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Strain Softening under Bi-Axial Tension and Compression
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SUMMARY
Strength criteria of concrete exhibiting strain softening have been derived based on a simple
constitutive equation with much emphasis on the compressive strength reduction due to the
tensile damage in the direction orthogonal to the compressive axis. The main experiments
performed in Japan relating to the problem are described. Comparison of the theoretical reduction
of the strength with the experimental data is made.

RÉSUMÉ

Les critères de résistance du béton dans le cadre du champ d'affaiblissement des contraintes ont
dérivé d'une équation constitutive simple, où le point est mis sur l'abaissement de la résistance
en compression. Celle-ci est due aux effets des efforts de traction dans la direction perpendiculaire

à la direction de compression. Les expériences principalement effectuées au Japon à ce
sujet sont présentées. Les données expérimentales obtenues sont comparées à la réduction
théorique de la résistance.

ZUSAMMENFASSUNG
Es wurden einfache konstitutive Gleichungen für die Festigkeitskriterien von Beton gegeben, die
besonders die Abnahme der Betondruckfesigkeit infolge Querzug und Rissbildung
berücksichtigen. Die wichtigsten der in Japan durchgeführten Versuche zu diesem Problem werden
vorgestellt, und es wird über die Vergleiche mit den theoretisch ermittelten
Festigkeitsanwendungen berichtet.
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1. INTRODUCTION

The research works related to the strength criteria or the failure surfaces in multi-axial stress

states have advanced today to a substantial extent. However, most of these works are focused

on the stress condition up until concrete reaches the maximum strength whether the stress may
be in compression or in tension. Unlike the metallic material to which theoretical consideration
for concrete constitutive equation owes to a great extent, the concrete material experiences
strain softening after reaching its maximum point. The situation is same both for the compression

failure and for tension failure.

It is well known that once concrete gets into the strain softening region, the stress strain
relation becomes size dependent due to the strain localization. In the above situation, we naturally

consider that the maximum strength will be different for the same amount of constraining
stress to the transverse direction when one of the constraining stress is in elastic range while
the other is in the softening range. The stress situation is shown in Fig.l.
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The stress distribution of this kind is often encountered in shear problems of beams, walls
and so on and it is generally recognized that the strength criteria for this situation is vitally
important for the estimation of load bearing capacity. At present moment, the strength criteria
for bi-axial tension and compression stress field in the softening zone is represented in terms
of tensile strain in the transverse direction basing on the experimental results[l],[7],[8],[9],10].
However, it is desirable that the same characteristics may be expressed in more consistent way.

The current models proposed in CEB code[2] for the constitutive equation are essentially either
homogeneous isotropic or orthotropic nonlinear elastic and they refer to the maximum stress

point and do not refer to the strength reduction when the orthogonal stress is on the softening
branch.
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In other words, maintaining tensile stress cq at point A in Fig.l-b and let require the maximum
compressive strength of a2. The current constitutive equation can predict it rather accurately.
However, Uj is maintained at point B in Fig.l-b and let require the maximum compressive
strength of cr2• It may not be altogether so well predictable.

With these reasons, they are not considered to fit for expressing above mentioned physical
properties of concrete.

To cope with this problem, the adoption of work hardening and strain softening plasticity
may be fitted[3]. However, the most rigorous work hardening and strain softening plasticity
model which takes into account the strain localization may again have a difficulty for the adoption

in this case since the tensile strain induced by the extension of buried-in reinforcement
becomes appreciable amount, for example, 5000 x 10-6, and the situation is different from simple

tension. It is obvious that the strain softening and the strain localization in this case have
been so much dispersed. With these reasons, the fracture energy based plasticity formulation
is not applicable when we try to treat it in an average way.
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Fig.2 Reinforcement Induced Strain Fields of Concrete

Suppose,we have a uniaxial tension member as shown in Fig.2-a. It is clear that we have
several zones which are in strain softening fields and the same number of zones which are in
elastic fields. The average tensile strain there, then, are written as

tLi rij
Jo Sedx + J2 J0 £Pdx + Y, W>< (1)

where se and ep denote tensile strains in elastic regions and in softening regions respectively.
The term w^ denotes kth crack width.

In the practical purpose of expressing concrete strength in the softening region,the averaged
strain of the first and second term of Eq.(l) are important except for those cases when the
detailed stress analysis which distinguishes the tensile strain in the softening zone and the strain
in other zones are carried out.

When shear transfer occurs at a crack, the strain softening region is forced back to the central
portion by the compression zone which has been induced by shear friction and the elastic tensile

zone may be occupying the central portion. More detailed discussion will be found in the

reference[4]. In consequence, the tensile strain distribution is considered to be more uniform,
localization being less effective due to the existence of reinforcement. In this sense, we may be
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able to adopt the simpler work hardening and softening plasticity model.

In this report, we will try to express the strength criteria in these situation by hardening
and softening plasticity so that the simple and more consistent strain and stress relation may
become possible without considering the strain localization.

2. Theoretical Consideration

2.1 Plastic Strain Formulation

The present formulation follows essentially the basic concept of the classical theory of hardening

plasticity for the sake of its simplicity. The position of the subsequent failure surface is assumed

to change its size continuously depending on the damage accumulated in the concrete material,
i,e. the failure surface is a function of the plastic work w(Wr).

/ /K,w(W")) 0 (2)

where W denotes the plastic work accumulated after the initial failure, and atJ denotes the

Cauchy's stress tensor. An independent function, i.e. plastic potential function g is defined as

g g(ctlMWf)) 0 (3)

Generally, the application of the classical plasticity theory implies that the total strain rate is

composed of the elastic and the plastic part

èki eh + él, (4)

The plastic strain rate tensor then, is assumed to be from the plastic potential g as

3« (5)
OUkl

while the elastic strain rate tensor ekl is assumed to be related to the stress rate tensor via the

elasticity tensor Df]kl

àtj Dfjkléh (6)

where A is a non-negative multiplier which can be determined from the consistency condition

during loading.

Consequently, the consistency condition / 0 can be expressed as

df
7>j

where Wp can be written as

+ 3Wiw' (7)

»" (8)

Substituting Eqs.(4),(5),(6) and (8) into Eq.(7) and solving for A yields
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-§£- D>]klékl

af De -^3- + h
d<rmn rnnpqdffpq ~

*7«» x

(9)

with a definition of

_ df _
dg

dWp ''da,,
(10)

Note that df /dWp in Eq.(7) and Eq.(10) will be a negative value for the hardening behavior
and a positive value for the softening behavior. As in the classical theory of plasticity, the

subsequent yield surface can be expressed with multiparameter fx, f2, • • • ft,

o (11)

Here, a series of these parameters are assumed to be unique functions of the damage parameter
ui and defined to characterize the shape and size of the yield surfaces. The initial loading
surface is assumed to coincide with the elastic limit surface. The subsequent yield surface expands
with the increase of inelastic strains in hardening. After a state of stress reaches the ultimate
condition named as the initial failure surface, the subsequent yield surface will begin to reduce

its size continuously until it reaches the final failure state named as the final failure surface.

The function df /dWp can be elaborated, then as

df ,dfdfx df df2 df df, du>

dWp dfx dix! df2 dui df, duj dWp

2.2 Definition of the Damage Parameter

Before discussing the damage parameter, let recall the concept of effective stress ae and effective
plastic strain ep[5]. An effective plastic strain rate èp is defined in relation with the plastic work
rate Wp as

Wp a,,é^ aeép (èp > 0) (13)

It is easily found that the single effective stress- effective plastic strain curve should preferably
be reduced to a uniaxial stress-strain curve for a uniaxial stress test.

The damage parameter defines the damage of the material accumulated due to the progressive
growth of the micro cracks etc., which is defined for convenience, in the form of

w -£- f dWp (14)
ace0 J

where, ß is a material constant, and

e°=£ (i5)

Here, Ec denotes the modules of elasticity of concrete, and is the uniaxial compressive
strength. Substituting Eq.(12) into Eq.(13), we have

u) ßjdep/eQ (16)
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2.3 Application of Drucker-Prager Type Failure Surface

Although more sophisticated criteria may be preferable for simplicity, the following Drucker-

Prager type yield criterion is employed for its simplicity.

f y/T2 + afh-kf 0 (17)

Besides, a similar expression for the plastic potential function is assumed as

g \fh + OCgh ~ kg ° (18)

where Jj ay.* and J2 2shsh are the first invariant of stress tensor at] and the second

invariant of deviatoric stress tensor stJ, respectively, and ay ,kf, ag and kg are material constants.

Since it is known that the Mohr-Coulomb criterion is simple with constants of a clear physical
meaning which are related to the uniaxial strength straightforwardly, the Drucker-Prager cone
is matched with it such that two surfaces are made to agree along the compressive meridian.
In this case, the two sets of material constant are related by

2siruf)* &c*cos<j>*
^ \/3(3 — sin<f>*)

' * \/3(3 — sincj)*)

where <f>* and c* are two strength parameters in the Mohr-Coulomb criterion, namely the so-
called mobilized friction angle and mobilized cohesion [6], and the notation is introduced to
indicate that <f>* and c* are not constant but depend on the plastic strain history through the

damage parameter ui. In spite of the paucity of experimental data to support the definition of
the damage parameter lu we are able to say something about the dependence of <f>* and c* on
u> The value of <j>' generally should be an ascending function of uj, while c* may be expected
to be a descending function of w. Possible relations for the hardening and softening model are

suggested as follows

c* cexp[— (mw)2] (20)

J <j>* <f>0 + {<f> - <t>0)V2w-aP w < 1

\ 4>* <t> w>\ y '

where, m is a material parameter. The notations c and <f> denote the cohesion and the internal-
friction angle of the concrete respectively. All of these relations are shown in Fig.3.
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Similarly, we defined

_
2 simp* ßc'costp*

9 \/3(3 — sinifj*)' 9 \/3(3 — simp*)

with a defined mobilized dilatancy angle ip* • It is noted that for ip* <f>*, we have f g and
the classical associated flow rule is recovered.

2.4 Flow Rule

The associated flow rule is applied predominantly for practical reasons, since no experiments
have been conducted on subsequent loading surfaces for concrete materials. For associated flow

rule, it is interesting to note the plastic work rate is

W* A at] p- A a,, 1^- AnF (23)

when F(F / + k) is homogeneous of degree n in the stresses, as it is for many cases in
plasticity theories. The scalar function A can be obtained by squaring each of the terms in
Eq.(5) and adding as

^ x'ik,ik, (24)

Taking the square root of both sides and substituting A into Eq.(23) shows that ép must be a

function of F and èpX]

where we have used the definition of plastic work(Eq.(13)) for defining the effective plastic
strain ep. For the Drucker-Prager failure surface, the effective stress for the failure function can
be obtained by substituting the uniaxial compressive stress condition into the function

<7e —Jl (26)
(\A

By substituting Eq.(26) into Eq.(25), Eq.(25) can be reduced to

(-a, + l/v/3)
\/3«/ + 1/2

féÂ (27)

Depending on the preceding discussion, df/dWr in Eq.(12) for the Drucker-Prager criterion
can be rewritten as

df df daf df dkf dm dat dkf dm
_ uj uaf uj QKf om _ oaf OKf om

I a,., a, > aw 1 1 a a. ' au/n I '
dW? daf dm dkf dm dWp dm dm dW*

Here,



630 STRAIN SOFTENING UNDER BI-AXIAL TENSION AND COMPRESSION

dot; _
2%/3cos<j>* d<t>*

,2gx
dw (3 — sincf)*)2 dw

dkf 6c*(l — 3sin<j>*) d<f>* 12cm2w _(maq:
dw -\/3(3 — sin<f>*)2 dw \/3(3 — sintp*)

and

cos<{>* (30)

w (3i)
du> 1 0 u > 1

Moreover,

dw ß
(32)

dWr e0crc
y '

2.5 The c and <f> Factors Affected by The Damage Parameter w

The relation between the damage parameter w and the c, if> will not be set in a unique way.
At present study,however, we adopted the above mentioned equation. In these formulations,
w and c, 0 change as shown in Fig.3 depending on the value of w. The movement of failure
surface with the increase of damage w is shown in Fig.4 conceptually.

Fig.4 The Movement of Failure Surface

Looking at the figure, it may be understood that the maximum uniaxial compressive strength
will be given by the circle which will make tangential contact with one of the lines with the

maximum radii.

It is possible to select other relations between the damage parameter and failure parameter
of c, and <f>. As an example, several of the experimental data are compared in Fig.5 with the
above mentioned criteria and reasonable agreement will be seen in the comparison for different

loading paths.
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3. Experimental Results for The Bi-axial Tension and Compression

3.1 Vecchio and Collins' Test.

In the beginning, it should be mentioned that those test results which are treated in this section

are by no means bi-axial tension and compression test in its true sense. However, as mentioned
in previous section, we try to utilize the results in the average sense and apply the theoretical
criteria for those experimental results. At present moment, we have several experimental results
for the stress field where one principal stress is in tension of the strain softening zone and the
other principal stress is in compression, since the appearance of Vecchio and Collins reports[l] on
the load carrying capacity of the panels subjected to in-plane shearing load. In that argument,
treating the concrete element between the parallel cracks in uniformly stressed condition, he

proposed the compressive strength reduction according to the amount of tensile strain to the
transverse direction. The strength reduction was found to be the vital material characteristic
which should be clarified to the detail since the strength of the member in shear depends upon
the strength to such an extent. His proposal of strength reduction was as such that

A
1

> (33)
0.80 + 0.34

where e0 denotes the uniaxial compressive strain corresponding to the uniaxial compression
strength of cylinder and elu denotes the transverse tensile strain occurring.

3.2 Maekawa and Okamura's Test

In Japan, several experiments relating on this problem have been performed. Maekawa and

Okamura[7] performed bi-axial tension and compression test using the cylindrical specimen.
Inside the cylinder, water pressure was generated and ring tension was induced. The compressive

strength,then obtained by the axial compression. They proposed the compressive strength
reduction in the following form,

A 1.0 (ej < e„)

1.0-0.4^ (£a<ei<efc)
0.6 (e0 < ex) (34)

ea 0.0012

eb 0.0044

where e\ is the transverse tensile strain.

3.3 Sumi and Kawamata's Test

Sumi and Kawamata[8] has performed the most comprehensive experiment on the stress strain
relation of cracked reinforced concrete panel elements using the specimens and the loading
apparatus shown in Fig.6. For the equal reinforcement ratio in two orthogonal directions, they
obtained the relation in the form of Eq.(35). They could measure the strain directly which
corresponds to the first and second term of the Eq.(l) and the stress was calculated from the
equivalence of the force to two directions.

(35)



T. TANABE, Z. WU 633

where /!: uniaxial compressive strength of cylinder, £0: compressive strain which corresponds
to f'ci ai: compressive stress of cracked element, compressive strain which corresponds to
<7i, and ecr: compressive strain of cracked element when transverse cracking initiated.

For the panels of unequal reinforcement ratio, the shear stress is transferred across the crack
surfaces which add another factor for the stress strain relation in the cracked concrete element.

With the similar method, they calculated the stress and strain. Finally, they proposed for this
case the following equation.

77 A/(ei)
J C

A (36)
(a £2_ I cri—max\

_ ^ ft
f — max \
I f'c

where <r2 denotes the stress in transverse direction while other notations appeared in Eq.(35)

Amsler Type
Testing Machine

Jacks A

Specimen
LPC Bars

Load Cell

Fig.7 Shirai's Testing Method Fig.6 Sumi's Testing Method

The equation, however, gives higher strength when the orthogonal stress is in higher tension.

In other word, this is contrary to the tendency reported in the past that the strain get larger,
the stress is more reduced in the softening range and the strength in compression get smaller.

3.4 Shirai's Test

Shirai[9] performed experiment with the small specimen shown in Fig.7 and proposed the

following equation.

^1
/0.31\I I tan
V Pl

[4820£l - 11.82] + 0.84

A2

A AI • A2

5.9^ + 1.0
J c

(37)
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where denotes the tensile stress working to the orthogonal direction.

3.5 Noguchi's Test

NoguchiflO] performed similar experiment and concluded the strength reduction in the form of

A ~~
0.27 + 0.96(^-)0167 ^

where ei„ denotes average tensile strain to the transverse direction when the element fails in
compression and e0 denotes the compressive strain of cylinder which corresponds to the uniaxial
compressive strength of cylinder.

3.6 Comparison of the Theoretical Calculation and Results

All the experiments mentioned in the previous section showed that the failure surface shrink
with the increase of tensile strain as shown in the Fig.8. It is also expected that the same

strength reduction may occur in the softening compression and compression range though there
have not been reported any experimental results so far.

Initial Failure Surface

For those experimental results, the plasticity model mentioned in the previous section is
applied. The concrete with uniaxial compression strength of 30 Mpa. has been loaded in various

loading path. The one which has been the main topics of the present study is to load in uniaxial
tension over the maximum point then stop the loading at some point in the softening range
and starts to load it in compression to orthogonal direction keeping the damage which has been

accumulated in previous loading path.

In this study, the accumulated damage oj was continued though the loading direction has

changed 90 degrees and the maximum compression strength was calculated. Strength reduction
which depend on the ratio are obtained and shown in Fig.9 in comparison with the experimental
results which is the reproduction of Shirai's experimental results, however, being recalculated
so that the strain of the coordinate be the 1st and second term of Eq.(l).

It may be seen that the reduction is in accordance with those proposed in the strain range
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of 0 to 5000 x 10-6. This is the numerical simulation for the purpose to show that the simple
model proposed enable to trace the post peak strength reduction in reasonable way. However,it
is true yet that we need more detailed study to relate modeling parameter with the actual
condition of cracked reinforced concrete.

Ee 20000

c 50
(Mpa)

0o 46"

v 0 18
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£q 002

/ \ 0 0 20

1 \/ s

\
/ \\/ s
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/
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10000
Transverse Tensile Strain(xl0-6)

Strength Reduction due to the Transverse Tensile Strain

Fig.9 Strength Reduction Calculated

4. Conclusion

In the limit state design of reinforced concrete, it is paramount requisite to make a good
estimate of the ultimate load carrying capacity of structures. For commonly met structures
like beams, slabs and walls, the concrete behavior in bi-axial tension and compression stress
field has a substantial effect for their load carrying capacity especially when shear effect is

predominant. The compressive strength reduction in one of the principal direction when the

orthogonal tension is occurring to the other principal direction has been the phenomena that
draw concrete engineer's attention. As the tensile strain is mainly in the large strain range of
softening, which is composed of elastic strain and localizing strain, the stress field is neither
easily experimentally measurable nor analytically obtainable. However, we definitely need more
comprehensive, consistent and reliable knowledge in that area. The consistent mathematical
representation of the phenomena has been made in this study and some numerical examples
were shown. However, it is much desired that the more experimental results be accumulated
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not only in tension compression area but compression and compression area. Finally, thanks

are due to the graduate student K. Taniyama and Ge Hanbin who has carried out the numerical
calculation and especially to H. Nagashima for preparing the manuscript in this study.
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