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SUMMARY

A shear model is presented which takes into account residual tensile stresses in cracked
concrete. The model treats both prestressed and non-prestressed members and accounts for the
influence of amount of longitudinal reinforcement, magnitude of moment, axial force and member
size.

RESUME
Un modéle de dimensionnement a |'effort tranchant qui tient compte des contraintes de traction
résiduelles dans le béton fissuré est présenté dans cet article. il traite des éléments de structure
précontraints et non-précontraints et tient compte de l'influence de la guantité d’'armature
iongitudinale, de l'intensité du moment, de la force axiale et de la taille de I'élément-méme de
structure.

ZUSAMMENFASSUNG

Ein Schubbemessungsverfahren wird beschrieben, das Zugeigenspannungen in gerissenem
Beton beriicksichtigt. Das Verfahren behandelt sowohl vorgespannte wie auch nicht vor-
gespannte Elemente und berlicksichtigt solche Grossen wie Léangsbewehrung, Biegemomente,
Axiallasten und Bauteilgréssen.
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1. INTRODUCTION

In 1973 the ACI-ASCE Shear Committee [1] concluded the introduction to its state-of-the-art report
with the words:
During the next decade it is hoped that the design regulations for shear strength can be integrated,
simplified and given a physical significance ...
The shear provisions of the 1984 Canadian Concrete Code [2, 3], which were based on the com-
pression field model, introduced both strain compatibility and the stress-strain characteristics of
diagonally cracked concrete, enabling some of the objectives stated above to be achieved. How-
ever, because this model neglected the residual tensile stresses in diagonally cracked concrete, it
was restricted to members with shear reinforcement.
The modified compression field model [4] considers the influence of residual tensile stresses in the
cracked concrete and hence provides the basis for a consistent shear design model. In this paper a
design approach based on the modified compression field theory is presented.

2. RESIDUAL TENSILE STRESSES IN CRACKED CONCRETE

Tests of reinforced concrete panels subjected to pure shear [4] demonstrated that even afier cracking,
tensile stresses exist in the concrete between the cracks and that these stresses can significantly
increase the ability of reinforced concrete to resist shear stresses.

Cracked reinforced concrete transmits load in a relatively complex manner involving opening or
closing of pre-existing cracks, formation of new cracks, interface shear transfer at rough crack
surfaces, and significant variation of the stresses in reinforcing bars due to bond, with the highest
steel stresses occurring at crack locations. The modified compression field model attempts to capture
the essence of this behaviour without considering all of the details. The crack pattern is idealized as
a series of parallel cracks all occurring at angle 6 to the longitudinal direction. In lieu of following
the complex stress variations in the cracked concrete, only the average stress state and the stress
state at a crack are considered. As these two states of stress are statically equivalent, the loss of
tensile stresses in the concrete at the crack must be replaced by increased steel stresses or, after
yielding of the reinforcement at the crack, by shear stresses on the crack interface. The shear stress
that can be transmitted across the crack will be a function of the crack width. Note that shear stress
on the crack implies that the direction of principal stresses in the concrete changes at the crack
location.

The average principal tensile strain, ¢, in the cracked concrete is used as a “damage indicator”
which controls the average tensile stress, fi, in the cracked concrete, the ability of the diagonally
cracked concrete to carry compressive stresses, f2, and the shear stress, v, that can be transmitted
across a crack.

3. SHEAR DESIGN OF BEAMS

In applying the modified compression field theory to the design of beams it is appropriate to make
a number of simplifying assumptions. As illustrated in Fig. 1, the shear stresses are assumed to be
uniform over the effective shear area, b,, 7d. The highest longitudinal strain, ¢,, within the effective
shear area is used to calculate the principal tensile strain, ¢;.

The longitudinal strain, e,, can be determined from a plane sections analysis (see computer program
“RESPONSE” [5]) which accounts for the influence of axial load, moment, and shear. For design,
€, can be approximated as the strain in the “bottom chord” of a truss as
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Fig. 1 Beam subjected to shear, moment, and axial load.

. = (M,/jd)+0.5N, +0.5V, cotd — A, f.e

>
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where A, and A,, are the areas of non-prestressed and prestressed longitudinal reinforcement on
the flexural tension side of the member.

From strain compatibility, the principal tensile strain, ¢;, can be related to the longitudinal com-
pressive stress and the magnitude of the principal compressive strain, ez, in the following manner:

€1 = € + (e — €2) cot* 8 #))

Hence as the longitudinal strain, ¢, becomes larger and the inclination,, of the principal compres-
sive stresses becomes smaller, the “damage indicator”, ¢;, becomes larger.
For design purposes the shear strength, V,, of a member can be expressed as

Va=VetV,+V, 3)
o Aufy
= B+/flby jd + “Ljdcotd+V,
where V. = shear strength provided by residual tensile stresses in the cracked concrete
Vs = shear strength provided by tensile stresses in the stirrups
V, = vertical component of force in the prestressing tendons.

The values of 8 and 3, determined by the modified compression field model are given in Table 1
for members with web reinforcement and in Table 2 for members without web reinforcement.
The tabulated values of the residual tensile stress factor, 5, are based on the following expressions:

0.18
=4 @

0'3+a+16

but
0.33cotd

o e
Az 1+ 1/500¢;

Equation (4) is based on the shear stress that can be transmitted across diagonal cracks and hence is
a function of the crack width, w, and the maximum aggregate size, a. The crack width is assumed

)
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Longitudinal Strain ¢z x 1000

v/f! 0 0.5 1.0 1.5 20

<005 A 10437 | 0.251 | 0,194 | 0.163 | 0.144
@ 28° | 34° 38° | 41° 43°

0.10 £ 10226 |0.193 | 0.174 | 0.144 | 0.116
61 22° | 30° 36° 38° 38¢

0.15 A 10.21110.189 | 0.144 | 0.109 | 0.087
g 25° | 320 340 340 34¢

0.20 £ 10.180 | 0.174 | 0.127 | 0.090 { 0.093
8] 27° | 33° 34° 340 37°

0.25 £10.189 | 0.156 | 0.121 | 0.114 | 0.110
8| 30° | 34° 36° 39° | 42°

Table 1  Values of 8 and 6 for members with web reinforcement.

s Longitudinal Strain ¢, x 1000

mm 0 0.5 1.0 1.5 20

125 £ 10406 | 0.263 | 0.214 | 0.183 { 0.161
g1 27° | 32° | 34° 36° | 38°

250 £ 10384 102350183 | 0.156 | 0.138
g 30° | 37° | 41° | 43° | 45°

500 £10359102011]0.153]0.127 | 0.108
61 34° | 43° | 48° | 51° | 54¢

1000 £10335]0.163 | 0.118 | 0.095 | 0.080
6] 37° | 51° | 56° 60° 63°

2000 A]0306 ] 0.126 | 0.084 | 0.064 | 0.052
6] 41° | 59° | 66° 69° 720

Table 2  Values of 8 and 6 for members without web reinforcement.

to equal €13, Where s,,¢ is the average spacing of the diagonal cracks. Equation (5) is based on
the average residual tensile stress in cracked concrete that has a cracking stress of 0.33\/)7":. See
Reference 5 for more details.

In determining the values in Tables 1 and 2 it was assumed that the crack spacing, s,,g¢, equalled
about 300 mm for members containing web reinforcement while, for members without web rein-
forcement, the spacing of diagonal cracks was assumed to be s,,,./sin @ where s,,, is given in
Fig. 2.

To avoid yielding of the longitudinal reinforcement

Ayfy+ Apafps > % +0.5N, + (Vi — 0.5V, — V,)cot 6)

4. INFLUENCE OF MEMBER SIZE

It has been shown [6] that the modified compression field theory can predict the shear capac-
ity of members containing web reinforcement with reasonable accuracy (coefficients of variation
about 10%). The influence of axial tension on the shear capacity of members not containing web
reinforcement is also predicted accurately (COV 11%) [7].
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| Ac>0.003b, 85,

Fig. 2 Crack spacing parameter z.

For the purpose of this colloquium it is of particular interest to discuss the influence of member size
upon the shear strength of members not containing web reinforcement. For members not containing
crack control reinforcement (Fig. 2), as member size increases the crack spacing, s,,4, will increase
and hence, for a given value of strain, ¢, the crack width will increase. An increase in crack
width reduces the shear stress that can be transmitted across the crack and hence reduces the shear
strength of the member. It can be seen from Table 2 that members containing large amounts of
longitudinal reinforcement or prestressed concrete members (i.e., members with low values of ¢, )
will be less sensitive to member size than lightly reinforced members or members subjected to high
moments (i.e., members with high values of ¢;). Thus if ¢, equals O the shear stress at failure
increases by a factor of 1.33 as the size decreases by a factor of 16, while if e, equals 0.002 the
shear stress increases by a factor of 3.10.

Figure 3 compares the observed shear stresses at failure for a series of lightly reinforced beams
with depths ranging from 200 mm to 3000 mm [8]. Also shown are the shear stresses at failure
predicted from the S values in Table 2. It can be seen that the theory predicts the strength of the
larger beams very well, but is somewhat conservative for the smallest beam.

5. CONCLUDING REMARKS
The amount of stirrups required to resist a given shear, V,, can be determined from

% jd 2 (Vu = By/Tbuid — V, ) tan6 )

where both 8 and € depend on the longitudinal strain parameter, ¢,, which accounts for the influence
of moment, axial load, prestressing, and longitudinal reinforcement ratios. In addition, for members
without web reinforcement, 8 and @ are strongly dependent on member size.

The sectional design model summarized above is appropriate for those regions of structures where
it is reasonable to assume that plane sections remain plane. In regions where there are substantial
static or geometric discontinuities, it is more appropriate to use strut-and-tie design models (see
Reference 5).
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Fig. 3 Comparison of predicted and observed shear stress at failure on section distance d from

the support.
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