / Uzdin, Alexandr

DOI: https://doi.org/10.5169/seals-49283

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Special Methods of Seismic Bridge Design in the USSR

Méthodes spéciales de protection antisismique des ponts en URSS Spezielle Methoden für die Erdbebensicherung von Brücken in der UdSSR

Juriy KOZMIN

Prof. Dr. Leningrad Inst. of Railway Eng. Leningrad, USSR

Alexandr UZDIN

Chief Research Leningrad Inst. of Railway Eng. Leningrad, USSR

1. INTRODUCTION

It is known that the seismic leads on a structure are not purely exterior leads, they are generated by the structure during its escillations. Therefore, two methods are possible to increase seismic resistance of structures: the traditional method consisting of an increase of sections to take the seismic leads and the special method consisting of a purposeful change of dynamic diagram of the structure and reduction of the seismic leads.

2. USE OF SPECIAL PROTECTION FOR BRIDGES

The detailed description of the special methods of seismic protection can be found in paper /2/. These methods can be subdivided into seismic isolation and seismic suppression.

The technical conceptions of seismic isolation have get the most detailed study. The seismic isolation members are usually used at the level of the supporting parts. The seismic isolated bridges (a.c. No.781253) have been constructed in Tashkent for the Metrolines over Ak-Tope and Salar Canals, the equivalent seismic isolation has been used for the railway bridges at the approach to Bekbade in Uzbekistan. The seismic isolation member for these bridges represents a rubber-made supporting part placed on a steel plate. The friction factor in this case reaches a value of 0.3, i.e. the seismic isolation acts as a reserve and starts working when acceleration of the span becomes greater than 3m/s2 The design displacements of the span relative to the support do not exceed 15 cm even at the most unfavourable real combinations of the horizental and vertical seismic leads.

The seismic isolated bridges for meter-reads built in Kirgizia have been designed by Frunzensky Polytechnichesky Institute /3/ They used the friction couples on the basis of fluorine plastics with a friction factor of 0.1 - 0.2. Even though the given conception provides for a good effect, the displacements in the seismic isolation interlayer remains significant.

The new technical conceptions for the seismic isolation have been developed new in the NIIBridges according to which the friction is created at the expense of compression of the specially treated steel sheets by means of high-strength bolts. This makes it possible to create a friction connection with adjustable friction force irrespective of the vertical component of the seismic effect.

At present in the USSR there is a software for optimization of the parameters of the seismic isolation systems of different types including two-stage damping and elaste-plastic stops of displacements /4/.

There are two types of seismic suppression systems. The simplest way is the use of various dampers. The original designs of dampers elaborated in the USSR are described in paper /5/. The use of the dynamic vibration absorbers (DVA) for seismic protection is a more complex method. The detailed studies of the absorbers efficiency decribed in paper /1/ have shown that the increase of the damping mass for the stable work of the DVA is a factor. As to the bridges, the mass of the span may be used which is connected with the support by means of elastic constraints — (a.c.No.1162886). Two principal solutions on the elastic constraints are possible. The simplest way is the use of a flexible support of steel pipes for the span. In this case stresses arise due to the horizontal and vertical loads. Therefore, the most reliable way is the use of the ordinary movable supporting parts for the spans which take whelly the vertical load, and the horizontal load is transmitted to the special elastic elements (a.c.No.1335612).

New we are developing the drawings of a highway bridge with the spans as the DVA supports. Under the leadership of the authors some detailed calculations and experimental studies of the system described in paper /1/ have been carried out.

REFERENCES

- 1. A.A. Nikitin, A.M. Uzdin. Efficiency of vibration absorbers for increasing the seismic stability of engineering structures. Proc. of the Ninth European Conference on Earthquake Engineering. Vol. 2, pp. 147 206.
- 2. САХАРОВА В.В., СИЛЬНИЦКИЙ Ю.М., УЗДИН А.М., ШУЛЬМАН С.А. К вопросу об антисейсмическом усилении мостов // Улучшение эксплуатационных качеств и содержение мостов и водопропускных труб / Ленинград, ЛИИЖТ, 1980, с.3—18.
- 3. ХУЧБАРОВ З.Г. Сейсмоизоляция автодорожных мостов / Фрунзе, КиргизИНТИ, 1986. 58 с.
- 4. АЛЬБЕРТ И.У., КАУФМАН Б.Д., САВИНОВ О.А., УЗДИН А.М. Сейсмозащитные фундаменты реакторных отделений АЭС / Москва, Информэнерго, 1988, 64 с.
- 5. ЗАКОРА А.Л., КАЗАКЕВИЧ М.И. Гашение колебаний мостовых конструкций. Москва, Транспорт, 1983, 134 с.