Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte
Band: 58 (1989)

Artikel: Expert systems: expectations versus realities
Autor: Fenves, Steven J.
DOI: https://doi.org/10.5169/seals-44890

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-44890
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Introductory Keynote Lecture

Expert Systems: Expectations versus Realities
Systémes experts; espoirs et réalité

Expertensysteme: Erwartungen und Wirklichkeit
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SUMMARY

Expert systems offer a methodology for the treatment of heuristics in engineering computer-
aided tools. The opportunity of incorporating heuristics has created high expectations. In reality,
current expert systems are limited by the difficllty of knowledge acquisition and their static natu-
re. The paper reviews the trends in expert systems development and identifies some promising
explorations towards their generalization.

RESUME

Les systémes experts offrent une méthodologie pour utiliser des «heuristiques» dans des syste-
mes d’ingénierie assistés par ordinateur. La possibilité d’inclure ces heuristiques a créé de
grands espoirs dans les milieux concernés. En réalité, les systéemes experts existants sont limi-
tés par des difficultés d’acquisition de connaissance et par leur propre nature statique. Cet arti-
cle donne un compte rendu des tendances actuelles du développement des systemes experts
et énonce quelques aspects prometteurs relatifs & leur généralisation.

ZUSAMMENFASSUNG

Expertensysteme bieten eine Methodologie an fur die Behandlung von Erfahrung bei der Auf-
bereitung von Computer unterstiitzen Werkzeugen. Die Moglichkeit Erfahrung zu verarbeiten
hat hohe Erwartungen geweckt. in Wirklichkeit sind jedoch gegenwartige Expertensysteme be-
schrankt infolge der Schwierigkeiten der Wissensaquirierung, und durch die Tatsache, dass sie
statisch sind. Diese Arbeit Uberblickt Tendenzen in der Entwicklung von Expertensystemen und
zeigt vielversprechende Forschungsarbeiten in Richtung von verallgemeinerten Systemen.
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1 Introduction

Developers of computer-aided tools have struggled for a long time with mechanisms for incorporating
idiosyncrasies in their programs: assumptions, shortcuts, simplifications based on experience, and not
necessarily fully justified by causal reasoning. Conventional (i.e., procedural or algorithmic) programming
tools have made it difficult, if not impossible, to make the idiosyncratic or heuristic components of

programs (a) fransparent to users and (b} conveniently modified when the heuristics are changed.

The emergence of expert systems, or knowledge-based programming paradigms in general, have
offered the promise of a methodology for better treatment of heuristics in engineering computer-aided
tools. These methodologies rely, in essence, on modular and declarative representation of knowledge
and thereby provide a means of overcoming the difficulties mentioned above. Thus, expert systems have
been enthusiastically embraced in many disciplines, and have created high expectations among program

developers, users and managers.

The realities of expert systems have not yet lived up to the expectations, for several reasons. First, the
process of extracting, compiling and organizing heuristic knowledge, referred to as knowledge
engineering, is turning out 10 be harder than anticipated, and present knowledge acquisition facilities are
still rudimentary. Second, mature knowledge-based paradigms, implemented in languages, tools and
shells, are available only for interprelative or diagnostic problems; the concepts and tools available for the
more challenging generative or formative problems of design and planning are not yet well develioped.
Third, engineering applications invariably require a mix of qualitative (Heuristic, empirical or "shaliow")
reasoning and quantitative (algorithmic, causal, or "deep”) analyses and evaluations; the linkage between
these two modes of problem-solving is not yet seamless enough for convenient and practical use. Fourth,
realistic engineering applications require significant interactions with databases and with geometric and
spatial representations; here again the necessary linkages are not yet available. Fifth, mechanisms need
to be developed to extend "single-purpose”, highly idiosyncratic expert systems to a broader scope.
Lastly, present knowledge-based systems, derived from Al research more than a decade old, are static in
the sense that they do not modify their behavior based on their performance; techniques of machine

learning are only now beginning to be applied to engineering problems.

The paper reviews the trends in expert systems for civil engineering applications and identifies a

number of explorations aimed at bringing reality closer to the expectations.
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2 Background
The earliest published reference on the use of a digital computer in civil engineering that | have found
dates to 1952 ([Bennett 52] quoted in [Livesley 66]). In the intervening years, computer use has

undergone at least three revolutions:

e High-level procedural languages such as FORTRAN, ALGOL, etc., vastly increased the level
at which engineers who could communicate their problem to the computer;

» Time-shared systems provided a rate of man-machine interaction commensurate with the
engineer’'s needs; when coupled with higher-ievel problem-oriented languages, they further
increased the /eve/l of the man-machine dialogue; and

» Personal computers and workstations have placed the control of the man-machine problem-
solving process in the hands of the engineer; augmented by extensive user interface
management capabilities, they have further elevated the level of interaction.

As a result of these revolutions, the computer has become an integral and indispensable ingredient of
civil engineering practice, research and education. The computer has also vastly accelerated the
technology transfer between research and practice and between industries, as well as entire economies,
at different levels of development. A methodology embodied in @ computer program enjoys orders of
magnitude faster and wider dissemination than its description in an engineering journal. Similarly, the
finite element method is a salient example of rapid technology transfer from the "high-tech" aerospace

industry to "low-tech” industries such as civil engineering or shipbuilding.

Notwithstanding the enormous volume of computer use in civil engineering, this use todéy is largely
concentrated in one category, namely calcuiating: the mapping of one set of numbers, representing the
problem at hand, to another set of numbers, representing the results or outcome, according to a
predefined procedure, called the algorithm. Thus, the computer is primarily involved in the derivation of

predicted consequences of actual or proposed engineering decisions.

Computer use is also being rapidly extended into two other categories: presenting information in
graphic, textual and other forms; and sharing information among individuals and organizations
participating in a common project or énterprise. The lively interest in interactive computer graphics, the
rapidly growing use of CADD, and the increasing integration of text processing into all phases of
engineering are manifestations of the first category, while the growing emphasis on engineering database
management systems (DBMS) as a critical ingredient ‘of computer-integrated manufacturing (CIM) and

computer-integrated construction (CIC) is a salient example of the latter.
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By contrast to the above explosive developments, computer use has been seriously lagging in a fourth-
category, that of reasoning. Reasoning differs from computing in two key aspects. First, the objects dealt
with, or more precisely, the representations of these objects, are symbolic rather than numeric, whether
these objects are physical, geometric or conceptual entities. Second, the processes operating on these
objects are ill-structured, involving assumptions, approximations, "rules of thumb" and other heuristics
[Simon 81]. The processes that are most characteristic of engineering, notably design and planning, fall

into this category. Computer aids for this category have lagged considerably behind computational aids.

The above does not imply that civil engineers have not attempted to develop programs for design and
planning, but rather that the present programs are not based on an intellectual framework that explicitly
supports symbolic operands and heuristic operations. Existing design programs, developed in an
algorithmic framework, contain assumptions and heuristics deeply buried in masses of procedural code.
Such programs tend to be highly restrictive in their scope and highly opaque, in that they function as
"black boxes" with no mechanisms to explain the heuristic bases underlying their processes. These

programs are also notoriously difficult to understand, update or modify.

There is a pent-up frustration, among program users and developers alike, with the limitations and
shortcomings of present-day algorithmic, numeric programs. Users are frustrated because the programs
implement someone else’s heuristics without explanations or ways of substituting their own, while
programmers are frustrated because they don’t have tools for implementing what the users want. Hence
the growing interest in a new program development methodology which has grown out of research in

Artificial Intelligence.

3 Artificial Intelligence and Knowledge-Based Expert Systems

The disciptine of Computer Science has grown up in parallel with the growth and proliferation of
computers. Computer users in general, and civil engineers in particular, have benefited from research
results from such branches of Computer Science as numerical methods, language theory and
programming systems. Particularly signiﬁcant impacts on the manner in which civil engineering programs
are designed, developed, used and maintained have come from the discipline of software engineering, a

significant "spinoff* from Computer Science.

As early as 1956, a branch of Computer Science began to explcre symbolic, as opposed to numeric,

processing. This branch evolved into Artificial Intelligence (Al), concerned with the dual issues of
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constructing computer programs thaf appear to be intelligent and of understanding human intelligence, or
human problem solving, by means of programs that emuiate humans. Al today is a mature science,
dealing with issues such as intelligent systems, search methodologies, knowledge representation, vision,

natural language processing and robotics.

Al research on the representation and processing of knowledge has produced within the iast decade a
"spinoff”, comparable in its potential impact to software engineering, called krowledge engineering,
concerned with the development of programs variously referred to as knowledge-based systems, expen
systems, or knowledge-based expert systems (KBES). KBES have a particularly high potential for
practical use in ill-structured domains where knowledge is highly heuristic and explicit algorithms either
don't exist or provide only limited and restricted problem-solving capabilities. Thus, KBES have raised the
expectation of providingexactly the type of conceptual framework that is needed for the design and

planning applicationsin civil engineering

The purpose of this paper is to explore how this expectation can be converted into reality.

4 Anatomy of KBES
An early definition of KBES, by one of the co-authors of the highly successful and influential Prospector

system, is:

"Knowledge-based expert systems are interactive computer programs incorporating judgment,
experience, rules of thumb, intuition, and other expertise to provide knowledgeable advice about a variety

of tasks [Gasching 81]."

The first reaction of many professionals active in computer-aided engineering to the above definition is
ohe of boredom and impatience. After all, conventional computer programs for engineering applications
have become increasingly interactive; they have always incorporated expertise in the form of limitations, -
assumptions and approximations, as discussed above; and their output has iong ago been accepted as

advice, not as "the answer" to the problem.
A more satisfactory definition, elaborating on the role of expertise, is:
"An expert system is one that:

 handles real-world, complex problems requiring an expert’s interpretation
» solves these problems using a computer model of expert human reasoning, reaching the
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same conclusions that the human expert would reach if faced with a comparable problem
[Weiss 84]."
Even this definition does not provide an operationa! definition to distinguish KBES from conventional
algorithmic programs which incorporate substantial amounts of heuristics about a particular application
area, or domain. The distinction cannot be based on implementation languages, e.g., FORTRAN vs.

LISP (after all, many KBES frameworks are now implemented in C).

in an earlier paper, the following four key features that clearly separate a KBES from a conventional

airorithmic program were identified [Fenves 86):

1. Separation of knowledge-base control. There are some facilities for manipulating the
knowledge-base per se (displaying, searching, modifying) separate from the control
{inference engine) which operates on the knowledge-base.

2. Transparency of dialog. There is some form of an explanation facility to convey to the user
the inference process actually used. Conventional "Help” facilities do not qualify, as these
are separate from the actual execution.

3. Transparency of knowledge representation. The domain-dependent knowledge
incorporated in the program code is readable and understandable to some degree. Full
natural language translation, as in EMYCIN and its derivatives, is not necessary; on the
other hand, comments do not qualify, as they are not incorporated in the code.

4. incremental growth capability. The KBES can be used with a subset of its ultimate
knowiedge base, and its knowledge base incrementally extended over a period of use
without major (or any) restructuring.

The first feature needs some elaboration, since some KBES formalisms (e.g., frame-based systems)

have no generic inference engine. A better generalization is to state that in a KBES knowledge is

represented declaratively rather than procedurally.

Various KBES frameworks have different inference procedures and different knowledge representation
schemes, including: production systems [Forgy 81], semantic inference networks [Reboh 81], logic
representations [Clocksin 81}, and frame representations [Wright 83]. More complex blackboard systems,
based on multiple experts operating at different levels of abstraction, have also become common [Baizer
80, Erman 80, Nii 82]. Some of the problem solving strategies incorporated in KBES are discussed in

[Maher 86].

The basic components of the KBES using the production system (IF-THEN rules) formalism are:

¢ Knowledge Base. The knowledge base is the repository for the domain knowledge used by
the system in the form of rules, iong term historical information, and facts.

» Context. The context contains all of the information which describes the problem currently



S. J. FENVES ' 7

being solved, including both problem data and solution status. The problem data may be
divided into facts provided by the user and those derived or inferred by the program.

 inference Engine. The inference engine operates on the context, utilizing the rules in the
knowledge base to deduce new facts which then can be used for subsequent inferences.

The objective of the inference engine is to arrive at a global conclusion or goal. The inference process
continues until the context is transformed into the desired goal state, or when there are no more rules
remaining to be fired. Itis to be emphasized that only the knowledge base of a KBES is domain specific.

All the other components are parts of a general purpose KBES framework or shell applicable to a range of

application domains.

Many KBES inference engines can also deal with imprecise, inexact or incomplete knowledge.
Associated with the data are certainty measures indicating the level of confidence in the data. Rules can
conditionally fire based on the certainty of their premise, and can have certainty factors associated with
their conclusion. The inference mechanism can then propagate certainty about the inferences along with

results of the inferences.

In addition to the three basic components, it is highly desirable that the KBES contain three additional

components:

* Explanation Module. The explanation module provides the KBES with the capability to
explain its reasoning and problem-solving strategy to the user. At any point the user may
interrupt the system and inquire why it is pursuing the current line of reasoning. In addition,
the program can explain how any conclusion was deduced and how knowledge was applied.

» Knowledge Acquisition Module. The information in the knowledge base is in a rigid format,
and the translation of knowledge obtained from experts to the required internal format may
be tedious. The knowledge acquisition module aids in this task. Although it is desired that
eventually the domain expert be able to enter directly knowledge into the system, this goal is
currently not achieved.

s User Interface. The user accesses the system through a user interface, often using a
domain oriented subset of a natural language, menus or computer graphics. The interface
provides capabilities for the user to monitor the performance of the system, volunteer
information, request explanations, and redirect the problem solving approach.

The basic concepts of a knowledge base, knowledge acquisition, explanation, context and inference
mechanisms are common to the different types of KBES architectures. Details of system organization,

knowledge and data representation, and inference method vary among the different approaches.

The range of potential KBES applications covers a spectrum from derivation or interpretative problems

to formation or generative problems [Amarel 78]. In derivation problems, the problem conditions and
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desdription are given as part of a solution description (goal). The KBES completes the solution
description by applying the available knowledge and rules such that the initial data and conditions are well
integrated in the solution. By contrast, in formation problems conditions are given in the form of
(constraints) that the solution as a whole must satisfy. Candidate solutions are generated and tested
against the specified constraints. Two subclasses are: constraint satisfaction in which the solution need
only satisfy the governing constraints, and optimization where an attempt is made to find the optimal
solution. The design of a plan, object, or system fits this paradigm. Most actual problems are neither
pure formation nor derivation problems, but lie somewhere in-between and require that techniques from

‘both categories be used in problem solving.

5 Distinction of Engineering KBES
KBES are being developed for a wide range of civil engineering applications. A recent survey
discusses KBES applications grouped under the categories of construction, structural, geotechnical,

environmental and transportation engineering [Kim 86).

The trends in civil engineering, as well as related work in other engineering disciplines, are beginning to
highlight the distinctive characteristics of engineering KBES, which may not be present in KBES'

addressing other domains. The following is an attempt to identify these characteristics.

Use of Causal Knowledge. In some of the KBES literature, distinction is made between “shallow" vs.
“deep” knowledge. These terms are misleading and imprecise. A more usefu! distinction is between
empirical associations versus causal knowledge. The first term includes heuristics observed to be useful
or practical, but without any underlying knowledge of the causality between the premise and the
conclusion or inference: “IF the load is too large THEN the structure will fail" is an empirical association
known since the Stone Age, but today’s engineers have extensive causal knowledge relating loads to
failure modes. Furthermore, an experienced structural engineer possesses a great deal of compiled
knowledge, and can confidently make associations between loads and potential faiiure modes without
having to resort to textbook knowledge or basic principles about stresses, strains, distortions, etc. Thus,
while it is conceivable that successful KBES can be built in some domains based exclusively on empirical
associations, it is almost a foregone conclusion that every engineering KBES must be based, at least in
part, on compiled, causal knowledge. Appropriate general mechanisms for explicitly representing such

knowiedge are still lacking, and today a KBES developer may be forced to disguise such knowledge as
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purely empirical: a rule of the form “IF compression element is slender THEN instability is a highly likely

failure mode” does not explicitly convey its causal source.

Interaction With Algorithmic Components. As indicated above, engineering problem-solving relies
extensively on causal knowledge. Furthermore, much of this causal knowledge fs either already
embodied in existing algorithmic programs, or can be effectively incorporated into procedural attachments
to rules in a KBES. For example, to establish the premise of the rule "IF every bar in the truss is
incorporated in a triangle THEN truss is geometricaly stable”, many further IF-THEN rules must be tested,
and even then the rule will lack generality (i.e., it will not handle compound trusses}. A much more
elegant and general rule would be "IF determinant of equilibrium equations is greater than zero THEN
truss is geometricaly stable”, with the premise established by a procedural attachment which uses a
standard matrix procedure. Thus, in any engineering KBES, interaction with algorithmic components is

an absolute necessity.

Two levels of interaction are possible. At one level, the KBES may be interfaced with an algorithmic
program, acting essentially as an intelligent front-end, assisting the user to prepare input data to and
interpret results from the algorithmic program, the iatter still serving as a monolithic "black box". A typical
interaction of this kind is described in [Zumsteg 85]. Alternately, the knowledge-based and computational
components may be tightly integrated, where a knowledge-based module is paired with each functional
module of the algorithm, with the knowledge-based modules providing advice, checks, shortcuts,

selections, etc., for their corresponding functional module [Fan 89].

The early KBES environments, geared to derivation or diagnostic applications based on "shallow”
empirical knowledge, did not provide convenient facilities for interaction with algorithmic components. If
interaction was possible at all, it had to be performed by means of ad-hoc arrangements, usually at the
operating system level. The more recent KBES environments provide much more convenient interfacing
capabilities, either at the level of the knowledge representation languages, as in OPS83 [Forgy 84], or at

the level of the control structure of the inference engine.

Interaction With Databases. A common characteristic of engineering problem-solving activities is
their intense use of data, in the form of reference information, information on past projects relevant to the
current project, shared common information among participants in the project, and information generated

by the individual project participants. Increasingly, all such information is stored in, retrieved from and
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managed by engineering design database management systems (DBMS). A major engineering KBES
cannot restrict itself to using only the local context provided by the KBES environment, and has to interact

with the information residing in databases external to the KBES.

The two levels of interaction between KBES and databases needed roughly parallel the levels of
interaction with algorithmic components discussed previously. At one level, the KBES acts as an
intelligent interface between the user and the database, assisting in formulating queries to the DBMS.
For example, the KBES may contain a high-leve! "ruie” of the form "IF there is a previous project similar to
the present one THEN use its parameters as the initial values for the current project”. Such a KBES
would need many further heuristic rules on what constitutes a “similar* project, what the relevant
parameters are, et¢., so as to formulate a DBMS query to a database of past projects and to retrieve from
the query results the parameter needed. In the opposite scenario, the DBMS managing an.integrated
project database may have a database semantic consistency rule of the form "IF structural component
dimensions compatible with architectural requirements AND capacity adequate for imposed mechanical
loads THEN accept ELSE reject the database update”. In this case, the DBMS would have to execute an
appropriate KBES in order to evaluate the consistency rule (as well as to notify the participants invoived

of the reasons for rejecting any transaction).

Geometric Reasoning. A third distinguishing characteristic of most engineering KBES, particularly
those in civil engineering, is their extensive use of spatial attributes of objects (their dimensions and
locations) and of spatial relations among the objects (e.g., connected, adjacent, above, accessible, etc.)
It may be argued that spatial attributes and relations constitute the syntax of any language for reasoning
about engineering objects, and that the functional attributes and relations among these objects constitute
the semantics of that language [Baker 87). Furthermore, in most engineering problems, objects have
multiple functions, and thus multiple semantics. For example, in building design, a single object such as a
wall has distinct structural, architectural, acoustic, etc., functional attributes. Design decisions based on

one functional domain of an object affect its functional performance in all other domains.

A newly emerging field dealing with the representatioh and processing of spatial attributes is
designated as geometric reasoning. The objective of geometrical reasoning is to develop appropriate
representations and operations that can support a variety of functional domains. Geometric reasoning
can relieve the knowledge engineer concerned with a particular functional domain from having to provide

detailed implementations of relations such as "above” or "connected”, thereby being able to concentrate
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on the functional domain. There are at present no general-purpose geometric reasoning systems that
can be directly incorporated into engineering KBES. However, due to the prevalence of geometric
reasoning needs in many disciplines, notably robotics, it can be expected that such systems will rapidly

emerge.

6 Role of Engineering KBES
The present and expected future KBES applications can be roughly grouped into three categories,
depending on the role they play in the engineering decision-making process. The three categories are

giscussed in the following sections.

- Diagnosticians. Most existing civil engineering KBES fall into the category of diagnosticians, that this,
they tend to cluster around the derivation end of the problem-solving spectrum introduced in Section 4. A
diagnostic KBES can provide advice in the form "What is wrong with the patient, or structure” (diagnosis)
and can be naturally extended to provide "how to fix" recommendations (prognosis). The key

characteristics of these systems are:

= the knowledge base contains all hypotheses or goals that the system "knows about” as well
as_the chain of inference or reasoning leading to each hypothesis, including ail the symptoms
or data needed to evaluate the hypotheses;

« for each of the possible diagnosis hypotheses, the knowledge base contains all relevant
prescriptions and remedial measures appropriate for that hypothesis; and

e the inference strategies appropriate to the task are well known (e.g., use forward chaining if
there are a few symptoms and many possible hypotheses; use backward chaining if the
reverse holds; use mixed initiative if there are a few key symptoms, chain forward to partial
hypotheses, then chain backward to gather and evaluate confirming evidence).
The two emphasized "all" above refer to the current contents of the knowledge base; obviously,
knowiledge acquisition facilities are needed to expand ar modify the knowledge base over the life of the

expert system to reflect new or changed conditions or additional hypotheses.

There are three reasons for this predominance. First, many of the available expert system
development shells are a direct or indirect outgrowth of diagnostic expert systems such as MYCIN or
Prospector, and are therefore geared to supporting diagnostic problem-solving strategies. Second, this
problem-solving strategy does correspond to a well-established mode of thinking or paradigm identified
with thé terms "engineering method” or "scientific method”, namely, that a thorough analysis or diagnosis

of the problem at hand facilitates the subsequent syntheéis or prescription of a solution. Third, the
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paradigm provides for a natural growth of the knowledge base through experimentation and calibration:
the knowledge base can grow in depth as the chains of inferences leading to particular hypotheses are

elaborated, or in breadth as additional hypotheses and remedial measures are incorporated.

Diagnosticians can be either stand-alone KBES, or they can be interfaced with algorithmic programs or
databases, as discussed previously. In particular, they can serve as intelligent pre- and post-processors
for complex algorithmic programs. It is notable that two of the earliest KBES using general shells were
civil engineering applications for modeling or .pre-processing assistance (HYDRO [Gasching 81] and

SACON [Bennett 78]).

Generators. The second category of KBES of great interest is that of generators, corresponding to the
formation end of the spectrum. In contrast to diagnostic KBES, generative KBES can provide advice in
the form "What is a feasible (or good or best) arrangement of entities subject to a set of constraints”. The
entities may be actions, és in planning, or physical objects, as in design. The constraints may be problem
dependent, and typically propagate dynamically (e.g., choosing a particular action at one point will

constrain the choice of actions at some other point). The key characteristics of such systems are:

» the constraints are represented in the knowledge base;

o the set of known entities, or rules for generating them, are in the knowledge base; therefore,
these systems will nat “invent” new plans or designs, but may still generate novel candidate
solutions by arranging or combining the known entities in unexpected ways.

» while the choice of inference strategy is not as clear as for diagnostic KBES, a number of
inference strategies have been proposed or evaluated {e.g., hierarchical decomposition,
teast-commitment principle, means-ends analysis, etc.) and can serve as a prototypes.

The "best" candidate solution is understood to mean best among candidates that can be generated
from the known entities, measured according to some evaiuation function. Again, the knowledge base

can grow by the addition of new candidate entities, new constraints or new rules for combining entities.

There are understandable reasons why generative KBES have been slow to emerge: the early KBES
development shells did not support this paradigm, and it takes considerable effort to decompose a design
problem into a form amenable to this approach. The decomposition involves both decomposing the
domain knowledge into a hierarchy of representations at various levels of abstraction, and decomposing

the process or control knowledge into operations on these representations.

Critlcs. There is a great potential for a special class of diagnostic KBES, which may be calied critics.
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The role of a critic is to evaluate a concept (e.g., a design or a plan) with respect {0 knowledge not
available to the agent (human or computer program) that generated the concept [Talukdar 89]. The
function of these KBES can be explained as follows, Generative KBES such as H/RISE [Maher 84} and
CARTER [Reynier 86] use preformulated constraints to guide the search for feasible solutions. However,
there are many "soft” constraints that may affect the feasibility or optimality of a candidate design or plan
which are not known with sufficient precision to be formulated as a priori constraints. These constraints
are not in the knowledge base of the designers, but are typically part of the expertise of the constructors,
manufacturers or users of the system or product being designed. These experts, in turn, cannot be
expected to tell the designer how to design something so that their constraints are satisfied; all they can
be' expected to do is to evaluate or critique a proposed candidate design and assert whether their
constraints are satisfied or not (and, if not, then provide a reason or justification). Presumably the
designer, when presented with such a critique, can modify his design so as to eliminate any cause of

negative criticism.

One can conceive of many useful KBES that could perform the role of such critics. There is a lively
interest in "design for manufacturability, constructability or operability" where downstream concerns of
manufacturability, etc. are dealt with in the initial design. At the present state of knowledge about such
concerns, an attractive implementation would be o pass candidate designs to KBES critics, and feed
back the resulting critiques to the designers. For example, a constructability critic KBES could diagnose a
proposed design and return statements such as "girder is too long to be lifted in place”. It would then be
the task of the designer (or design KBES) to modify the design so as to satisfy the implied constraint.
Critic KBES would be particularly attractive in civil engineering, where design and construction are often
performed by separate organizations, so that designers don't receive direct feedback concerning the

constructability of their designs.

7 Critique of Present KBES
The present generation of KBES has been justly criticized on two grounds: that they are idiosyncratic

and that they are static. These terms requ'ire some expianation.

A KBES developed using the present methodology, is idiosyncratic in the sense that its knowledge
base represents the expertise of a single human domain expert or, at best, that of a small group of

domain experts. The KBES thus reproduces only the heuristics, assumptions, and even style of problem-
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solving of the expert or experts consuited. It is the nature of expertise and heuristics that another, equally
competent, expert in the domain may have different, or even conflicting, expertise. However, it is worth
pointing out that a KBES is useful to an organization only if it reliably reproduces the expertise of that

organization.

Present KBES are static in two senses:

o the KBES reasons on the basis of the current contents of its knowledge base, i.e., it does not
“learn” in the sense of automatically updating the knowledge base; a separate component,
the knowledge acquision facility is used to add to or modify the knowledge base; and

« at the end of the consultation session with a KBES, the context is cleared, so that there is no
provision for retaining the "memory” of the session (e.g., the assumptions and
recommendations made and their acceptance or rejection by the user).

These two characteristics of KBES result from the fact that the present KBES methodology is
essentially based on Al research results of more than a decade ago. Al research has been steadily

progressing during this time.

The purpose of the following two sections is to attempt to predict the evolution of KBES as further
research results of Al, as well as the experience in the development and use of KBES is incorporated into

the next generation of KBES methodology.

8 Towards "General-Purpose" KBES

At present, there appear to be no usable, formal methodology emerging out of Al Research for
resolving the idiosyncratic nature of KBES. There are some techniques for checking the consistency of
knowledge bases, but these are largely syntactic (e.g., identifying rules with common premises but
different actions). The growth of the KBES methodology from the present, highly "special purpose”,
expert systems to higher levels of generaiization has to come from the profession or domain itself through

research. Two possible avenues present themselves.

" In the simpler, more passive approach, a researcher may make arrangements with the authors of
several KBES in the same domain 1o obtain access to their respective knowledge bases and attempt to
extract generalizations from them. This approach may be very frustrating because of the great variety of
KBES development languages and their lack of representation of causal linkages between premises and

actions.
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A more active approach would start with the development of a domain-specific meta-sheli which would
contain: (1) the common knowiedge base of the domain; (2) excellent knowledge acqguisition facilities for
expansion and "customization" of that knowledge base by a wide range of practitioners. Such an

approach would have two advantages:

« individual organizations could develop their KBES more rapidly, by having as a starting point
an initial common knowledge base; and

» evaluation of individual expertise and search for generalizations would be greatly facilitated
by having a common representation for the domain knowledge.

We are currently working on two projects using this approach. The first is the development of a
PC-based diagnostic KBES for evaluating the seismic resistance of existing buildings [Fenves 89].
Because of the wide variety of expertise in this area, the basic system will contain only a core of
commonly agreed knowledge (analytical routines, rules extracted from published documents, and
reference facts) and a khow(edge acquisition facility. A number of user organizations have agreed to
experiment with the system and customize it by incorporating their own expertise. Arrangements have
been made for these organizations to return to us their custom knowledge bases for us to collate and

attempt to structure the accumulated knowledge.

In a second project, we are deveioping a finite element modeling and interpretation environment to
generate numerical analysis models from suitable assumptions, and evaluate the numeric results with
respect to these assumptions [Turkiyyah 89]. Provisions are made to customize the system by including

user-specified preference rules for selecting among the assumptions.

9 Towards Learning KBES
In contrast to the specialization vs. generalization issue, the issue of static vs. dynamic KBES appears
riper for further improvement. There has been a great deal of research in Al on the topic of machine

learning, and some of the Al approaches are on the verge of being incorporated into engineering KBES.

In a recent paper, we have surveyed a number of Al ma_chine learning techniques and identified their
applicability to KBES [Reich 89]. The potentially applicable techniques include: learning from examples;
learning by analogy; learning by discovery; learning by experimentation; and learning by causal analysis.
The applicability of these techniques lies in improving knowledge acquisition by building a domain model,

increasing efficiency by learning search control, and reducing the "brittleness™ of KBES by providing
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common-sense reasoning. We are currently experimenting with a number of these techniques in the

context of learning KBES for bridge design.

It is to be expected that other Al machine learning techniques will begin to be explored in the context of
civil engineering KBES in the near future. The impact of this new generation of KBES will be most
pronounced in two areas. One area is in recognizing precedents, where previous successful designs can
be used as precedents for initializing new design activities by exploiting analogies between them and thus
focusing design largely to that of "debugging”, i.e., reconciling differences between the current design
problem and analogous previous ones. A second area is that of elevating the critics described previously
to serve as components of generators, that is, to extract from their passive criticisms constructive

constraints that can be incorporated directly in the formative, synthesis stage.

10 Summary and Con‘clusions

The methodologies and concepts of Al, as embodied today in the methodology of KBES, provide an
intellectual framework for addressing heuristic problems in civil engineering that could not be successfully
approached with conventional programming techniques based on well-structured, algorithmic

formulations.

The scope and capabilities of the current generation of KBES may prompt the observation that Al in
general and KBES in particular have been oversold. Many of the present civil engineering KBES address
trivially small problems, and very few KBES are in production use. This situation is to be expected in the
early, formative stages of a new methodology. Current KBES development frameworks or shelis were not
motivated by engineering needs, and the current state of engineering expertise is not compiled in a form
immediately suitable for incorporation into the knowledge base of a KBES. The stage of KBES today
parallels that of algorithmic computing 30 years ago, before the emergence of languages such as
FORTRAN and ALGOL, in terms of both primitive development languages and primitive available
knowfedge.. The reader is reminded that even the most straightforward algorithms, such as those for

sorting or equation solving, have improved by tens of orders of magnitude from the original ones.

The present generation of engineering KBES have already had a major impact. First, they have

clarified the distinctive needs of engineering KBES in four areas:

» reasoning with causatl knowledge;



,% S. J. FENVES. 17

« interaction with algorithmic components;
» interaction with databases; and
» reasoning with sbatial attributes and relations.

Second, the role of engineering KBES is becoming clearer. While the majority of present KBES are

stand-alone systems 'addressing diagnosis or interpretation, KBES applications will broaden into:

e intelligent pre- and post-processors;
» critics providing feedback on proposed designs; and
¢ generators of designs or plans.

‘There is the further opportunity of progressively incorporating additional results from Al research,

particularly in the area of machine learning.

The third and most important lesson learned from experimentation with the present generation of KBES
is the revision of the "classical" concept of knowledge engineering. Today’s KBES development
methodoiogy is predicated on the presence of a anwledge engineer serving as an interface between the
domain expert and the KBES develobment environment. This is again analogous to programming before
FORTRAN, when an experienced machine language programmer was needed as an intermediary. It is
not difficuit to predict that history will repeat itself, and that the need for such an intermediary will largely
disappear. It is a foregone conclusion that with a new generation of KBES development environments,
application programmers in a domain will not only serve as knowledge engineers, but will be able to
incorporate significant components of the domain knowledge base by themselves, relying on true experts
only for key ideas and high-level heuristics. [n this fashion, KBES will become another integral
component of computer-aided engineering, significantly extending computer-aided engineering from the

present-day emphasis on calculating towards true reasoning.
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