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Composite Beam Finite Element Method Considering
Shear-Lag Effect
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SUMMARY

In the design of cable-stayed bridges with composite deck, the shear-lag effect in a reinforced
concrete slab should be carefully considered. In order to analyze correctly the shear-lag effect
in the composite beam, a special finite element of T-type girder is developed on the basis of
Reissner's theory. The stress distribution in the deck slab of Huangpu River cable-stayed
bridge in Shanghai, China, are calculated, and the results are verified by a conventional finite
element analysis program, as well as compared with that from British Standards Code.

RESUME

Dans le projet de pont a haubans avec tablier mixte, I'effet de trainage de cisaillement dans la
dalle en béton armé doit étre attentivement prise en considération. En vue d’analyser
correctement cet effet dans la poutre mixte, un élément fini spécial a été développé sur la base
de la théorie de Reissner. La distribution des contraintes a été calculée dans le tablier du pont
a haubans sur la riviere Huangpu a Shanghai en Chine. Le résultat a été vérifié par le
programme conventionel de la méthode des éléments finis puis comparé avec celui des
normes britanniques.

ZUSAMMENFASSUNG

Im Entwurf der Schragseilbriicken mit Verbundtragern sollte die Schubverschiebungswirkung
(Shear-lag Effect) in der Stahlbetonplatte vorsichtig bertucksichtigt werden. Um die Schubver-
schiebungswirkung richtig zu analisieren, wird in diesem Bericht ein besonderes finites
Elementes fur Verbundtrager auf der Grundlage der Reissner-Theorie entwickelt. Die Span-
nungsverteilung in der Platte des Verbundtragers der Schragseilbrucke uber den Fluss
Huangpu in Shanghai, China, wurde berechnet. Die Ergebnisse wurden durch ein ubliches
Finite-Element-Programm bestatigt und auch mit den englischen Normen verglichen.
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1. INTRODUCTION

Since the Annacis Bridge in Vancouver, Canada with a record-breasking main span
length of 465 m was completed in 1984, the composite design with a very simple,
economical and easy-to-erect girder/deck framing system shows an outstanding
advantage in some competition of long~span cable-stayed bridge. In the design of
Huangpu River cable-stayed bridge in Shanghai with the main span of 423 m, the
composite alternative beat an all-concrete design due to its lower weight, fewer
cables, less massive towers, fewer foundation piles and shorter construction
period required.

About half a century ago von Karman first studied the shear-lag effect in T-type
girder, and established a basic theory of calculating the effective width of
slab for design purpose. In after years many authors have made contributions
towards this problem in simple-supported or continuous beam bridges, in which
the Reissner's theory for analyzing the shear-lag in box girder by the principle
of minimum potential energy is more effective and noticeable. But very few
attention has been paid to the composite deck of cable-stayed bridges.

In order to analyze correctly the shear-lag effect in the composite beam, a
special finite element of composite T-girder is developed in this paper on the
basis of Reissner’s theory. As an in-plane composite beam element, a new dis-
placement parameter u. reflecting the shear-lag effect of the flange slab,
namely the relative longitudinal displacement between the root and end of the
cantilever flange, is added in each end of the element. The stiffness matrix and
loading matrix of this special beam element can be derived by the variational
principle.

2.FORMULATION AND SOLUTION OF PROBLEM
The differential equations of displacement function reflecting shear-lag effect

can be established by the variational principle for elastic structures. Let us
consider a section of T-type composite beam as shown in Fig. 1.

2.1 Assumption for displacement functions

The displacement functions varying longitudinally in the composite beam are
assumed as:

wi{x), vertical displacement of composite beam;
u,(x}, axial displacement of steel girder;
u,(x), relative longitudinal displacement between the root and end of canti-

lever flange reflecting the shear-lag effect.

The displacement function varying transverly
in the slab can be described as:

U (y)=l-(y/b)  (i=2,3,4) (1) . ULt et e
e datadpintres L e Rl - -';“jf‘%rd
o T ST o v E_,,y N o |
in which, b is the width of slab on each L TG I

side, and the coordinate system T -
is shown in Fig. 1.
Fig. 1 Analysis model and
2.2 assumption for stress and strain Coordinate System

The cross sections of steel girder remain plane. As a result, the longitudinal
displacement of slab at various points can be written as:

u, (x,y5) = w(x)d + u,(x) + u.(x) U, (y) (2)
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in which, d is a vertical distance between the middle surface of slab and the
cross section centroid of steel girder.

The curvature of R.C. slab and of steel girder are identical in vertical
bending.

The stress and strain in slab are regarded as a plane stress problem.

2.3 Differential equations of displacement functions

According to the assumptions mentioned above, the total potential energy of
composite beam can be determined, and it may be written in the form as:

= M{ w'’, u,, u, , u, x) (3)

By means of the calculus of variation, we, obtain

X d X
m m m &

som=( ( 2T gure 2T S0 4 (20 - (2T )16, jax + 2 §u, | (4)
X, aw'’ dul au, dx 2u; au,;} X,

The differential equations and boundary condition can then be established by
making §T=0, and finally we obtain:

d, M,
w il Foul = - (5)
I. E, L.
F, N,
u' # — ul = (6)
Ac E.. A.
] kMd, kN
uy’- ku, = - (7)
Egt Ic Eg:- AC
_ N, M.d, X,
[ EaFul + ( — - ) F,1ou t =0 (8)
A I. X,

In which, M., N. are the bending moment and axial force in composite beam;
u=u,, +d;w’, is the axial displacement of composite beam;
A., I. are the cross section area and moment of inertia of composite
beam; E. is the modulus of steel girder;
d, is a vertical distance from the middle surface of slab to the cross
section centroid of composite beam;

F, =t/n § G, dy; k=F, /F; K=F" /(2+2n) ; F=F-F, (1/A.+d}/1.),
where, d; is a distance from the cross section centroid of steel girder to
that of the composite beam; n is Poisson’s ratio;

F=t/n §.48, ) dys £ =t/n {(u!) dy; n=E./E.,, E,—the modulus of slab.

3. COMPOSITE BEAM FINITE ELEMENT METHOD CONSIDERING SHEAR-LAG EFFECT

The composite beam finite element can be established by using the differential
equations of displacement functions and the boundary condition derived above. It
can be seen from equations (5) to (8) that three displacement functions of w, u,
and u, are fundamental for determining the displacements and internal forces of
composite beam. If we take an extra parameter u,. in addition to the conven-
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tional three displacement of in-plane beam element u, v, 6, as the basic dis-
placement parameters of a special composite beam element, namely(see Fig. 2)

{S}e=[eiiui’vi!uri’ej)uj"’jlurj]r (9)
which will determine solely the stress state of composite beam element,

The stiffness matrix of composite beam element

[kl;s, can be obtain by using the solutions of Ury _Hrdlie Uy
Egs. (5) to (7) under boundary conditions re- N J ) »i*“’-";,v’-f—“\":#?
lated to determining elements of stiffness {_\1 ol gpuelr 7 S
matrix. It should be pointed out that the ele- ""-& LI iy

ments k.; (i=4,8;j=1,2,...8) in the matrix are U AT 7 unm
related to the additional displacement u,; and

Uyj » Fig. 2 Displacement Parameters

The elements of loading matrix {P} can be calculated by using Eqs. (5) to (7),
making influence 1lines of reactions My, R and R at beam ends, and loading on
lines, which are carried out by computer program.

Finally, the equilibrium equation of composite beam element can be written as:

k) {8 - Py =0 . (10)
in WhiCh, {P}e = [ Mi, Rix 1] Rfy ) Nui ’ MJ‘ ] ij ) Rjg y Nuj ]T . (11)
Nui , No; are a generalized elastic resistance correspending to the displacement

i, and may be defined as work done by normal stress in slab at ends of element
caused by M, R- and Ry on the displacement ..

It can be proved that the equilibrium equation relative to N, or N, in Eq.(10)
is the another form of Eq.(8). So that when an element is in equilibrium, it
must satisfy the boundary condition from the variation of the total potential
energy.

As a verification of the composite beam finite element method developed in this
paper, a simple-supported composite beam subjected to a concentrated load or a
fully uniform load is taken, and the results of effective width ratio in diffe-
rent cases are obtained. Compared with the BS 5400 code, wunder the uniform
loading, the results are in good agreement with the BS code; under the con-
centrated loading, the results in range of width-span ratio b/L < 0.5 are close
to that in the BS code. The best choice of i in equation (1)} is 4.

4 .APPLICATION TO HUANGPU RIVER BRIDGE
The  Huangpu v % T oooo - A R
River Bridge : i
is a T-type !
composite beam i
cable - stayed = oo !

bridge with a E ! ‘
main span of - el VU S R —— oy - JT 4w
423 m (Fig. 3) o |
in construc~
tion. Fig. 3 Huangpu River Bridge in Shanghai

4.1 Effective width ratio of slab and internal forces in the composite beam
under dead load
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The conventional FEM is used for calculating three cases:

Case (a), (b) and (c) express that the effective width ratio ( E.W.R.) of slab
¢=1.0, 0.05-0,25 and 0.1-0.5 are taken respectively in determining the bending -
stlffness of composite beam, and ¢ =1.0 in axial stiffness for three cases. 1In
which case(b) with¢$=0.05-0,25 . :

is obtained according to the
BS code when the composite
beam is regarded as & con-
" tinuous beam supported rlgldly
on the cables. :

By using the special FEM con- i oo vt o oo s

(o) a)

sidering shear-lag effect, the
internal forces, the variation
of effective width ratio along
the span,and the normal stress
distribution in. slab in the
middle of span are also given,
which is named as case (d) as
shown in Fig. 4 and Fig. b.

SO ]
1 _6.50

Axiel rorce
T ste.. groer

. It can be seen that under dead
load a little difference of

 internal forces exists = among

" four cases ' except the region
‘near the tower. Compared with
case (d), the biggest diffe-
rence appears in case (a), and
the least in case (c).In fact,
the - amount of .axial force in Fig. 4 E.W.R,
deck -is much larger than under -
live loads, and the bending moment is
relatively small. So it may be accepted
that the bending and axial stiffness are ...
determined by ¢ =1.0, however a better

- result of . normal stress in slab from |

is more close to the o

W%WMWWW

/7, marent
in wiee: (;«r e

“Pesttion uF cobles Center of span o

case (b} or (c) gl
reality. Fig. 5 Normal Stress in Slab

4.2 Effectlve W1dth ratlo of slab and 1nternal forces in the c composite beam
under live loads

The truck loads are taken as live loads, and the sections 1,2,3 and 4 are chosen
for calculating the internal forces. In Table 1 the bendlng moments of four
sections obtained by FEM are listed with the effective width ratio¢=0.4 to 1.0.
"The results obtained from spe01a1 FEM con31der1ng shear-lag effect are also
shown.

Table 1 Moments and effective width ratios

It can be seen in the Table that .

from ¢ =0.4 to 1.0, the bending |section 1 2 | 3 | 4

moments change little and about |E.W.R.® moments  {tm)

¢=0.5 the results approach the 1.0 - -696.02 |763.70 | -246.72] 668.62
- values by FEM considering shear- 0.6 -676.20 [745.41 | -244.03| 651.83
" lag effect. It should be noticed 0.5 -667.36 [737.08 | -242.50]| 642.66

that if we take a length of an 0.4 -655.20 |725.57 | -240.60| 630.05
- influence line (same symbol) of a - ' '

section concerned as the span of FEM considering shear-lag effect

an equivalent continuous beam, we |moments -671.62 |739.87 | -242.37| 633.97

may obtain an effective width [EW.R4 | 0.914 0.852 0.750 0.805
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ratiog=0.5 from the BS code.

According to the position of

o | we

live loads, under which the = - = WP oo
bending moment of the sec- /T K il ] T
tion 3 or 4 arrives its most % * L dahE ’ s
unfavourable value,the vari- Fﬁfcﬁit’ﬁ?m P ‘:i” jt.-“"“t iﬁ
ation of effective width | Fesizem -0 h-%}-‘ P
ratio obtained from FEM con- e %
sidering shear-lag effect .o Lme ML ﬁ o e
are shown in Fig. 6. i | 8o .

© Effective = ‘.\:‘I'\-f‘\" AR w
Because of the interaction o wilth rate 8 T C i;’
caused by the wheel loads, ] e R T
vertical and horizontal com- P Influenge I,\ 1 %"
ponets of cables, the curves =& .
wave along the span. We are
much interested in the nor- Fig. 6 E.W.R. Curves (Loading on M,-L, M,-L)
mal stress in slab at the
sections 3 and 4, where the effec— Mn : E\ = g = = 0 F o = F
tive width ratios show ¢ =0.805 TR qggﬁ*ﬂiﬁ:’\: é’}\ E\gg\\gﬁ{‘:\g\_ \ﬁ
and 0.75. So it makes clear that i %1@ O CEEdDdERmn mend B g .
the normal stress distribution in =+~ ﬁf’*:m e Bo By tn i e e E_B_ B
slab is also wniform enough, Jjust = 508 Z3 5§f7§§§'§§:§;§“2“§ Lg
as shown in Fig. 7. _BE PRt AR

) Center of span - ] 8= Prilion of cobies

Fig., 7 Normal Stress in Slab (Loading on M,-L)
5,CONCLUSIONS

In the composite deck of cable-stayed bridges, the effective width related to
the normal stress in slab is very complicated. For dead or live loads, axial
force or bending memont, the effective width should be different theoretically,
and varies along the span.

A special FEM considering shear-lag in slab of a T—ltype composite beam is es-
tablished on the basis of Reissner’s theory. An additional displacement para-
meter reflecting the shear-lag is included in the beam element.

Under dead load, the normal stress in slab due to axial force can be calculated
as distributed uniformly on the full width of slab, but the normal stress due to
bending moment should be considered by using effective width corresponding to a
rigidly-supported continuous beam.

In determining the internal forces under live loads, the different value of
effective width is not sensitive, and the full width can be taken for making the
inflnence lines,but care must be taken in determining the stress. An equiavalent
continuous beam with a span equals to the length of influence line concerned can
be used for calculating the effective width on the safe side.
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