
Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 58 (1989)

Artikel: Object-oriented representation of design standards

Autor: Garrett, James H. Jr.

DOI: https://doi.org/10.5169/seals-44924

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-44924
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


373

Object-Oriented Representation of Design Standards

Représentation «orienté objet» des standards de conception

Objektorientierte Darstellung einer Entwurfsnorm

James H. GARRETT Jr.
Assistant Professor
University of Illinois

Urbana, IL USA

James Garrett, born in 1961,
received his BSCE, MSCE,
and Ph.D. from Carnegie
Mellon University in
Pittsburgh, PA. He joined the
faculty at the University of
Illinois in 1987 and has been
performing research in the
areas of standards processing,

object-oriented building
modeling and neural
networks.

SUMMARY
This paper describes an object-oriented standards representation in which the logic and data
items of a standard are all represented as objects and the methods for manipulating and using
the standard are stored within these objects. By using the object-oriented framework described
in this paper, it is possible to build a modular, flexible, and powerful representation of a design
standard The benefits of having this natural and declarative description of a design standard

are: it makes the logic of the design standard much more apparent than a pure textual representation,

it facilitates the automated checking of design objects against a design standard, and

greatly enhances the ability to reason about and apply the requirements of the design standard

during computer-aided design.

RESUME
Cet article décrit une représentation «orienté objet» des standards de conception dans laquelle
les éléments logiques et les variables d'un standard sont tous les deux représentés sous la forme

d'objets contenant par ailleurs la manière de manipuler et d'utiliser ces standards. L'utilisation

d'un cadre «orienté objet» tel que celui décrit dans cet article, permet de construire une

représentation modulaire, flexible et puissante des standards de conception. Les avantages de
l'utilisation de cette description naturelle des standards sont: la logique des standards de

conception comparativement à une représentation uniquement textuelle: contrôle automatique facilité

des objets vis a vis des standards de conception, importante amélioration des possibilités
de raisonner avec des standards de conception et de remplir les exigences définies par ces
standards pendant la conception assisté par ordinateur.

ZUSAMMENFASSUNG
Dieser Beitrag beschreibt die objektorientierte Darstellung einer Norm. Die Norm ist in der Form

von Objekten gespeichert, welche die Methoden für deren Anwendung enthalten. Dadurch
wird es möglich, Entwurfsnormen modular, flexibel und sehr anwendungsfreundlich darzustellen.

Es ergeben sich folgende Vorteile: Die Logik der Norm wird wesentlich besser ersichtlich
als bei einer reinen Textdarstellung. Durch die dadurch mögliche automatisierte Ueberprüfung
von Entwurfsobjekten wird die Anwendung im Computer-Aided-Design stark verbessert.



374 OBJECT ORIENTED REPRESENTATION OF DESIGN STANDARDS

1. INTRODUCTION

As civil engineers, we are required to design buildings, waste treatment facilities, public transportation
systems, etc that conform to a myriad of design standards, specifications, and codes Although they may
have more to deal with, civil engineers are not alone in having to deal with regulation of the performance of
their designs, most professional engineers must verify that their designs meet some collection of performance
regulations The ability to properly use these codes and standards (1 e to correctly identify applicable code

provisions, interpret them, and apply them) takes experienced designers years to develop Because of the

many applicable codes that must be considered and obeyed by an engineer and the dynamic nature of these

standards, computer-aided usage of design standards is an extremely important component of

computer-aided engineering (CAE) Several researchers are working towards a standards representation
and processing environment that will free the engineer from concern with the details of any particular
standard by assisting him in designing for, and verifying, conformance with all applicable standard provisions
[6, 3, 2, 4, 8] Such an environment would support creative design but limit solutions to be within the
bounds, of acceptable practice spelled out in the codes One might argue that such an environment would in
fact overly limit creative design and hence be less desirable as a design environment However, where

applicable codes exist, we have an obligation to ensure that our meet the minimum levels of performance
spelled out in those codes It is for this type of design activity, î e that falling under the jurisdiction of an

existing code, that this standards representation and processing environment is envisioned to support

For over 20 years, researchers have been investigating ways to represent and automatically use the
information contained in a design standard Fenves, who was the first to propose the idea of formally
representing design standards, represented the logic of the standards as a collection of decision tables, where
each decision table was responsible for the evaluation of a data item within the standard [5] Data items were

simply defined as the variables, including the provisions themselves, to which the standard refers within its
text When addressing the issue of automated usage of standards, most researchers have treated this formal
standard representation as a passive entity to be acted upon by a single, monolithic standards processor, in
much the same way that most pure rule-based systems rely on a single inference engine A more flexible
method of representing and processing a standard, which is the subject of this paper, would be to provide
each data item the capability of maintaining its own dependencies, of determining its own value, of retrieving
the necessary data from a design description, etc using an object-oriented approach In other words, treat
each data item identified in the standard as a self-contained object that contains all information particular to
that data item and all methods for manipulating that information

The purpose of this paper is to describe such an object-oriented standards representation and processing
environment The remainder of this paper describes 1) the basic function and form of a design standard, 2)
the general concept of object-oriented programming, and 3) the proposed object-oriented model of a design
standard

2. DESIGN STANDARDS

The basic function of a design standard is to state requirements that must be met m order to ensure that an

adequate level of performance for an entity is provided These requirements are derived from experience
with successful and unsuccessful designs As more and more knowledge is gleaned from design experience
and experimental research, the definition of adequate performance, and thus the design standard, are further
refined

Most standards state minimum levels of acceptable performance and identify a collection of criteria that
quantitatively define what acceptable performance means Each criterion is a logical expression of some set

of variables, or data items For example, m Fig 1 a portion of the AISC LRFD specification is given from
which data items and and the criteria can be determined The requirement is that there be adequate

compressive strength for compression members, the criterion for determining that adequate compressive

strength is provided is Pu < <pc Pn, where Pu is the factored compressive load on the member This

section is predominantly concerned with defining the data item Fcr

The data items within a standard can be classified as follows



J H GARRETT JR 375

1. basic - no explicit expression is provided m the standard that defines its value, hence, it's value
is to be retrieved from the design being evaluated or from general knowledge of the domain (e g

E, r, Fy K, 1 ;

2. derived - an explicit logical or mathematical definition for deriving its value is provided within the

text of the standard (e.g., Fcr > Pn< Ac )• and

3. requirement - a special type of derived data item that identifies the criteria that must be satisfied

and has one of the following status values: "satisfied", "violated", or "not applicable" (e g.,

design-compressive-strength).

As can be seen from the above described example, precedence relationships exist between the data items
within a design standard and the methods to use m determining the value of a data item are many times

dependent on the value of other data items

" The design strength of compression members whose elements have width-thickness ratios less than
A r of section B5 1 is 0e Pn

<j>c 0 85

Pn Ai Per (E2-1)

For A c =£ 1-5

Fcr (0.658 ic2) Fy (E2-2)

For A c> 15

F _ rO-877
~

Ac2 y
(E2-3)

where
Kl [F~y

A
c

/ y_ (E2-4)
m'y E

As
2

gross area of member, m
K effective length factor

1 unbraced length of member, in.
r governing radius of gyration about plane of buckling, in

For members whose elements do not meet the requirements of Sect. B5.1, see Appendix B5 3 "

Figure 1. — Excerpt for AISC LRFD [I] - Chapter E, Section E2

3. OBJECT-ORIENTED METHODOLOGY

The basic building block of an object-oriented representation is the object — a modular, self-contained
collection of descriptive attributes and the procedural methods for manipulating those attributes

Representation in an object-oriented environment first requires the description (declaration of attributes and

methods) of the general types of objects that populate the domain (class objects), and then requires the

generation of instances of the class objects to describe the particular entity being modelled

In object-oriented representations, everything is an object Objects can represent concepts, physical objects,

processes, etc In all cases, the object possesses a set of attributes and methods Attributes represent data

about the object, methods represent processes that the object is capable of performing. Attributes and

methods are usually both represented as slots within the object Other objects can access these slots, but only

by sending a message to the object that "owns" the data or method In addition to having a value, the

attributes of an object may also have self-descriptive information, such as permissible range or type. This



376 OBJECT-ORIENTED REPRESENTATION OF DESIGN STANDARDS

information is stored m facets that are associated with the slots. A special type of facet, called a procedural
attachment or demon, watches a slot value and executes a method when that value is added, changed, or
erased. This feature of object-oriented environments is especially suited for performing event-driven
computation and will be extensively used in the object-oriented modelling and usage of standards.

Fig. 2. shows the typical structure and an example of a data-item object. In that example, the first four slots

store declarative information about the data-item, such as its value or its ingredients. The "value",
"ingredients", and "dependents" slot all have facets that describe what to do if a slot value is needed or
erased.

ObjectName data-item

SlotName: SlotValues îs-a. standard-model-object
FacetName: FacetValue value: NIL
FacetName. FacetValue

FacetName: FacetValue

SlotName: SlotValues

FacetName: FacetValue

tf-needed. (data-item.value if-needed)
if-erased (data-item.value.if-erased)

ingredients: NIL
if-needed. (data-item.ingredients.if-added)
tf-erased. (data-item.ingredients.tf-erased)

FacetName FacetValue

FacetName• FacetValue
dependents.

if-needed- (data-item dependents if-added)
if-erased (data-item.dependents.tf-erased)

Figure 2. Example of an Object

A common practice m object-oriented programming is to develop templates for types of objects, commonly
called class objects These class objects usually possess attributes, attribute values, method names, or
methods that are common to several more specific objects. If these more specific objects are themselves

templates for other even more specific objects, they are called subclass objects Objects that represent an

specific instance of a class or subclass object are called instances. Instances are children of subclasses (or
classes), subclasses are children of classes (or other subclasses), classes are parents of their subclasses and

instances and subclasses are parents of their instances or other subclasses. These parent-child relations are

important because in most object-oriented programming environments, children automatically inherit
attributes and methods from their parents. For example, all instances of the object data-item (shown in Fig
2.) will inherit the slot names "value", "ingredients" and "dependents", and their procedural attachments
from the object data-item. Through inheritance, it is possible to represent information at an appropriate
level of object generality and have all more specific instances of objects inherit that information, thus

reducing redundancy and improving consistency.

Hence, the key ideas of object-oriented programming are that objects possess attributes and methods, can
inherit attributes and methods from other objects, and communicate with each other (î e get data or
execute an object's method) only by sending messages.

4. OBJECT-ORIENTED DESIGN STANDARD MODEL

As was stated previously, the purpose of this paper is to describe an object-oriented model of a design
standard that facilitates automated standard conformance verification. In order to ba able to fully automate

the venficalion of a design for conformance with applicable design standards the following are necessary:

1. an object-oriented model of the data items (both basic and derived) to which the standard refers

and the logic for determining the value of each derived data item expressed in the standard;

2 an object-oriented description of the entities to which the standard applies, which represents the

attributes of each entity within the scope of the standard and serves as a repository of knowledge

about the entities not found m the design standards; and



J H GARRETTJR 377

3 a collection of mappings 1) between the basic data items in the standard and the attributes of the

design description, and 2) between design description objects and behavior limitations (see

Section 4 3 in the standard model

All three parts of the model are required m order to ensure proper automated interpretation, not just the
first Most standards processors have provided the first part and a little of the second in the form of a

hierarchy of classifiers [6] Elam's and Lopez's work identified the need for, and implemented in limited
form, all three parts [4] This work presents an architecture, cast in an object-oriented framework, that
includes a representation of standard logic (explicit knowledge contained in a standard), the underlying
description of the entities within the scope of the standard (implicit knowledge in some standards), and the

mappings between data items m the standard and the attributes of the design description

4.1. Object-Oriented Design Standard Logic Model

4.1.1. Objects in the Standard Logic Model

As illustrated in Section 2 a design standard is a collection of logically interrelated data items These data

items and their logical interrelationships are represented using the following object classes, the hierarchy of
which is shown in Fig 3

data item

standard data item logic data item

derived data item basic-data-item rule-part rule

ruleset function mapping user-query condition action

requirement

Figure 3. — Hierarchy of Object Classes for Standard Logic

Data item. This class of objects is the most general class in the hierarchy describing the general properties of
data items used to represent a standard A data item is defined to be an explicitly represented variable that
has the following properties a value (either computed or input by the user), a list of ingredient data items

upon which their computed value is based, a method (ruleset, function, mapping, or prompt-string) for
determining its value from the list of ingredients, and a list of data items that depend on its value The
hierarchy in Fig 3 shows two subclasses of data-item standard data item and logic data item

Standard Data Item. This class of objects represents what can be thought of as the "traditional data items"
of standard representations — the data items referred to explicitly within the text of the standard Standard
data items are specialized according to the method in which their value is determined derived or basic

Derived Data Item. This class of objects represents the data items referred to explicitly, and given a

method of evaluation, within the text of the standard Derived data items are specialized according to the
method in which their value is computed Other subclasses of derived data items may be added later because

of the flexibility of this object-oriented approach, but for now only functions and rulesets are defined

Ruleset. This class of object represents a specific type of derived data item whose value is conditional and
whose evaluation strategy is thus represented as a collection of rules A ruleset is almost identical to a

decision table in that all of its rules focus on the evaluation of a single data item The ruleset offers a little

more flexibility in that the inference strategy may be varied, this flexibility gained in using rulesets over
decision tables was promoted by Elam and Lopez [4] Like all data items, rulesets have ingredients But,

unlike past representations, the ingredients to a ruleset are the rules that make up the ruleset (l e logic data

items), not standard data items

Requirement. This class of objects is a special subclass of ruleset that describes a requirement with a set of

criteria (or conditions) from which its value ("satisfied", "violated", or "not applicable") is computed

Requirements are also instances of behavior limitation objects, which are described m Section 4 3



378 OBJECT-ORIENTED REPRESENTATION OF DESIGN STANDARDS

Function. This class of objects represents a second subclass of derived data item, whose evaluation method
is a non-conditional function, similar to an action of a ruleset Like all data items, functions have ingredients
which are the data items appearing in the expression of the function

Basic Data Item. This class of objects represents the data items referred to explicitly within the text of the

standard, but not given a method of evaluation within that text For these data items, it is assumed that the

user will provide the needed value either from a design model or directly in the form of an answer to a query
Hence, basic data items are specialized according to the method in which their value is retrieved mapping or

user-query

Mapping. This class of objects represents a subclass of basic data items A mapping is a declarative

description of where to look in, or how to compute a value from, the object-oriented design description
Mappings are described in more detail in Section 4 3

User Query. This class of objects represents a second subclass of basic data items A user query data item

simply describes a data item for which it is known a priori that its value will have to be asked for from the

user Because of this a prion knowledge, the user query object contains a prompt-string to use in querying
the user, type and range information for checking user input, and default values m case the user does not
know the answer but wishes to continue

Logic Data Item. — This class of objects, a subclass of the data item object, represents such items as

conditions, actions or rules, that are used to describe the logical relationships between standard data items

Each logic data item possesses an evaluation method For conditions and actions (rule-parts) this

evaluation method is in the form of an algebraic expression For rules, this evaluation method is in the form

of a list of condition-value pairs and an action to perform given those conditions match those expressed for
the rule Layers of standard data items are related through layers of logic data items By having these logic
data items explicitly represented, it is possible to maintain much more refined dependency relationships Past

representations would invalidate a data item if any of its ingredient data items changed, which may not have

been necessary if the rule used to originally compute the dependent data item did not depend on that

ingredient

Rule Part This class of objects represents conditions and actions, which have a symbolic expression for
their description of evaluation strategy

Condition This class of objects has as its evaluation method an algebraic expression that evaluates to either

T or F The ingredients to a condition are defined to be the data items contained within the symbolic

expression of the condition, the dependents of a condition are the rules that refer to that condition

Action. This class of objects has as its evaluation method an algebraic expression with no restriction on its

value The ingredients to an action are defined to be the data items contained within the symbolic expression
of the action, the dependents of an action are the rules that refer to that action

Rule. This class of objects possesses an attribute for storing a pattern of condition-value pairs and an action

to execute in the event that the condition-value pattern matches the actual condition-value situation The

ingredients to a rule are the conditions and action to which the rule refers, the dependent of a rule is the

ruleset (a derived data item) to which the rule belongs

4.1.2. Example Standard Logic Model

To illustrate the use of the above described objects in modeling and evaluating the logic of a design standard,

Sect E 2 from Chap E of the American Institute of Steel Construction Load and Resistance Factor Design

Specification [1] (see Fig 1 is modeled using the above described objects (see Fig 5

To determine the value of DESIGN_COMPRESSIVE_STRENGTH, it must be sent a message to return its

current value The DESIGN_COMPRESSIVE_STRENGTH object, being an instance of a ruleset, responds

to the message by sending messages to the rules in its RULES slot DCS-1, DCS-2 and DCS-3 The ruleset

first sends a message to rule DCS-1, if DCS-1 does not respond with a non-NIL value, the next rule is

messaged DCS-1, being a rule, responds to a message for its value by sending messages to each of its



J H GARRETTJR 379

identified conditions and then checks if the condition returns the value indicated for the rule For example,
DCS-1, in response to a message for its value, sends a message to the object
LOCAL_BUCKLING_SATISFIED to return its value and if this object responds with a value "T", DCS-1
then sends a message to the object DCS_E2_SATISFIED to return its value

When a condition is defined, 1 e its symbolic expression is filled in, this expression is parsed to determine
the ingredients and is transformed into a LISP-evaluatable expression. Hence, when a condition is sent a

message to return its value, it sends messages the identified ingredients and then evaluates the
LISP-evaluatable expression with the returned ingredient values Thus, when DCS_E2_SATISFIED is sent a

message, it responds by sending messages to the ingredients Pu, PHI-C, and Pn

Pn, being a function, responds by sending messages to its ingredients and evaluating its LISP-evaluatable

expression, both of which were generated when the symbolic description was defined Hence, when a

function is messaged, it sends messages to its ingredients for their values and then evaluates the

LISP-evaluatable expression with the returned ingredient values When Pn is sent a message, it sends

messages to Ag and Fcr to return their values. Fcr, being a ruleset, reacts to a message to return its value

exactly as the DESIGN_COMPRESSIVE_STRENGTH ruleset did This recursive process of messaging rules,

conditions, actions and functions continues until the objects receiving messages are instances of the

basic-data-item class, such as Ag, Kx, Lx, etc

There are two types of basic data items, user-queries and mappings When a user-query is messaged, it
simply prints out its prompt string and checks the users response against type and range information stored in
the query object. When a mapping is sent a message, it retrieves the information from the object-oriented
design description (described m Section 4.3 After the values of these basic data items are retrieved and

backpropagated to the derived data items, their values can be computed. After the values for these derived
data items have been backpropagated to logic data items, their values can be computed And finally, after
the values of these logic data items have been backpropagated to the requirements, their values can be

computed.

4.1.3. The Benefits of an Object-Oriented Representation of Standard Logic

Because the decision table for so long has been the mam way of representing the logic within a design
standard, one must ask why this object-oriented model is any better. The benefits of using this

object-oriented approach all basically relate to flexibility and are described as follows

1. Every object maintains its own strategy for determining its value In other words, there is no
central definition of what a condition is, of what an action is, of what a rule is, etc Although the
predominant kind of function is the algebraic expression in terms of other data items, this does

not have to be the only kind of function. For example, a subclass of function could be defined
to be a neural network that has been trained to recognize a collection of data that defies
mathematical description, which when given a set of ingredient values as input, returns a value
for the function Similarly, one could have more than one type of ruleset (fire-one rule,
fire-all-rules, etc.), condition (symbolic, numeric, neural), and rule (AND rules, OR rules, etc).
Such flexibility can only be achieved when the representation is object-oriented, where the
object requesting a value need not know with what kind of object it is dealing

2. The values and ingredients for individual conditions and actions can be maintained individually,
whereas for a decision table all ingredients for all conditions and actions are lumped into the set

of ingredients for the data item evaluated by the decision table This lumping of ingredients
causes data items to be unnecessarily nullified when an ingredient's value is changed If the

ingredient was not actually used in the evaluation of a data item, its change should not invalidate
the dependent data item

3. By also representing basic data items as objects, a place is provided to store data item specific

prompt strings, range and type information, and mappings The storing of this information with
the basic data items makes for a much more organized and flexible description of a design

standard.



380 OBJECT-ORIENTED REPRESENTATION OF DESIGN STANDARDS

4.2. Object-oriented Design Description

The design description is intended to perform many functions First, it serves to identify the entities to which
the standard requirements are intended to apply Second, this model will identify, for each design object, a

set of attributes from which the basic data items found within the standard can be computed This will

permit the generalized expression of the mappings between the data items of a standard and the attributes of
these design entities. The design descriptions can then be mapped to a much larger, global model using the

knowledge-based database interface mechanisms of KADBASE [7], or a similar data communication
environment In fact, because such a global model does not yet exist, it is most likely that the design

descriptions developed for various standards will play a part in determining the information content of such a

global model

4.3. Mappings Between Standard Model And Design Description

There are two types of mappings between the standard data items and the design description objects' 1) the

mappings between the design description objects and the various applicable requirements of the standard,
and 2) the mappings between the basic data items in the standard model and the design description object
attributes. The first set of mappings is essentially used to determine which of the standard requirements are
applicable for the design entity m question and need to be checked This mapping is simply represented as a

slot in the design description objects which contains a list of applicable behavior limitation objects [6] (in the
structural case - behavior limitation objects represent combinations of stress state and limit state) Each of
the requirement data items in the standard model is an instance of the behavior limitation object to which it
applies Thus, the layer of behavior limitation objects is the medium of communication between a design
description and a standard, these behavior limitation obejcts are the components of the classification system
used in previous standards processing environments [6]

The second set of mappings go in the opposite direction to the previous set by linking data items to the

appropriate slots of the objects in the design description. The concept of this type of mapping was proposed
and implemented by Elam and Lopez [4] However, their mappings were hardcoded queries into a specific
database. The mapping concept envisioned here is similar to that of Elam and Lopez, but instead of
expressing the mapping in terms of a query, it is expressed m the form of a set of attribute names (present
withm the object-oriented design description) and a symbolical expression for combining those ingredients
into a value for the basic data item For example, consider the basic data item rx, the radius of gyration
about the x axis, shown in Fig 4 When the value of rx is requested by some other derived or logic data

item, the mapping object responds to that message m the following manner

1. The mapping object sends a message to an object, called the "context object", to return the

name of the design description object for which the standard is being checked

2 The mapping object then sends a message to this design description object, requesting values for
the attributes named in the "DESIGN-ATTRIBUTES" slot of the mapping object

3 The mapping object then evaluates the symbolic expression, with the given attribute values, to
determine the value of the mapping data item

rx

IS—A: mapping
VALUE:

if-needed. (mapping-value-if-needed)
DESIGN-ATTRIBUTES' (cross-sectional-area Ix)

SYMBOLIC-EXPR: (SQRT (Ix / cross-sectional-area))
INGREDIENTS: Context-Object

Figure 4. — Example Mapping Object



A J.H. GARRETT JR. 381

DESIGN_COMPRESSIVE_STRENGTH DCS-3

IS-A: requirement
buckling-behavior-limitation

RULES: DCS-1 DCS-2 DCS-3

IS-A: rule

COND-VALUE-PAIRS: NIL

ACTION: violated

DCS-1

IS-A: rule

COND-VALUE-PAIRS:

(LOCAL_BUCKLING_SATISFIED T)

(DCS_E2_SATISFIED T)

ACTION: satisfied

LOCAL BUCKLING SATISFIED

IS-A: condition

SYMBOLIC_EXPR: (LOCAL_BUCKLING satisfied)

DCS-2

IS-A: rule

COND-VALUE-PAIRS:

(LOCAL_BUCKLING_SATISFIED F)

(DCS_B5.3_SATISFIED T)

ACTION: satisfied

DCS E2 SATISFIED

IS-A: condition

SYMBOLIC_EXPR: (Pu <= PHI-C * Pn)

PHI-C Pn

IS-A: function

SYMBOLIC_EXPRESSION: (0.85)

IS-A: function

SYMBOLIC_EXPRESSION : (Ag * Fcr)

Fcr

IS-A: ruleset
RULES: Fcr-rule-1 Fcr-rule-2

t
Fcr-rule-1 Fcr-rule-2

IS-A: rule
COND-VALUE-PAIRS: (Lambda-condition T)

ACTION: Fcr-E1

t t

IS-A: rule
COND-VALUE-PAIRS: (Lambda-condition F)

ACTION: Fcr-E2

Lambda-condition

IS-A: condition

SYMBOLIC_EXPR: (lambda-c <= 1.5)

±
Fcr-E2

IS-A: function

SYMBOLIC_EXPR: (0.877/(lambda-c* *2)) * Fy)

Fcr-E1

IS-A: function

SYMBOLIC_EXPR: (0.658* * (lambda-c* *2)) Fy)

T
Lambda-c

IS-A: function

SYMBOLIC_EXPR: (KI/r-max/3.14) * sqrt (Fy/E)

arrows indicate the direction of dependence

Figure 5. — Example of Object-Oriented Representation of Standard Logic



382 OBJECT-ORIENTED REPRESENTATION OF DESIGN STANDARDS

Note, that the expressiveness of the mappings is dependent on the attributes present within the design
description If the attributes needed to compute a basic data item are not present or available for reference,
the default behavior is to query the user for the design description attributes. Also note that initially it has

been assumed that all of the information needed for the determination of a basic data item can be found m
the design description object that initiated the checking of the requirement However, it is planned to extend
this assumption as follows: the information needed is either present within the design description object or in
some other object that is explicitly related to this object (i.e by a part-of or connected-to relationship)

5. CONCLUSIONS

This paper describes an object-oriented representation of a design standard that provides more flexibility m
the representation and usage of the information present within a design standard. All information within the

design standard is represented as instances of predefined object classes. The benefits of having this

declarative, object-oriented description of a design standard are: 1) it facilitates the automated checking of a

design for conformance with a design standard, 2) it facilitates the ability to reason with and manipulate the

requirements of a design standard during computer-aided design, and 3) it has the representational flexibility
of an object-oriented approach. In addition, by having the design entities to which the standard applies

represented as part of the model of a standard, it is possible to describe a set of mappings between the

standard and this design description that will ensure proper interpretation of the basic data items m the

standard, as well as the derived and requirement data items

6. ACKNOWLEDGEMENTS

This material is based on work supported by the National Science Foundation under Grant No

DMC-8808132. The Government has certain rights to this material.

7. REFERENCES

1 Load and Resistance Factor Design Specification for Structural Steel Buildings, Amercan Institute of
Steel Construction, Chicago, IL, 1986

2 CRONEMBOLD, J. R. and K. H. LAW, "Automated Processing of Design Standards", Journal of
Computing in Civil Engineering, Volume 2, Number 3, pages 255-273, July, 1988.

3. DYM, C. L., R P HENCHEY, E. A. DELIS and S GONICK, "A Knowledge-Based System for
Automated Architectural Code Checking", Computer-Aided Design Journal, Volume 20, Number 3,

April, 1988, pp 137-145.

4. ELAM, S. L and L A LOPEZ, "Knowledge Based Approach to Checking Designs for Conformance

with Standards", Technical Report CESLRS No. 9, Department of Civil Engineering, University of

Illinois at Urbana-Champaign, Urbana, IL, 1988

5. FENVES, S. J., "Tabular Decision Logic for Structural Design", Journal of the Structural Division,

Volume 92, Number ST6, pages 473-490, June, 1966.

6. GARRETT, JR., J. H and S J FENVES, "A Knowledge-Based Standard Processor for Structural

Component Design", Engineering with Computers, Volume 2, Number 4, pages 219-238, 1987.

7. HOWARD, H. C., "KADBASE' An Expert System/Database Interface", in proceedings of The Fifth

Conference on Computing m Civil Engineering, pp 11-32, March 1988.

8. RASDORF, W J. and T. E WANG, "Generic Design Standards Processing m an Expert System

Environment", Journal of Computing in Civil Engineering, Volume 2, Number 1, pages 68-87, January,

1988.


	Object-oriented representation of design standards

