Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 64 (1991)

Artikel: Das Prinzip "Voute"

Autor: Schambeck, Herbert

DOI: https://doi.org/10.5169/seals-49274

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

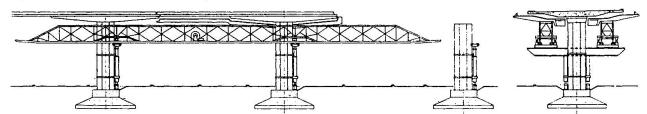
Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Das Prinzip «Voute»

The «Haunching» Principle

Le principe «voûte»

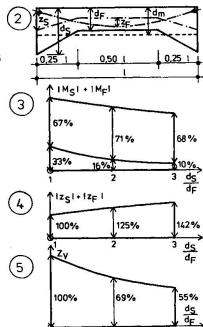

Herbert SCHAMBECK

Dr.-Ing. Beratender Ingenieur Frieding, Deutschland

Im Betonbau tragen Durchlaufträger mit Vouten im Stützenbereich ihre Lasten wesentlich günstiger ab als Parallelträger. Für große Spannweiten – etwa ab 80 m und insbesondere in Verbindung mit dem freien Vorbau – ist dies seit langem bekannt. Die Vorteile des Voutenträgers werden jedoch bereits bei kleinen und mittleren Spannweiten sichtbar. Die vorliegende Abhandlung will hierauf aufmerksam machen und dazu anregen, auch in diesem Spannweitenbereich die vielen Gestaltungsmöglichkeiten des Voutenträgers häufiger zu nutzen. Damit können dem modernen Brückenbau, der von vielen wegen der Dominanz des Parallelträgers als monoton und einfallslos empfunden wird, neue Impulse gegeben werden.

1. DIE BAUAUSFÜHRUNG

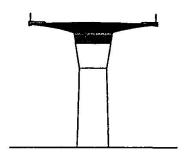
Bei sorgfältiger Planung sind Gerüste zur feldweisen Herstellung von Durchlaufträgern mit Vouten kaum aufwendiger als Gerüste für Parallelträger. Ein Beispiel dafür ist die "Tangentiale Mailand" (Entwurf: S. Zorzi Fig. 1)

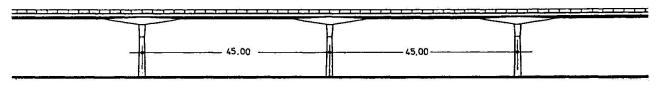

2. DAS TRAGVERHALTEN

Es soll insbesondere auf die Vorteile von Vouten bei Plattenbrücken hingewiesen werden. Die Tendenz kann beispielhaft aufgezeigt werden durch den Vergleich von Platten mit unterschiedlichem dS/dF und mit gleichem dm (d.h. mit gleicher Betonmenge je Feld) (Fig. 2).

Die Fig. 3 und 4 zeigen, daß mit wachsendem dS/dF die Momente (vor allem die Feldmomente) abnehmen und die Summe der Hebelarme zS+zF zunimmt.

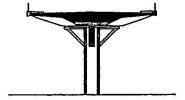
Daraus folgt (Fig. 5), daß die erforderliche Kraft Zv zur affinen Vorspannung für das Eigengewicht (Zv=MgS+MgF):(zS+zF)) bei wachsendem dS/dF stark abnimmt.

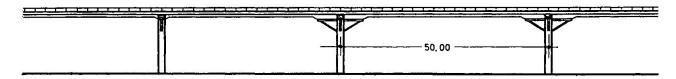

Dieser günstigen Abtragung von Eigengewichtslasten stehen größere Wechselmomente aus Verkehrslasten gegenüber. Allgemein gilt: je grösser dS/dF, desto wirksamer ist eine elastische Einspannung des Überbaus in die Stütze.



3. BEISPIELE

Beispiel 1: Plattenbrücke mit Vouten als Durchlaufträger in Ortbeton mit Vorspannung mit nachträglichem Verbund. dS/dF = 2,4/1,2 m. Bei frei drehbarer Lagerung auf den Pfeilern ist dS/dF = 2/1, bei elastischer Einspannung bis zu 3/1 empfehlenswert. Die Baukosten sind voraussichtlich nicht höher als bei einem Parallelträger mit aufgelöstem Querschnitt (Hohlkasten oder Plattenbalken) und sind wesentlich niedriger als bei einer Platte konstanter Dicke. (Entwurf: W. Schulz, Karlsruhe).

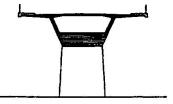


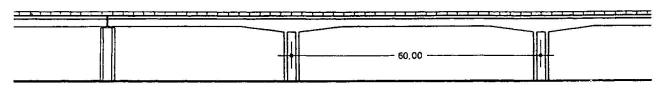


Beispiel 2: Plattenbrücke mit Vouten auf extrem schlankem Unterbau; Ortbeton mit Vorspannung mit nachträglichem Verbund. Unterbau aufgelöst in eine Verbundkonstruktion aus Stahlbetonstützen und Stahl-Fachwerkkonsolen.

Verschiedene Möglichkeiten zur Lagerung:

- Normalstütze: 4-Punkt-Lagerung auf 4 Konsolen (d.h. elastische Einspannung).
- Kleinere Sonderspannweiten zur Anpassung an das Gelände oder zur Einfügung von Bewegungsfugen: frei drehbare Lagerung auf nur 2 Konsolen.




<u>Beispiel 3:</u> Hohlkasten mit Vouten in Ortbeton oder in Segmentbauweise mit externer Vorspannung ohne Verbund. Stützen aufgelöst in 2 schlanke Scheiben mit verschiedenen Möglichkeiten der Lagerung:

- Normalstütze: Überbau mit Voute; elastische Einspannung des Überbaus in die Stütze.
- Stütze an einer Bewegungsfuge: Überbau ohne Voute; frei dehnbare Lagerung; reduzierte Spannweite des Endfeldes. Entscheidung im Einzelfall erforderlich, ob diese Unregelmäßigkeit vertretbar ist.

Hoher Wirkungsgrad der extern geführten Vorspannung durch die Formgebung des Trägers.

Einfache Vorschubrüstung zur feldweisen Herstellung.

Die Beispiele deuten die großen Variationsmöglichkeiten an, die der Träger mit veränderlicher Bauhöhe bietet.