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Uncertainty and Learning in Expert Systems
Incertitude et apprentisage dans les systémes experts

Ungewissheit und Lernen in Expertensystemen

Enrique CASTILLO Elena ALVAREZ
Professor Assistant Professor
Univ. of Cantabria Univ. of Cantabria
Santander, Spain Santander, Spain
SUMMARY

The paper discusses some of the problems associated with conventional uncertainty propaga-
tion methods, as those based on independerit probabilities, certainty factors, belief or possibility
functions, and shows, by giving examples, the importance of associated errors. Then, alterna-
tive methods, based on log-linear, regression and casual networks or influence diagram models
are discussed. Finally, their structural and parametric learning possibilities are analyzed.

RESUME

Le but de ce article est de montrer quelques problémes associés aux méthodes conventionelles
de propagation d’incertitude, tels que les dérivés des probabilités indépendantes, les coeffi-
cients de vraisemblance et les fonctions de possibilité. Nous montrons avec des exemples I'im-
portance des erreurs associées a ces méthodes. Quelques méthodes alternatives, fondées sur
des modéles logarithmiques linéaires, de regression et de réseaux ou diagrammes d'influence
sont discutés. Finalement nous présentons leurs possibilités d’apprentissage parameétriques et
structurales.

ZUSAMMENFASSUNG

Die vorliegende Arbeit behandelt einige Probleme, im Zusammenhang mit den konventionellen
Fehlerfortplanzungsmethoden wie: unabhangige Wahrscheinlichkeiten, Gewissheitsfaktoren
sowie Glaubens- oder Moglichkeitsfunktionen. Anhand von Beispielen wird die Bedeutung der
aus den Ansatzhypothesen entstandenen Fehler gezeigt. Einige alternative Methoden, die auf
Regressions — und linear-logarithmischen Modellen, sowie auf Kausalnetzen und Einflussdia-
grammen beruhen, werden anschliessend vorgeschlagen. Zuletzt wird die Moglichkeit eines
strukturellen und parametrischen Erlernens analysiert.
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1.- INTRODUCTION

In classical logic any statement is either true or false; however, when working with
uncertain implications, statements must be understood as possible rather than certain.
Thus an uncertainty measure is necessary. The oldest measure of uncertainty and the
most infuitive is probability. However, other measures are utilized in the field of expert
systems, such as certainty factors, the measures of evidence theory and the possibility
functions of fuzzy logic.

2.- UNCERTAINTY PROPAGATION

The main problem of coherence arises when propagation of uncertainty is involved.
Some propagation formulas without an axiomatic basis have been proposed and
accepted by the Antificial Intelligence community [3]. Many of the propagation formulas
used are no better than the oft-criticized, independence assumption. When we deal with
single evidence units, the calculation of uncertainty measures is straight forward, but
what happens when we need to combine several single evidence units to get a mixed
evidence?. In this section we shall analyze this question.

The problem of propagation of uncertainty in the case of probability can be reduced to
the calculation of probabilities conditioned by all units of information [2]. In order to
illustrate the problem we give the following example.

Example 1.- Let us assume that an engineer suspects the presence of problem E and
that, based on some available data, he has arrived to a prior probability for E of 0.8.
Because 0.8 is not high enough to make a decision (note that making a decision at this
moment implies a probability 0.2 of error), he decides to obtain more information. Thus,
he makes use of the following information, which is shown in figure 1a, where the
shadowed area refers to hystorical cases with problem E and the white area to those
without E, the symbols Sq, So and S3 refer to three symptoms related to E and the

figures are frequencies (the knowledge base).

From figure 1a, the following information (prior probabilities and likelihoods) can be
derived:

P(E) = 0.80 P(no E) = 0.20 P(S1/E)=0.70 P(Sq/no E)=0.10
P(So/E)=0.80  P(So/ no E)=0.20 P(S3/E)=0.60  P(S3/no E)=0.30

This figure will allow us to illustrate the failures of the assumption of independence and
to see how completely erroneous results can be obtained by using this assumption. It is
important to indicate that the above information (prior probabilities and likelihoods) is not
sufficient to completely define a probability. In other words, there are many different
probability or frequency distributions having as prior probabilities and likelihoods the
above values. In figure 1 we show two of them.

Let us assume that the engineer receives items of information in the following order: 1.-
initial data, 2.-presence of Sq, 3.-presence of So and 4.-absence of S3. Table 1 gives the
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updated probabilities of E after the four steps indicated above for the two cases in figure
1. It is interesting to point out that for case (b), the real probability of P(E/S4, S2 and no

S3) is zero, while that obtained from the independence assumption is 0.989. This
suggests that care must be taken with the indiscriminated use of independence.

Figure 1.- Two different solutions with the same prior probabilities and likelihoods and notation

P(E) P{E/Sq) PE/ 81,82) P(E/Sq, So, no S3)

real independence
case a 0.80 0.966 0.994 0.988 0.989
‘case b 0.80 0.966 0.968 0.000 0.989

Table 1.- Updating of probabilities

The existence of many probabilities with given prior probabilities and likelihoods,

suggests the method of calculating lower and upper bounds of desired probabilities
under these constraints. In this way, an interval [Pmin(A),Pmax(A)], which measures

ignorance and uncertainty, can be obtained. An example is now given.

Example 2.- Let us consider the case of example 1. If we call X4 to X;q the frequencies

shown in figure 1.c, fixing the values of prior probabilities and likelihoods, as in example
1, is equivalent to using the constraints:

P(E}=0.8 > X +X +X +X +X +X +X_+X =400
1 2 3 4 5 6 7 8

P(noE)=0.2 « X +X +X +X +X +X +X +X =100
2 9 1 13 1 15 16

0 11 12 4

PS /E)=0.7 & 3X —-7X +3X +3X +3X -7X -7X_-7X_=0
1 1 2 3 4 5 6 7 8
M) P(S /nOE)=0.1 &39X - X +9X +9X +9X -X -X _-X =0
1 9 10 11 12 13 14 15 T1e
PS /E)=0.8 ¢ 2X +2X -8X -8X +2X +2X -8X_-8X =0
1 2 3 4 5 6 7 8
PS /M0E)=02:8X +8X -2X -2X +8X +8X -2X -2X =0
9 10 11 12 13 14 15 16
P(S /E)=0.6 & -6X -6X -6X +4X +4X_+4X +4X_-6X =0
1 2 3 4 5 6 7 8
PS /MOE)=0.3¢:-3X -3X -3X +7X +7X _+7X +7X -3X =0
9 10 11 12 - 13 14 15 16

NN

w w
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, 16
The probability of any set, A, can be written as P(A) = 2 aiX iwhere the coefficients
i=1
a; (i=1,2,...,16) are ones or zeros depending on whether or not the set associated with X;

belongs to the set A,

Determination of the interval [P, -
two linear programming problems:

(A),Pmax(A)] can be reduced to solving the following

16 16
Minimize EaiXi subject to (1) and Maximize Zaixisubject to (1)
i= 1 i= 1

If what we desire is an interval of conditional probabilities, the above problems are
equivalent to the following two nen-linear programming problems:

' 16 16 16 16
Minimize _21aixi/ 'z1biX’_ and Maximize .Z1aiXi/ _21bixi subject to (1)
|= 1= 1= {=

which are equivalent to sequences of linear problems:

16 16
Min | Min Zaixi/k subject to (1) and to ZbiXi=X]
AL i=1 i=1

_and

r 16 16
Max | Max Zaixill subject to (1) and to ZbiXizk}
A i=1 i=1

where the coefficients b, (i=1,2,...,16) are also zeros or ones.

The propagation of the belief and unbelief measures and of the certainty factors, CF, is
usually carried out by means of the well known Dempster’s formula. In order to illustrate
some of the problems associated with this formula, Table 2 shows the exact values and
those resulting from it.

| | CR(E;Sy) | CF(E;S4Sp) | CF(E;Sy,S5,n0S53) | CFE:Sq,Sp,n0Sy) |
l} | Propagation formulas

. casea . 0.873 0.970 0.945 0.989

|_caseb! 0828 | 0839 [ 1000 0.972

Table 2.- Updating of certainty factors

Note the extremely large difference between the exact and the calculated certainty factor
CF(E ; S1, So, no Sg) in case b. This result proves that the above propagation formula is

not satisfactory in this case and should warn the user against its uncontrolled use.

Similar errors result from evidence theory or fuzzy logic if standard propagation formulas
are used.
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3.- STATISTICAL MODELS IN EXPERT SYSTEMS

Most of the problems mentioned above come from the fact that uncertainties of
composed events cannot be derived from uncertainties of single events. Thus, a precise
uncertainty propagation technique requires models to include frequencies of composed
events as well as those of single events. In this section we describe log-linear,
regression and causal network models. They are three of the most usetful techniques to
solve the above problems.

3.1.- Log-linear models

The most general log-linear model is of the form [1]:

log m. ,=utu (i) +..+ugnN+..+u

k.. r 1 S(qr) tabU, s(ij... r

(s-1)

where mijk... denote the frequency of the class defined by the i-th problem, j-th level of

the first symptom, k-th level of second symptom, and so on, parameters must satisfy some
additional constraints and indexes vary from 1 to the number of levels for each symptom.

Example 3.- If the above model is fitted to data in figure 1.a we get the log-linear model
log m i = u+ u1(|) + U2(J) + u4(|) + U12(ij) + u13(ik) + uM(iI)
u=2.6429; u1(1):0. 938 ; u2(1): —-0.337; u4(1)=—0. 110

u12(1, 1)=0.761; U13(1, 1)=10.693; U14(1, 1)=0.313
| . case a : case b ii
Sy So Sy E no kE E no £
YES | YES YES | 134(134.4) 1(0.6) 240 (238.7) 0(0)
YES YES NO | 90(89.6) 1(1.4) 0(0.3) 8 (8)
YES NO YES 34(33.6) 2(2,4) 00 0(0)
YES NO @ NO 22(22.4) 6(5.6) 40 (40) 2(2)
NO YES:i YES 58(57.6) 5(5.4) 0(0) 0 (0)
NO YES: NO 38(38.4) 13(12.6) 80 (80) 12(12)
NO NO : YES 14(14.4) 22(21.6) 0 (0) 30(30}
NO | NO __NO | 10(9.6) 1150(50.4)] _40(40) | 48(48)

Table 3.- Real values and predictions for frequencies in figure 1

Similarly, for data in figure 1.b, we get the model

log mijkl: u+ u1(:) + us(k)+ u4(|) + u12(|1) + u13(|k) + U23(Jk) + u24(jl) - u34(kl) + u123(ijk)
u=4. 004;u1(1)=0. 188 ; u3(1)=0.117; u4(1)=1. 534 ;

u12(1, 1)=- 0. 241 ;u13(1, 1)=- 0.515; u23(1, 1) =-0.342;

U (1 1)= 1137, U (1,1,1)==1.085; u_ (1,1)=0.633;

These models have 7 and 10 degrees of freedom, respectively, implying a saving of 9
and 6 parameters with respect to the general model. Table 3 shows the real values of
frequencies and those given by the above models (in brackets).
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3.2.- Regression models

The log-linear models in the previous section are useful for symptoms or variables of a
discrete type, but not for continucus symptoms unless they are made discrete by
subdivision into a finite number of intervals. With the aim of solving this probiem,
regression models are developed. The model to be described in this section is of logistic

type [2]:
r
log(3—5-) = 2 U i) SIS A=t (e x)

where pj is the probability of the disease conditioned by the given symptoms, lj is the
number of levels of the j-th discrete symptom and the functions f(x1,x2....,xt), which are
given, can be constant, take on value one, if the term represents the influence of a group
of discrete symptoms only, or be null. Analogously, the "u" parameters can degenerate to
unity if the term reflects the influence of continuous symptoms alone.

If we have enough data of patients with their diseases and symptoms, the parameters of
the regression model can be easily estimated by the maximum likelihood method ([2],[5)).

Example 4.- Assume that one engineer is interested in distinguishing the following 4
problems in a nuclear power plant based on the following 4 symptoms:

1.- Recirculation line large break X{=Reactor pressure (RP)

2.- Loss of vacuum condenser Xo=Vessel water level (VWL)

3.- Loss of offside power X3=Drywell pressure (DP)

4.- Main steam line small break ~ X4=Closed main steam valve (CMSV) (-1=no, 1=yes)

and that he has tha data shown in Table 4.

In order to make the distinction between those different problems he decides to fit 4
regression models (one for each problem) such that given the four symptoms indicated in
Table 4, the probability of not having each problem can be calculated.

A very general logistic model is the following
=u +Uu X +u X +u X +u X +u XX +u XX +u_XX +u X X +

P.
|og—|
1—pi o 11 2 2 3 3 4 4 5 12 6 13 71 4 8 23

+u X X +u XX +u XX X 4+u XXX +u XX X +u X XX +u XX XX
9 2 4 10 34 11 123 12 12 4 13 13 4 14 2 3 4 15 12 3 4

where pj is the probability of not having problem i-th and the u coefficients are constants

to be estimated. From the data above, stepwise regression (a method for selecting which
symptoms are and which are not relevant for the distinction) leads to the following
models: :

p2
=472.86-6.472 X
g p2 1

p
Iog(1_1p J=—O.21+10.776 X4 ; Iog[1
1
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P P
Iog( 3 ]=—4.436+0.378X -11.34 X ; log( 4 J=20.74—2.1X X
1-p 2 4 1-p 23
3 4
DATA# |PROBLEM | RP VWL DP |CMSV|DATA# PROBLEM | RP |[VWL| DP | CMSV
1 1 69 10 0.2 -1 2 1 71 12 1 0.25 -1
3 1 70 6 0.26 -1 4 1 69 8 0.3 -1
5 1 68 5 0.18 -1 6 1 70 14 | 0.24 -1
7 1 72 | 16 | 0.17 -1 8 1 69 10 | 0.23 -1
9 1 71 12 | 0.25 -1 10 1 71 1 0.17 -1
11 2 75 74 | 0.07 1 12 2 74 75 | 0.08 1
13 2 77 | 76 | 0.08 1 14 2 76 76 | 0.07 1
15 2 76 | 75 | 0.06 1 16 2 77 77 | 0.07 1
17 2 77 1 74 | 0.08 1 18 2 75 74 | 0.08 1
19 2 76 | 76 | 0.07 1 20 2 76 | 73 | 0.06 1
21 3 70 15 | 0.20 1 22 3 71 16 | 0.17 1
23 3 72 12 | 0.30 1 24 3 70 17 | 0.19 1
25 3 69 11 0.25 1 26 3 70 15 1 0.21 1
27 3 70 | 15 1 0.26 1 28 3 70 14 | 0.20 1
29 3 70 | 16  0.21 1 30 3 69 13 | 0.18 1
31 4 68 | 75 10.20 1 32 4 69 73 | 0.21 1
33 4 72 1 76 | 0.26 1 34 4 70 75 | 0.19 1
35 4 70 | 77 [0.30 1 36 4 70 74 | 0.20 1
37 4 69 | 73 | 0.25 1 38 4 69 75 | 0.18 1
39 4 71 74 | 0.21 1 40 4 71 76 | 0.21 1

Table 4.- Nuclear power plant data

The above models are surprisingly simple, but they differentiate very well the four
problems (see Table 5 where the probabilities p1, p2, p3 and pg4, have been calculated
for the above models). The engineer is temptated to use more complicated models (at
least with two non-constant terms) because he knows the symptoms associated with
those problems (see Table 6) but they are not necessary o the above aim.

DATA # Py P2 P3 | P4 |DATA#| p1| Pp P3 P4
11010 | 000 | 1.00 [ 1.00 [1.00 [111020 ] 1.00 ] 0.00 [ 1.00 1.00
211030 | 1.00 | 1.00 [ 0.00 | 1.00 [311t040{ 1.00 [1.000 | 1.00 0.00

Table 5.- Calculated values of pq to p4 using logistic models

PROBLEM SYMPTOMS
Recirculation line large break!| high drywell pressure (> 0.14 Kg/cm2) and low vessel water level (< 18 cm)
Loss of vacuum condenser | high reactor pressure (> 73.5 Kg/cme) and closed main steam valve

Loss of offside power low vessel water level (< 18 cm), high drywell pressure (> 0.14 Kg/cm?)
and closed main steam valve

Main steam line smali break | high drywell pressure (> 0.14 Kg/cm2) and closed main steam valve

Table 6.- Symptoms associated with the above four problems

The knowledge base in the case of expert systems based on log-linear or regression
models consists of their structures and asscciated parameters, and the inference engine
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consists of a program or procedure able to calculate conditional probabilities of problems
given certain symptoms by means of the model. As information available is normally
incomplete, it is necessary to add all the frequencies associated with the partial given
information. Rough estimates can be cbtained based on mean values.

3.3.- Causal ngm_lgl rk models

In this section we describe one modified version of the Lauritzen and Spiegelhalter [4]
model, which is one of the methods based on causal networks. In order to illustrate the
method, we shall analyze in detail the following pedagogical example.

Example 5.- Figure 2.a shows the security mechanism of a room which is composed of
two subsystems. The first, C, consists of a videc-camera which transmits the image to a
computer for analysis. After the analysis, the computer decides whether or not to activate
a relay which closes an electric circuit with a battery activating an alarm. The second, G,
consists of a photoelectric cell, D, which closes another electric circuit with an alarm F
activated by a battery E. Figure 2.b shows the rules associated with the alarm system.
Note that the first system has been simplified to hardware plus software, and that rules
are interpreted in a weak sense (conclusions are very likely but not sure).

4 N N

c 4 RULE 1 \ r RULE 3 \

fAand B FCand G
then C then H
w ty

with probability ith probabil ’ N
A=Hardware \_ PC/AB) P(HCG) [Rule 1]
B=Software
" amEea \ H =Syseemworks
RULEZ C = System 1 works
F IiD,E and F G = System 2 works
l,()1 henG A = Hardware works @_
with probability | B = Software works
;| D £ P(G/DEF) D = Alarm works [Rule 3
e | T N el Battery works
[ (b) F = Photo cell works I Rule 2 (c)

G \_ J\C

Figure 2.- Security system: rules and influence diagram

The idea of Lauritzen and Spiegelhalter consists of utilizing a probabilistic structure
such that propagation of uncertainty can be carried out accurately, quickly and without
the need for an excessive number of parameters. To this aim, they assume that the
knowledge can be represented by means of an "influence diagram”, which is a set V of
nodes and a set of oriented edges between pairs of nodes (see figure 2.¢). An oriented
edge between nodes "A" and "B" can be represented by means of the notation A—B and

then we say that the node "A" is a father of node "B" and that node "B" is a son of node
A"

A set of nodes C is said to be "complete" if there are edges between all pairs of nodes
and we say that it is a "clique” if it is maximal, that is, it cannot be extended to another
complete set. The set of all extremes of edges of a given node A is called the boundary of
that node and is denoted by Bd(A). Numbering of nodes is called "perfect” if the set of
nodes Bd(i)"{1,2,...,i-1} is complete.
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The nodes of the graph represent the objects, which can take on a finite number of
values. As starting data, "conditional probability tables" are given. These tables contain
the probabilities of each node taking each of its possible values for any of the possible
combinations of values for its parents. In addition they assume that if we know the values
of parents, I1,, of a node A whose value is currently unknown, then no other knowledge
(except concerning descendants of A) will influence our opinion concerning the true
value of A (Markov property), that is:

P(A/B,U)=P(A/B) ; VA,UcV—HA ;BcHA

This implies that the joint probability function of all nodes can be written as the product of
conditional probabilities in the above tables.

Sometimes it is easier to use a representation of the joint probability distribution as the
product of functions ("evidence potentials", which are denoted as ) defined on cliques
(the set of cliques will be denoted as A). In this case the joint distribution does not need
to be known exactly, but can be expressed as a proportional function, which can be

q

normalized if needed. Thus, we have:P(V) = H \u(Ci) / Z where Z is a normalization
i=1

constant.

Lauritzen and Spiegelhalter [4] utilize a third form of representing the joint probability of
nodes by means of a "set chain" (of cliques) having the running intersection preperty, in
that the nodes of one clique also contained in previous cliques are all members of one
previcus clique. This property facilitates the calculation of the joint probability functions
on cligues. In fact, the above chain is such that:

q
Pv)= [[PR./S) : 8=C.n(CuC,u..uC ):R=C-S

- -1 I i i
i=1
Sets §; and Rj are called clique separators and residuals, respectively.

From evidence potentials the marginal probability of a given set Uc V can be easily
obtained (when doing this we say that we are marginalising over U):

=P w.w-Y2 ' [Tvw=z ' [[vwY [Tvw=z o) [T v
U u

Ac A AecA U Ae A AeA
1 . 2 1
where
A={AeA/AnU=0}andAp=A-4y; B= U A-U;0B)=3 []wiA)
AeA2 UAEA2

Thus, if U = Rq then the initial evidence potentials transform to
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[WiRWE) 1 A=C
(2) W):T it A=Cq T . 0(B)=2w(Cy)
y(A) otherwise

where A1 is an elément of Ay such that Bc A1, and the normalization constant Z is
unchanged in this operation.

In addition, for the last clique we can write:

(3)P(Ry/ S =P(Ry/C,C, ..C_

Thus, progressive marginalization and expression (3) allow probabilities P(Ri/Sj)
(i=1,2,...,q) to be obtained. In fact, P(Rq/Sq) is directly obtained from (3). Then, we
marginalise over Rg. using (2), and once again we use (3) to calculate P(Rq_1/Sq_1).
Then, we marginalise over Rq.4 and calculate P(Rq-2/Sq-2), and we repeat the same
process until P(R1/S1) is obtained.

If the value of node i is known and we want to know how the joint probability distribution
P(V) is affected by that information, evidence potentials are modified in the following way:

( 0 if value of node i is contrary toinf ormation]
WA'(') —1\u () otherwise T L
A

where A s the first clique containing node i and y* are the new evidence potentials.

Initially, conditional probabilities are obtained from the human expert and/or the
knowledge engineer or the data base and evidence potentials are obtained from them
(see example 6).

Example 6.- As an illustration of the above method, we apply it to the case of example 1
(influence diagram in Figure 2.c and 3). The undirected edges (A,B), (D,E), (D,F), (E,F)
and (C,G) have been included to take into account that sets {A,B,C}, {D,E,F,G} and
{C.,G,H} define the 3 rules for systems 1 and 2 to work, respectively.

If we assume that nodes can take values "true" or "false”, we get the following conditional
probability tables:

P(A,B), P(D,E,F) ,P(C/AB), P(G/D,EF) and P(H/C,G)
Thus, the joint probability function of all nodes can be written

(4) P(V) = P(A,B,C,D,E,F,G,H)=P(AB)P(C/AB)P(D,E,F)P(G/D,E,F)P(H/C,G)
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Due to the fact that the cliques are {(A,B,C), (D,E,F,G), and (C,G,H})}, the joint probability
function of nodes as a function of evidence potentials becomes:

()

Initially, we can make (see (4))

P(V)=P(AB,CD.EF,GH)=y(ABC)vy(DEFG)y(CGH)/Z

y (AB,C)=P(AB)P(C/AB),v(DEFG)=P(DEF)

v (C,G,H) =P(H/C,G) and Z=1

P(G/DEF),

A perfect numbering of nodes is shown in figure 3. From it, the following set chain
representation can be obtained (see Table 7):

(6) P(V) = P(A,B,C,D,E,F,GH)=P(AB,C)P(GH/C)P(D,EF/G)
number clique residual separator

i Ci Ri S;

1 ABC ABC F

2 CGH GH C

3 DEFG DEF G

Table 7.- Set chain decomposition

As an example, let us consider the conditional probability tables (we only give the

conditional probabilities of the value "true", because those for "false" are their
complements to one):
P(ab)=0.90 P(c/ab)=0.96 P(d, e f)=0.90 P(d, e f)=0.02
Pa,b)=0.05 P(c/ab)=0.04 P(def)=002 P(def)=0.01
P@b)=0.04 P(c/ab)=002 P(de =002 P(de,f)=0 01
P@,b)=0.01 P(c/ab)=0.01 P(d.e, f)=0.01 P(de,f)=0.01
P(h/c,g)=0. 98 P(g/d,e f)=0.98 P(g/ d,e, f)=0.02
P(h/c, g)=0.03 P(g/d, e, f)=0.02 P(g/d.e, f)=0.01
P(h/c,g)=0. 02 P(g/d, e f)=0.02 P(g/def) 0.01
P(h/c,g)=0. 01 P(g/ d,e,f)=0.01 P(g/ d, e, f)=0.01

where "a" means A =true and"a", A

of the nodes.

= false and we use analogous notation for the rest

This allows initial evidence potentials to be obtained as indicated, from which, using the
process described after expression (3), terms in (6) can be obtained. Finally, marginal
probabilities of cliques or nodes are calculated based on terms in (6). The first factor on
the right hand side of (6) gives the marginal probability distribution of the clique {A,B,C},
from which, by marginalization (sum in the adequate set) we obtain the marginal of the
nodes A, B and C. Multiplying P{C), which has already been obtained, by P(G,H/C) we
obtain the marginal of the clique {G,H,C} and from it the marginal of G and H. Multiplying
now P{G) by P(DEF/G) we get the joint probability of D,E, F and G, which allows the
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marginal probabilities of D, E and F to be obtained. In this way, the marginal probabilities
of nodes shown in figure 3 have been obtained.if now we know that "C = true" (C="c") we
get the new evidence potentials

v (ABc)=w(ABcC);y* (ABGC)=0;y* (DEFG)=y(DEFG); w*(CGH)=y(CGH)

Figure 3.- Initial probabilities of nodes Figure 4.- Updated probabilities when C is true

By a similar process, the new marginal probabilities of nodes, shown in figure 4 have
been obtained.

4.- LEARNING

In this section we analyse several techniques for making possible the learning process.
We differentiate between parametric and structural learning. The parametric learning
refers to the acquisition of parameters in the knowledge base. Whether we work with
rules or probabilities, the uncertainty models depend on parameters, which must be
known with precision in order to get a reliable expert system. Mechanisms for
progressively estimating improved parameters are the basis for the parametric learning
subsystem. tn order to ilustrate the learning process for probability based models we give
the following example.

Example 7.-Let us assume that we are in the case of example 1 and that the engineer
knows of the presence of problem E with symptoms Sq, no So and S3. Then, the
updating of parameters (frequencies), that is, parametric learning, consists of adding one

unit to the frequency associated to that combination of symptoms, obtaining the value 35
(34+1) (see Figure 1.a). But, what happens if we only know symptoms no S» and Sg3, but

we ignore whether or not Sq is present. In this situation we do not know if the problem is
in the same case as the above 34 or in the case of the 14 problems without S4 (see

Figure 1.a). Thus, we do not know to which of the frequencies the one should be added.
The Solomonic solution consists of distributing that unit proportionally to the previously
existing frequencies. So value 34 modifies to 34+34/(34+14) and value 14 changes to
14+14/(34+14). In this way we get fractional values, instead of integers, but we update
information without any loss of information. With this parametric learning procedure, we
can start using the expert system with an imperfect knowledge base and progressively
improve its quality with experience. In the case of the log-linear or regression models
parametric learning involves a new estimation of parameters, with inclusion of the new
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data but without any modification of the model’s structure. Any modification in the
knowledge base structure leading to some improvement is known as structural learning.
Among these, the most well-known variant is the inclusion of new symptoms (additional
parameters). Some well known statistical techniques allow the selection, among a set of
given parameters, of those which represent knowledge most adequately.

In order to test the adequacy of a probabilistic model relative to one of its extensions
(more general models), it is sufficient to estimate, by the maximum likelihood method,
parameters of both models and calculate the likelihood ratio. If My and M5 are two

models with rq and ro parameters, respectively, M, being an extension of My, we
calculate the ratio

n n
V = Max PE.mnA,. nA_n..NA )/ Max PE A, . NnA_Nn..NnA__
M.H(l 1j 2j mI)M.H(J 1j 2j mJ)
o j=1 1 =1

where n is the sample size (number of data items with known symptoms and associasted
problems) and the maximization must be understood with respect to the set of
parameters of models My and My, respectively, and subject to their respective
constraints. The significance level can be calculated by taking into account that the
statistic -2logV converges in probability to a X2 (ry 1y):

Structural learning with log-linear or regression models consists of choosing the simplest
model reproducing the real frequencies up to acceptable levels of error. Thus, terms to
be included in the model must be selected. In order to make this selection we have two
procedures:

(1) Start from the saturated model (with the maximum number of parameters)
and proceed to eliminate terms until the quality of the model is substantially
affected by their removal

(2) Start from a simple model and add new terms until a substantial
improvement is no longer obtained.

For stepwise selection of log-linear and regression models several statistical
packages can be used as BMDP, SPSS, SAS, etc. Log-linear and regression models in
examples 3 and 4 were selected by this method using the BMDP package.
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