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Incorporation of Steel Design Codes into Design Automation Systems
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lian Steel Bridge Code.

SUMMARY

This paper presents a model for the representation of design codes based on first-order logic
and their incorporation into Design Automation Systems. Also, a formal link with hypertext
systems is suggested. Furthermore, presented are the results of the initial investigation into the
logical structure of the British Code BS5950 for steel design.

RESUME

Cet article présente un modéle pour la représentation des normes de projet basé sur une logi-
que de premier ordre et leur intfroduction dans des Systemes Automatiques de Projet. Une liai-
son formelle avec un systeme de type hypertexte est également présentée. Les résultats d'une
investigation préliminaire sur la norme anglaise BS5950 concernant les structures métalliques
sont également présentés.

ZUSAMMENFASSUNG

Dieser Artikel stellt ein Modell fir die Beschreibung von auf logischen Grundregeln aufbauen-
den Projektnormen und deren Einbeziehung in automatische Projektsysteme vor. Eine formale
Verbindung mit Hypertext Systemen wird auch angeregt. Die Ergebnisse einer ersten Analyse
der logischen Struktur des British Code BS5950 fur Stahlbauprojekte werden prasentiert.
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1. INTRODUCTION

This paper presents a model for the representation of design codes that can be
easily incorporated into Design Automation Systems. This model is based on and-
or graphs and first-order logic. Furthermore, this model suggests a formal 1link
between design codes and hypertext systems - an emerging field in engineering
information management. Also, presented are the results of the initial
investigation into the logical structure of the British Code BS5950 for steel
design. The practical experience of the authors with the present model is
restricted to the domain of steel design. However, the model may be applied to any
design code,

2. THE PROBLEM OF KNOWLEDGE REPRESENTATION
The study of regulations as a type of knowledge can be found in the areas of
Office Automation [1] and Legal Reasoning [2]1[3]. In Design Research, this type

of knowledge presents the foliowing characteristics:

- it is supposed to have an explicit and precise interpretation (in contrast
with the "open nature” of law in the field of legal reasoning);

- it is available in written form;

- it is supposed to be compliete and correct:
- it presents no uncertain facts;

- it requires no vague reasoning;

- it presents a simple structure of discourse (in contrast with the complex
structures found in the area of Text Generation [4])

The representation of this

I;now1ecjge mn o an art1f1 cial 1)’ r;{;{gture I_UDL“S._O.&] mernber L-—-_-_nlconxleotlbri.—
intelligent system 1involves b ] . R U ———
two main tasks: its

structuring and the .Lornpressmn Ftensmn |

translation of the written e e )
provisions into a form ’sfﬂif? ‘;\\ 1

suitable for symbolic l | strut

manipulation. However, these o .

taskz —_— HEE easily a. Physgical Network (3 tvpes of hink)
accomplished, because they SR

should be carried out with the | performance

entire design process in mind. A T e
Moreover, revisions of the B " - ]
text are required when the | satety B | serviciability

knowledge is incomplete and/or : l

. (a) .

incorrect . I.n this ,Case’ a rupture L_yleld ] ﬁnstablhtﬂ

knowledge engineer might be b Perfermates Netwesk (T B £ Tinlk
required to reveal the resuits ane or ype of link)

intended by the code writers. Fjg. 1 Semantic networks for deep knowledge
representation

Any type of knowledge
representation in design
should use deep models (i.e. models with a causal structure underlying the more
external structure). As far as design codes are concerned, any deep model will
certainly be biased by the work of Fenves, Wright and Harris {5]1[6]. In this
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context, one could produce semantic nhetworks like those in Fig.1. This paper
assumes the existence of such deep structures and focusses on more external
representations of a design code. The proposed representat1on is based on and-or
graphs and first-order logic.

3. THE GRAPH REPRESENTATION

3.1 The design code graph

The structure of a design code can be represented by an and-or graph® 1in which
provisions call subprovisions (Fig.2). Furthermore, attributes A, are attached to
each node i. These attributes
contain additional information
about the provisions, such as
the Limit States (LS)
governing the provision, the
number of the section, a copy
of the original text and one
ar more labels for
classification. For example:

A, =

3

{ LStyielding, rupture),
4.6, "For tension members
with...”, ... }

Ag v Tjez

design code
design of structural elements

axiaily loaded tension members

F- -
fhowH

Data items must be added to
the and-or graph as terminal | ; tension member
nodes. A data item should be |} .4 = eccentric connection
identified by its type (which |j+2 = factored axial load
is an attribute) according to |-

the following classification: Fig. 2 A design code graph

I INPUT. For example:
"factored axial load"”;

C CLASSIFIER. It is a special kKind of input that classifies an entity and makes
a provision entitled for conformance checking (i.e. the process of checking a
design entity for conformance with a code). For example: “"tension member”;

D DEFINITION. It is a data item used in definitions. For example: "the area of a
hole is calculated in the place of its axis” is used in the definition of "hole
area”;

E EXTERNAL. It is a data item that is given after an external procedure is
executed. Sometimes the external procedure is a call to the design code itself.
For example: checking a double angle requires that "the slenderness of each
component does not exceed 80" (in turn, this may require a consultation of the
code).

The and-or graph with attached attributes and data items is called a design code

graph.

3.2 Properties

Design code graphs present the following properties:
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[— {:}, , '[]Wm

[

a. An AND subgraph representing a b. loop in a graph
conformance checking process

modified : 8 |
data item : o
provision :
to be ; 19
processed ‘
again :

' DATA ITEMS

c. Graph showing the consequence of changing a data item

Fig. 3 Some characteristics of the design code graphs

1. Conformance checking should be represented by a unique AND subgraph, otherwise
the code presents ambiguities or multiple interpretations (Fig. 3.a}.

2. Cumbersome forms of cross-referencing, lack of connections and loops (Fig. 3.b)
cah be easily detected with the help of the design code graphs.

w

. The graphs (and especially the subgraphs) show the consequences of changing a
particular data item (Fig. 3.c). This property can be used to support
"intelligent decisions” made by Design Automation Systems. Also, it allows an
effective redesign.

4. Design code graphs share some properties with the information networks proposed
by Fenves and Wright [5]. In particular, the graph can easily be converted into
a depth-first spanning tree [7]. This tree can be used by writers of design
codes to identify cross references and to achieve better textual expression.

4. THE HORN CLAUSE SYSTEM

The design code graph of Figure 2 does not represent a design code 1in its
entirety, albeit it represents its overall organization. The representation is
completed by attaching a set of Horn clauses H, to each node i. These Horn clauses
must be mutually exclusive rules which should define the provisions completely
(Fig.4). Moreover, the set H, can contain conditions which are not presented 1in
the and-or graph, such as equations. The mutually exclusivé rules assure the
property of uniqueness (i.e. that the design code yields one and only one result).

The main variable X 1in the set of Horn clauses represents an entity to be
designed, such as a member or an element of a member. Only one kind of entity
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should be associated with the design code
each time the code is invoked. This simple
semantics yields a more robust model.

The union of the sets H, forms a logic
program P, called a design code program,
i.e.

The program P (or any subset of it) should
be invoked by a query that extracts only
one answer. This restriction is required by
the property of uniqueness.

Hl = } Rulel, Rule2 ¢

Rulel: A(X}) if B{X} and C(X) and D(X)
The most important characteristic of P is
that it contains the structure of the graph
that uses P to be defined. This recursive Fig, 4 Horn clauses associated with
aspect of the model yields a simple and 3 design code graph

concise conclusion:

Rule2: A(X) if B(X) and (X} and E(X}

"a design code can be entirely represented by the program P if the attributes
A, are attached to each member of H,".

For example, the provision A of Fig.4 might be represented by:

A(X) if B(X) and C(X) and D(X) ; A,
A(X) if B(X) and C(X) and E(X) ; A,

In this approach, each rule contains two Kinds of information: one concerning
logic (inherent to any logic program) and the other concerning the structure and
organization of the code (the desigh code graph).

5. A RESTRICTED FORM OF HYPERTEXT

The design code program presented in Section 4 can be understood as a restricted
form of hypertext(®), In this case, nodes are predicates, links are represented by
the logic program P and node bodies are the attributes A,. Naturally, the
properties of design code graphs are valid for this form of hypertext which is
called a design_code hypertext. A prototype of this hypertext system has not yet
been implemented by the authors.

Some of the principles underlying the system KMS [8] seem to be very appropriate
to design code hypertexts. Hence, nodes could be displayed as windows with four
components (Fig.5): Node Header, Node Body, Logical Items and Command Items.

In the design code hypertext there is just one type of link (although a second
type similar to KMS Annotation Items could be considered). Hence, a link is not
an object but a property of an item. The process of editing nodes is supposed to
be similar to that found in KMS.

Every aspect of the design code hypertext has a counterpart in the logic program
P and vice-versa. For example, querying P 1is like an operation of automatic
navigation. Moreover, if the querying mode is interactive (i.e. the system stops
and asks for missing facts), then conventional navigation might be available
temporarily. Also proof trees might be available for conventicnal navigation,
There are many other aspects to be explored, such as: Selection by freezing
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NODE TITLE NODE NAME NODE BODY
Describes node topic. plus node number Expands on the topic

It is the name of the wnode.
predicate \ It is the attributes.

axially lo:ded tension members satisfied(X) T DC 5

(yielding rupture)
4.6 /

For tension members with connections which are not
eccentric ...

o tension member(X)
and

o non-—eccentric connection{X)

Query Save Exit
LOGICAL ITEMS
Linked to nodes at next lower level of

the hierarchy. It is the logic
program P

COMMAND ITEMS

Fig. 5 Window showing a node of a design code hypertext

undesirable provisions (e.g. those concerning serviceability as limit states);
Priority for searching (e.g. yielding provisions first); Consequences of changing
data ijtems; Dynamic incorporation of provisions, e.g. A(X) 1if B(X) and
assert(A(X)); Explanation; Analogy based on past episodes; Debugging. For
instance, a unique metaknowledge can be used to guide both the logical inference
and the hypertext navigation (by freezing part of the program/network).

6. DESIGN CODES AND DESIGN AUTOMATION SYSTEMS

Design codes can be effectively incorporated into Design Automation Systems if
their models have the same mathematical formalism. This common framework, the
authors believe, should be first-order logic.

The model SAE [9] is based on first-order logic and considers design as a
recursive process involving Synthesis, Analysis and Evaluation. In this model, the
current state of design is represented by a set of facts in predicate form, e.qg.
"tension-member(b1)”. These facts buiid up the Database of Design Facts (DDF) and
are in canonical form (i.e. the standard form used by a specific design code).
The transiation of a fact from a general form into a canonical form should be
done at a higher level process of the model SAE.

The facts in DDF are arranged in three areas that are interpreted by the design
code model as follows:

— DESIGN REQUIREMENTS., These facts represent a design request which includes hard
constraints and basic assumptions. For example: “"tension-member{beami)”;
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~ DESIGN OPTIONS. These facts are soft constraints from a design script. For
example: "lacing-system(mi1)";

- DATA. These facts are temporary data retrieved from the conventional database
or generated by a subprocess. For example: "area(beami, 0.5)" from the database;
“"tension-capacity(beam1, 235)" deduced within a provision; "axially loaded
tension member satisfied(beami)” as a provision that was satisfied.

Synthesis processes may decide to move a fact from an area to another area at any
time.

The design code model proposed in this paper can be used by the model SAE in
several ways. First, a higher level process (e.g. Preliminary Design) can use the
design code as a logic program for determining appropriate design requirements.
These requirements (usually related to 1limit states) are then used as hard
constraints (i.e. performance specifications). For example: maximum thickness,
load factors and maximum deflection.

Second, conformance checking can be invoked at any time as an analysis process,
what is usually done in a lower level (e.g. Detailing). In this case, the query
to the logic program can invoke the entire code, e.9g.

BS5950_satisfied(beaml) ?
or part of it, e.g.
axially_loaded tension_member satisfied(beamt) ?

If a query fails, the reason for failure (a fact) should be available for some
sort of intelligente decision making.

Third, the logic program can use a built-in predicate (e.g. assert) to add
provisions to DDF if they hold, e.g. A(X) if B(X) and assert(A(X)). This technique
saves processing time if those provisions are called again.

Forth, meta-knowledge can be exercised in the present model! by using the
attributes A, Finally, tests of 1nconsistency and redundancy during the process
of using the design code (see Chapter 7) can be easily implemented. A pretiminary
version of a design code based on the present model was written in C by the
authors.

7.INCONSISTENCY AND REDUNDANCY

The user or any Artificial Design Assistant of the model SAE may introduce
inconsistencies into the knowledge database at any time. For example, he/she/it
may state that the member is a "tension member” and later state that the member
is a "strut” (i.e. a member of a structure carrying predominantiy compressive
axial Tecad), which is a contradiction. There is also the problem of redundancy.
For example, he/she/it may state that "the grade of steel is 43A" and "the flange
thickness is 16 mm", and may state later that "design strength is 275 N/mm?". This
last sentence is a redundancy¥, because design strength is a logical consequence
of the previous data.

First-order logic allows one to look for classical inconsistencies introduced into
the database each time a new fact is given. For example, if “strut(beam1)" is
given to the following knowledge database:

1. if strud(X) then compression_member(X)
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2. not(tension_member(X) and compression_member{X))
3. tension_member(beam1)

it will create an inconsistent knowledge because both "strut(beamt)” and “not
strut(beami)” are true.

The procedure for redundancy tests is the following: a new fact should not be
added to the database if it could be obtained as a consequence of the logical
system. In very large and complex knowledge databases, it should be more practical
to reject facts that can be proved in less than a specific number of steps (say
3 or 4).

8. THE DESIGN CODE BS5950

An investigation into the structure of the code BS5950 [10] has revealed some
problems. First, the design code graph of the current version of the code presents
a ‘cumbersome structure due to an excess of cross referencing, as shown in Fig.6.

= BS5950 8
= Design of structural elements {4.6)

= Axially loaded tension members (4.6)
= Tension capacity {(4.6.1) 1 e T}.
= Eccentric connections —

- W )

(o

17, 3 3 5 10
{

=) e A

a. CURRENT VERSION 6 11

BS5950
Design of structural elements

I

0N =
H

= Axially loaded tension members

Lo
!

;

= Connections with neglible
eccentricitv (4.6.2) -

1

1] 2] 3 5 9
L e I~
Tension capacity (4.6.1)

b. PROPOSED VERSION 0 | 10—

;@
T

Fig. 6 The design code graph of the provision 4.6 of BS5950

Second, some provisions provide no general guidance at the first entry level of
the provision (e.g. provision 4.6).

Third, the knowledge embedded in some provisions is not clearly expressed in the
text. For example, the actions to be taken in provision 4.6 are not explicitly
related to the three exclusive conditions about connections: (1) not eccentric;
(2) eccentric; (3) eccentric, but the effect of the moments may be negleted.
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Forth, the original text contains the objectionable word "except"”. This word has
a metalevel interpretation in logic ("expect A" means "if A cannot be proved”)
that complicates deductions for humans. The semantics of "except” is a special
case of negation called "negation as failure”. Although this type of negation
solves many problems it is advisable to avoid it (specially if nested negations
may occur). This word could be easily removed from a design code by changing the
structure of some provisions.

Fifth, some provisions permit undesirable logical conclusions. For example, from
the point of view of methematical logic, the section 3.4.3 allows one to design
any configuration of staggered holes. However, this is not the intention of the
code writers. Irregular lay-outs of holes should not be permitted because the
provision made 1in 3.4.3 is based upon empirical conclusions for regular
distributions of holes.

9. CONCLUSIONS

This paper shows that logic leads to a simple, compact and robust representational
model of a design code. Furthermore, logic can be used as a common framework for
the design code model and the design process model. In this approach,
inconsistency is gracefully handled by using classical negation in logic.
Moreover, redundancy tests are easily implemented by a deduction mechanism.

The proposed design code model is simpler and, in some aspects, more robust than
those proposed by other authors [11][12][13]. However, many aspects of those
models can ceoexist with the present model, For instance, decision tables can be
used by the knowledge engineer as a support tool during the building of a design
code program.

Some problems of specific design codes may be revealed during the building of a
design code program. For example, a partial analysis of BS5950 revealed cumbersome
forms of cross referencing, hidden knowledge and texts that permit undesirable
logical conclusions. These distortions in the structure of a code cause no harm
to experienced engineers. However, Design Automation Systems require a clear and
formal representation of the design code.

There are many ways in which the present work might be extended, such as:
incocrporating the design code model into systems with deep knowledge: further
investigation into the hypertext nature of the model; a complete analysis of a
code and its issue as a logic program or a hypertext system {as an alternative to
its textual version}; the study of problems associated with very large knowledge
databases; further analysis of design codes in the light of the methods found in
the field of Text Generation and Understanding.

NOTES

a) Incorrect in the sense that the results are not those intended by the code
writers.

b) By definition, and-or graphs assume the inclusive interpretation of "OR", i.e.
at least one (but possibly more) subprovisions hold.

c) Hypertext (or generally speaking: hypermedia) is a form of eletronic document
in which data is stored in a network of nodes connect by 1inks. Nodes can
contain text, graphics, sound, programs to be executed or other forms of data.
The entire network and individual nodes are displayed through an window system.
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Users navigate in a hypertext database by pointing the mouse cursor at an item
which has a mark to indicate a link to another node.

d) It could be an inconsistency if a contradictory value is given, e.g. '"design
strength is 355 N/mm?".
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