Zeitschrift:	IABSE reports = Rapports AIPC = IVBH Berichte			
Band:	60 (1990)			
Artikel:	Strength and deformation of steel column to concrete pile connection			
Autor:	Kato, B. / Morita, K. / Ishibashi, T.			
DOI:	https://doi.org/10.5169/seals-46478			

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 08.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Strength and Deformation of Steel Column to Concrete Pile Connection

Contrainte et déformation d'un poteau en acier au point de jonction avec le pieu en béton

> Tragwiderstand und Verformung von Verbindungen zwischen Stahlstützen und Betonpfählen

B. KATO	K. MORITA	T. ISHIBASHI	T. HASUDA	K. TAKADA
Professor	Professor	Railway Techn.	Railway Techn.	Sumitomo Metal
Tokyo Univ. Tokyo, Japan	Chiba Univ. Chiba, Japan	Tokyo, Japan	Tokyo, Japan	Ibarakı, Japan

1. INTRODUCTION

To utilize the aerial spaces over the railway tracks is fairly prospective solution for the shortage of land space in urban area like Tokyo. Because of limited construction site around tracks in everyday use, dispensing with footing beams ,that is, providing one pile foundation for one column as illustrated in Fig.1 achieves greater economy. Railway Technical Research Institute had organized the committee by scientific and administrative members besides Japan Railways group from 1988 to 1990 and studied technical problems to construct the high-rise over-track building structually characterized by having no footing beams.As the result, the seismic resistance design standard for it was established in 1990. The need for study of the mechanical behavior of the columnpile connection was cited in the committee. In this type of structure, the steel box column is directly inserted to the cast-in-place concrete pile reinforced by the steel pipe with continuously roll-formed ribs on its inner surface as shown This report describes the summary of experimental and analytical in Fig.2. study on the connection and the design method for it.

2. EXPERIMENTAL STUDY

Moment distribution of the story for accommodating tracks under the horizontal seismic force is shown in Fig.3. Moment and shear force of the column should be transferred smoothly to the pile in the connection.

17 specimens illustrated in Fig.4 were statically tested by reversed cyclic loading. The primary variables employed in this study were with/without ribs of the steel pipe, the embedded length of the column and the axial force of the column. The column of specimens modeled the prototype one under the inflection point. Solid column section was used to ensure that the column flexual capacity exceeded the anticipated strength of the connection. Fig.5 and Fig.6 show the test results indicating the effect of ribs of the steel pipe. As can be seen from these figures, the ribs restrict the slip-out of the infilled

concrete from the steel pipe due to the rotational deformation of the base plate and consequently enhanse the stiffness and strength of the connection. Fig.7 shows the test result indicating the effect of the embedded length of the column in the steel pipe with ribs. Followings can be seen,

- Stiffness and strength of the connection increase as the embedded length increases.

- Yield strength at which load-deflection curve becomes nonlinear corresponds to the load when the hoop stress of the pipe yields at the top of the connection.

- To ensure that the flexural capacity of the column above the connection exceeds the yield strength of the connection, the required embedded length of the column is

3. ANALYTICAL STUDY

To predict the stress and the deformation of the connection before the yield strength, the connection was modeled as shown in Fig.8. The effect of ribs of steel pipe was taken into consideration in the rotational rigidity Kr. Horizontal modulus of Winkler's elastic medium Kh is calculated by the horizontal deformation of the infilled concrete and the steel pipe. Analytical results evaluated conservatively the experimental results as shown in Fig.7.

4.DESIGN OF CONNECTION

In the seismic resistance design of the connection, it is regulated that the hoop stress of the reinforcing pipe which is calculated by above analysis should not yield before the mechanism of the story for accommodating tracks developed by plastic hinges in beams, columns or pipes.

5.CONCLUSION

By the experimental and analytical study M of the column-pile connection, the design method for it was developed. 9-stories station building is now under construction in Ooi-town in Tokyo

This experimental study was funded by Nippon Steel Corporation and NKK Corporation besides authors.

Fig. 8 Analytical model