
Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 62 (1991)

Artikel: Bond model for punching strength of slab-column connections

Autor: Alexander, Scott D.B. / Simmonds, Sidney H.

DOI: https://doi.org/10.5169/seals-47706

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 19.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-47706
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


709

Bond Model for Punching Strength of Slab-Column Connections
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SUMMARY
A physical model that explains the mechanism of punching failure in reinforced concrete column-
flat plate connections is presented. Load is carried to the column face by arching action in the
radial direction. The curvature of the arch is defined by the force gradient (bond) that can be
developed in the reinforcement perpendicular to the arch. The validity of the model is
demonstrated by comparing predicted capacities with results from tests of such connections.

RÉSUMÉ
Un modèle physique est présenté qui explique le mécanisme de rupture par poinçonnement dans
les têtes de colonnes en béton armé, au droit de leur connexion avec une dalle. La charge est
transmise au bord de la colonne de façon radiale, sous forme d'une action légèrement arquée. La
courbure de cet arc est définie par le gradient de forces pouvant se développer dans l'armature
qui se trouve perpendiculaire à l'arc. La validité de ce modèle est démontrée par la compression
des capacités prévues de résistance, illustrée par les résultats d'essais effectués sur de tels
systèmes de connexion.

ZUSAMMENFASSUNG
Es wird ein physikalisches Modell für das Durchstanzen von Flachdecken vorgestellt. Die Last
wird über eine radiale Bogentragwirkung zum Stützenkopf übertragen. Die Bogenform wird durch
den Abbau des Verbundes in der Ringbewehrung bestimmt. Die Gültigkeit des Modells wird
durch den Vergleich mit Bruchversuchen bestätigt.
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1 Introduction

The truss model1 describes a slab-column connection as a space trass composed of steel tension ties
and straight-line concrete compression struts. Although this model provides an excellent qualitative
description for the behavior of slab-column connections, the location of the intersection between the
effective centroid of the strut and the top mat reinforcing steel does not agree with the position of
the strut as determined from measured bar force profiles at failure2. A model that retains the desirable

characteristics of the truss model and is consistent with experimental measurements of strain is
required.

A curved arch, as shown in Fig. 1, is consistent
with measured bar force profiles. In plan, the
arch is parallel to the reinforcement. As with the
truss model, the horizontal component of the arch
is equilibrated by tension in the reinforcement.
By limiting the width of the arch to the width of
the column support, the arch may be considered a
purely radial component within the plate, thereby
preserving the truss model concept of shear being
carried radially by an inclined concrete compression

strut. The geometry of the curved radial
arch, however, cannot be determined from the bar
force profile of the reinforcement tying the arch.

If the horizontal force component in the arch is assumed to be constant, then the shear carried by the
arch varies from a maximum at the face of the column where the slope of the arch is large to a
minimum, or perhaps zero, at the intersection of the arch and the reinforcing steel where the slope is
small. The shear that was carried by the arch at the face of the column must be dissipated in a
direction perpendicular to the arch at some distance away from the column. The rate at which shear
can be dissipated determines the curvature of the arch.

In a reinforced concrete flexural member, moment is calculated as the product of the steel force, T,
and an effective moment armjd. Moment gradient or shear results wherever the magnitude of the
force or moment arm varies along the length of the member (x-axis).

„ dÇTjd) d(T) d(jd)„ [1]
v=—i—=~r~Jd+~z—Tdx dx dx

Shear that is the result of a gradient in tensile force acting on a constant moment arm is carried by
beam action. Shear resulting from a constant tensile force acting on a varying moment arm is
carried by arching action. Whereas beam action at a particular cross-section requires bond forces
at that cross-section, arching action requires only remote anchorage of the reinforcement.

Experimental observations suggest that beam action is the only possible mechanism of shear transfer

in what amounts to a circumferential direction. For example, Kinnunen and Nylander3, report
that the deformed shape of test specimens under load is essentially conic, with little or no curvature
in the radial direction. This requires a linear distribution of circumferential strain through the thickness

of the plate, with maximum compressive strain at the slab soffit. This means that the flexural
depth, jd, in the circumferential direction is relatively constant, and any shear carried in the
circumferential direction must be carried by the two-way plate equivalent of beam action.

Beam action shear requires a force gradient in the reinforcement. Force gradient may be limited by
either yielding of the reinforcement or by bond failure. For those connections that fail prior to
widespread yielding, bond strength is the most important limitation on force gradient, hence, the
term bond model.

2 Development of Bond Model

The orthogonally reinforced slab-column connection is modelled as a rectangular grillage, as shown
in Fig. 2. Four strips, called radial strips, extend from the column parallel to the reinforcement.
Any load reaching the column must pass through one of these four radial strips. The width of each
strip is defined by the column width. The end of the strip farthest from the column support, called

Fig. 1: Radial Arch
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the remote end, is placed at a position of zero shear. Thus, radial strips are loaded in shear on their
side faces only. The total length of a strip is designated as L. The strength of the connection is
determined by assessing both the flexural strength of each radial strip and the ability of the adjacent
quadrants of two-way plate to load each radial strip.

Consider the free body diagram of one-half of a radial strip shown in Fig. 3. The half-strip must
support the combined effect of any load applied directly to the strip (q), including the self-weight of
the strip, and the internal shears and moments developed on the side faces of the strip by the adjacent

quadrants of two-way plate. The near side face of the half-strip is loaded in shear (v), torsion
(m,) and bending (mn) by the adjacent quadrant of two-way plate. The far side face lies on an axis
of symmetry for the plate. Under concentric loading, both shear and torsion on this face are zero.
The bending moment applied to the far side face of the half-strip is equal and opposite to the
bending moment on the near side face.

i Radial Strip

Edge of Specimen or

Center of Span

Fig. 2: Layout of Radial Strips Fig. 3: Radial Half-Strip
The combination of shear and torsion on the side face of the radial half-strip is replaced by a

statically equivalent line load, v, acting on the strip. The term v, referred to as the Kirchhoff shear,
has its origins in elastic plate theory as a way of satisfying equilibrium at a free or simply supported
edge of a plate.

_ dmn dm, [2]

v=^r+2*ar
The Kirchhoff shear has two components. The first is a shear resulting from the gradient in bending
moment perpendicular to the radial strip. This is referred to as primary shear. The second is a
shear resulting from twisting moment gradient along the side face of the radial strip, called
torsional shear.

Primary shear results from the gradient in bending moment perpendicular to the radial strip. If
bending moment gradient perpendicular to the radial strip is the result of beam action alone, then:

dm„ jd [3]-^ J-xFb' xxjd
an s

where Fb' is the force gradient in the reinforcing bars perpendicular to the radial strip, s is the
spacing and jd is the flexural moment arm. If Fb is averaged over the bar spacing, the resulting
term is the horizontal shear stress required for moment gradient, 1.

In a region dominated by beam action, a limiting value of force gradient in the reinforcement is the
equivalent of a limiting shear stress. Any limit to the force gradient that can be sustained at the

boundary between steel and concrete is a bond limitation on the quantity dmjdn. Alternatively, for
very lightly reinforced plate-column connections, force gradient at the edge of the radial strip may
be limited by the spread of yielding.
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Torsional shear is the result of gradient in the torsional moment on the side face of the radial strip,
in a direction parallel to the radial strip. The factors governing the magnitude of the torsional
moment and the torsional moment gradient are not known, nor is it clear how these quantities might
be measured. However, it is possible to outline some of the effects of torsional shear on the basis of
equilibrium conditions.

For a concentrically loaded column, the torsional moment must approach zero at the column support
as a result of symmetry. Because of the way the radial strip is defined, the magnitude of the
torsional moment at the remote end must also be zero, either by symmetry or boundary condition.
Since the torsional moment is zero at both ends of the radial strip, the total contribution to Kirchhoff
shear made by torsional moment gradient must be zero. Hence, torsional shear affects only the
distribution of Kirchhoff shear along the length of the radial strip, leaving primary shear as the root
source of all shear load on the side face of a radial strip. The effective centroid of the shear load is
moved closer to the column by the action of torsional shear.

Fig. 4 shows a radial half-strip of an interior slab-
column connection, excluding the bending
moments about the n-axis, with the torsions and
shears on the side faces replaced by the Kirchhoff
shear. The term ~q is a line load equivalent to the
directly applied load, q. The radial strip supports
all the loads by acting as a cantilever beam. The
total flexural strength of the cantilever is the sum
of M- and M+. Flexural equilibrium of the radial
strip leads to Eq. 4 and vertical equilibrium
produces Eq. 5. In each equation, the factor two
accounts for the fact that both v and q are defined
for a radial half-strip. The quantity Ps is the total
load carried by one radial strip of an interior
column-slab connection.

M+ + M~ MS 2x f (y+q)rdr
Jo

L

Fig. 4 Loading of Radial Half-Strip

[4]

rv - [5]
P. 2x (y+q)dr

Jo

Expressions for the negative moment capacity, M-, at the column end of the strip and the positive
moment capacity, M+, at the remote end of the strip, are given in Eq. 6.

M~ p~ xfyjd2 xc2 M+ krxp+x fyjd2 x c2 [6]

The factor, k„ accounts for the proportion of bottom steel that can be developed by the rotational
restraint provided at the remote end of the radial strip. It is reasonable to assume that any steel
which passes through the column contributes to Ms. There is, however, a problem in dealing with
reinforcing bars which are close to the column. Furthermore, for uniformly spaced reinforcement,
the values of p- and p+ should not depend on whether the mat is bar centered or space centered.
These problems are overcome by defining p- and p+ as:

_ _
AtT + _

AsB [7]
^ bxd ^ bxd

AsT and AsB are the total cross-sectional area of top and bottom steel, respectively, passing through
the column plus one half the area of the first top or bottom bar on either side of the column. The
term b is the column dimension plus the distance to the first reinforcing bar on either side of the
column.
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To evaluate the integrals of Eqs. 4 and 5, assumptions are made regarding the distribution of line
load along the length of the radial strip. These assumptions both simplify and optimize the loading
of the radial strip in a manner generally consistent with a lower bound approach.

- All Kirchhoff shear is assumed to be the result of primary shear. The torsional shear contribu¬
tion is considered negligible because the deformations of a plate-column connection that fails in
brittle punching are not consistent with the development of large torsional moments.

- At a distance I from the column end of the radial strip, the Kirchhoff shear decreases from the
maximum value permitted by primary shear ((dmjdn)^ to a value of zero. The length / is

referred to as the loaded length of the radial strip.

- The direct load on the radial strip is assumed small compared to v and is neglected (q 0).

Based on these assumptions, the optimized loading of a radial half-strip is shown in Fig. 5. The
loading term w is defined as:

^ N id ra
/max

dmn

dn

)°.5M +

It is convenient to consider w as the simplified,
optimized Kirchhoff shear load acting on one side
of a radial strip by an adjacent quadrant of
two-way plate. Because a radial strip of an interior

column-slab connection has two adjacent
quadrants of two-way plate, the total line load on o.5m-
a radial strip of an interior column-slab connec- ' i
tion is 2w. For an edge or corner column, 10.5p

s

however, there will be radial strips that are
parallel to the free edge of the plate and have only Fig. 5 Simplified Loading of Radial Half-
one adjacent quadrant of two-way plate. For Strip
these strips, the total line load is w.

Eq. 8 suggests that w may be based on either the maximum force gradient, Fin the reinforcement

perpendicular to the radial strip or a maximum critical shear stress, t,,,, applied on the side
faces of the radial strips. Fmax may be obtained from an estimate of the bond strength as governed
by splitting failure. tml may be obtained from the critical value of shear stress as defined by
building codes for one-way flexural members. Since most treatments of splitting bond failure focus
on either lap splices or anchorage zones rather than locations at some distance from the ends of the
bars, xm>1 provides a more attractive basis for a predictive model for punching shear.

For simplicity, building codes usually replace x j with vc. The critical value of vc according to
the ACI Standard4 and the corresponding value of w are:

vc 0.166 x wAa dx0.l66xyff\ [9]

The assumptions made regarding the distribution of line load along the length of a radial strip and
the method chosen for estimating w result in the simplified free body diagram shown in Fig. 5.
Using this figure, Eq. 4 may be rewritten and solved for I as follows:

CL C' wl2 1 [10]
Ms 2x (w)rdr 2x (yv)rdr 2x—- ; l yjMJw

Jo Jo 2

Substituting I into Eq. 5 yields:

Ps 2 x f (w)dr 2 x f (w)dr 2 xwl 2 x ^Msxw
^ ^

Jo Jo

The punching capacity of a slab-column connection is obtained by summing the contribution of
each radial strip.
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3 Discussion

The bond model, using wAa, was applied to 115
tests reported in the literature. The ratios of test
load to predicted load are shown in Fig. 5. The
average ratio of test to predicted punching load is
1.29 with a coefficient of variation of 12.3 per
cent. Using the ACI4 and BS 81105 code procedures

on the same body of data, the average test
to predicted values are 1.59 and 1.06 and the
coefficients of variation are 26.5 and 15.1 per
cent, respectively.

20 30 40 50 60

Concrete Cylinder Strength (MPa)

Fig. 6 Comparison of Test Results with
Bond Model Predictions

The difference between the average test to predicted ratio for the ACI and BS 8110 codes can be
attributed to differing design philosophies. The quality of these models should be judged on the
consistency of their predictions rather than the magnitude of the average test to predicted ratio,
since this can be adjusted simply by multiplying by a constant.

It is considered that the principal reason for the bond model consistently underestimating punching
strengths is that the contribution of torsional shear is neglected. Despite this approximation, the
bond model produces results that are more reliable than most building codes currently in use.
Furthermore, the model is simple to apply and does not resort to the definition of artificial critical
sections for shear.

The curved arch of the bond model is a natural progression from the straight-line compression stmt
of the trass model. In this way, the bond model is consistent with the truss model. The curvature of
the arch requires a tension field within the concrete. The magnitude of this tension field is governed
indirectly by the beam action shear perpendicular to the arch. As shown above, beam action shear
as limited by bond can be represented as a critical shear stress. Thus, the bond model shows why
the code approaches for estimating punching strength based on a critical shear stress acting on a
critical shear section give satisfactory results.

The bond model links shear strength and bond strength at locations other than anchorage or splice
locations. The importance of bond in the vicinity of the column has not been fully appreciated. The
link between force gradient in the reinforcement and punching strength also explains why excessive
yielding of the reinforcement in the vicinity of the column produces lower punching strengths.
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