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Finding Patterns in Structural Failures by Machine Learning

Formulation de modèles de ruine des structures par apprentissage automatique

Erkenntnis von Mustern in Fehlleistungen durch «Machine Learning»
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SUMMARY
A new approach to the examination of significant features in structural failures is described. The

method used is a development of the artificial intelligence (AI) technique of «machine learning»
to extract sets of commonly occurring features from detailed reports of failures. By representing
the information extracted hierarchically in the knowledge base of an expert system, advice can
ben obtained on the proneness to failure of a current project. The method is illustrated by
comparison with a previous analysis of features in the failure of twenty-three engineering structures.
A support logic measure of uncertainty is associated with each set of connected features.

RESUME
Cet article décrit une nouvelle approche de l'examen des caractéristiques significatives de la

ruine des structures. La méthode utilisée est un développement de la technique d intelligence
artificielle (IA) nommée apprentissage automatique; cette technique met en évidence des

caractéristiques communes décrites dans des rapports détaillés de ruine de structures. En présentant
l'information ressortie hiérarchiquement de la base de connaissance d'un système expert, on

peut obtenir des conseils à propos de la susceptibilité à la ruine d'un projet en cours. La méthode

est illustrée par une comparaison, réalisée au cours d'un analyse précédente, de la ruine

de vingt trois structures de génie civil.

ZUSAMMENFASSUNG
Ein neuer Weg zur Überprüfung von bedeutenden Merkmalen in strukturellen Fehlleistungen
wird beschrieben. Die verwendete Methode, ist eine Entwicklung der künstlichen Intelligenz-
Technik des «machine learning», um Gruppen der häufgsten Merkmale aus detaillierten

Meldungen von Feheleistungen zu extrahieren. Durch die Darstellung der hierarchisch extrahierten

information in der Wissensbasis eines Expertsystems, kann Mitteilung bezüglich der Neigung
zu Fehlleistungen im laufenden Projekt erhalten werden. Die Methode wird mit einer früheren

Analyse von Merkmalen in Fehlleistungen an dreiundzwanzig Ingenieurbauwerken verglichen.
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1. INTRODUCTION

It is clearly important to study past failures and learn from them. The aim of the project reported in

this paper has been outlined by Blockley [1] as the production of "...a knowledge based computer
system which might be an aid in the management of thé safety of a project". The central issues are
a) the search for patterns in data concerning case histories, b) the need to handle uncertainty in

open world problems and c) the use of the concept of a hierarchically structured knowledge base.
In this paper we will concentrate on a) and only briefly outline b)[2] and c)[3,4].

2. DISCRIMINATION AND CONNECTIVITY

The search for patterns in data is commonly undertaken by the use of a variety of different types of
cluster analysis [5]. These methods employ a number of different heuristics to determine
'groupings' of elements of data.

The methods of discrimination and connectivity described in this paper were developed initially by
Norris, Pilsworth and Baldwin [6], who wished to investigate the relationship between medical
symptoms and diseases from a number of patient case histories. They formulated two new
methods of examining tabular numerical data in an attempt to overcome some of the theoretical
and practical problems associated with the use of traditional clustering techniques.

The two methods are to be seen as complimentary approaches to the examination of relationships
between features of objects and their classification (e.g. "symptoms" and "diseases"), but will be
described here separately before presenting an example of their use in Section 3.

2.1 Discrimination

Discrimination entails the search for a single feature of an object which, by its presence or
absence, gives evidence for the belief that an object belongs to one class rather than to another. It
is therefore a serial approach.

The presence of discriminating features is common in engineering. For example, the range of
feasible structural materials for the construction of a bridge might include reinforced concrete,
steel and masonry, and the one chosen in a particular situation will generally depend upon a
combination of factors. However, a requirement that the bridge should be movable for the
passage of shipping would discriminate strongly in favour of the use of steel irrespective of the
other competing factors. Low maintenance cost, on the other hand, might discriminate in favour of
reinforced concrete whilst the matching of an adjoining masonry bridge might discriminate in
favour of the use of masonry.

The initial stage in the discrimination analysis is to produce an incidence matrix I for each outcome
where /.. denotes the degree to which feature i was present in example or case /. For example,
consider Table 1. This represents invented incidence data for two outcomes X and Y, each of
which have three example cases. The examples may have one or more of the five features A - E.
Note that in this example, all the / values are either 0 or 1, denoting the certain absence or
presence respectively of that feature. In a more general case, a multi-valued representation in the
range [0,1] may be assigned, to represent a degree of belief.

A frequency distribution matrix F, as shown in Table 2, is then calculated, where 1 denotes the
proportion of those features i in outcomesummed over all the cases.
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outcome
X Y

scase j 1 2 3 1 2 3

feature^
i

A 1 1 1 0 0 0
B 1 1 0 0 1 0
C 1 1 0 0 0 1

D 0 0 1 1 1 1

E 0 0 0 0 1 1

feature
i

outcome

X Y

A 1 0

B % %
C %
D 1

E 0 =7
3

outcome

X Y
feature

i

A 1 0

B 1 0

C 1 0

D

E
%
0

1

1

Table 1 Incidence matrices I Table 2 Frequency
matrix F

Table 3 Discrimination
matrix P

From the frequency distribution matrix the positive discrimination matrix P and the negative
discrimination matrix N are calculated, using the definitions:

p,i ^r«tk> ^il / 'Ut / (Cn-1) and (cD-i

where p;/ n# e [0,1] and CD denotes the cardinality of the outcome set (i.e. the number of
outcomes). The suffix D is used to denote a set of indices corresponding to the outcome set.
The discrimination value is an accumulated measure of the degree to which the frequency of one
feature is greater than that of all the other features for a given outcome, "ratio" is defined as a fuzzy
set with membership characteristic function xiatio : R+->[0,1] mapping the positive real numbers
(i.e. fjtm and fjf.. onto the interval [0,1 ]. An example of such a fuzzy set is shown in Figure 1.

0 1 3 ratios eR+

Fig. 1 Fuzzy set for discrimination analysis

Although the dashed line in Figure 1 represents a more general fuzzy set, the simplified solid line
has been used for ease of computation. The resulting positive discrimination matrix for this
example is given in Table 3. Note that if f and are both equal to zero then 0/0 is defined as
equal to 0. Norris et al. [6] give a heuristic explanation' of the positive and negative discrimination
measures which, when translated into the current terminology, argues that p represents the
accumulated belief that feature / is more indicative of outcome j than it is any of the other
outcome. This analysis therefore gives a method for assessing the significance of any single
feature. The following section examines the importance of groups of features by using a

connectivity analysis.
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2.2 Connectivity

In contrast to the serial operation of the discrimination analysis, the connectivity algorithm adopts
a parallel approach to the data. The method described here entails the search for groups of
features which by their presence or absence give evidence for the belief that an object belongs to
one class rather than to another. They are those features which have been found commonly to
occur together and are associated with a given object classification. The algorithm is therefore a
method for pattern recognition. Each outcome is considered in turn and a search is made for
groups of features which commonly occur.

The connectivity analysis involves the calculation of both positive and negative connectivity
matrices, with the negative analysis determining groups of features whose presence is indicative
of the negation of a particular outcome. The starting point of the analysis is the incidence matrix I

calculated during the discrimination phase. The positive connectivity analysis is applied to the
incidence matrix directly whereas the negative connectivity analysis is applied to the complement
of the incidence matrix.

If a and b are two feature vectors from an incidence matrix for a given outcome, then a
connectivity measure, c^ between a and b is defined as:

c^= I ' ' ^(avb,) J

I i

where v and a denote maximum and minimum respectively and / ranges over the number of
cases. The measure will be zero when a, b are disjoint and one when a, b are equivalent. Applying
this algorithm to the incidence matrix in Table 1 for outcomes X and Y and the associated
features, the positive connectivity matrices C of Tables 4 and 5 are obtained, with elements c
where ij range over the feature names.

"

feature
A B C D E

A 1 % % ''a 0

B % 1 1 0 0

C % 1 1 0 0

D 1/3 0 0 1 0

E 0 0 0 0 1

feature
A B c D E

A 1 0 0 0 0

B 0 1 0

C 0 0 1 \D 0 1 z/a

E 0
13
'î % 1

A B

feature

c D E

A 1 1 1 0 0

B 1 1 1 0 0

C 1 1 1 0 0

D 0 0 0 1 0

E 0 0 0 0 1

Table 4 Positive connectivity Table 5 Positive connectivity Table 6 Equivalence matrix
matrix for outcome X matrix for outcome Y from Table 4 for a 2/3

Again in a more general case the incidence matrices will be multi-valued, with values in the range
[0,1], In this example, it can be seen that features B and C are the most strongly connected pair
for outcome X, with c c 1, and D and E for outcome Y with c c 2/. This is
intuitively to be expecteafrom Table 1.

œ f0

Having established a connectivity matrix C it is then possible to extract groups of connected
features. This corresponds to finding paths in a graph [7], A new relation can be derived by
performing an a cut on the connectivity matrix. The new matrix contains values of 1 for those
connectivities greater than or equal to a and zeros elsewhere. Warshall's algorithm [7] is then
used to transform this symmetric matrix into a new connectivity matrix which can easily be
partitioned. The partitions of the equivalence matrix now correspond to groups of features which
are connected together at degree a. The value of a is set at various levels in the range [0,1] and
the resulting connected groups of tail-vertices examined. The equivalence matrix from Table 4 for
a 2/3 is as shown in Table 6. Two tables are produced for each outcome based on the positive



J. STONE - D. BLOCKLEY 51

and negative connectivity analyses. Each table consists of sets of features corresponding to
different values of the a cut in the range [0,1]. For example, the resulting table of connected

groups of features from the positive connectivity matrix for outcome X in Table 4 is

a 1 : (B,C) a % : (A,B,C) a 1/3 : (A,B,C,D) a 0 : (A,B,C,D,E)

All the features form a single group at level a 0. At intermediate levels the features fall into
separate groups, with the number of features in each group reducing as the connectivity level
increases. Each higher level group may be thought of as being a representative set of features
whose presence is evidence for the subsequent occurrence of the associated outcome (or
evidence against it in the case of the negative table). In this example, the presence of group (B,C)
is therefore strongly indicative of outcome X.

A pair of numbers in the range [0,1], known as a support pair [2], can be associated with a
connected group at each connectivity level. These give lower and upper bounds on the evidential
support for a proposition or event. The calculus is based upon an 'open world' representation of
uncertainty in the sense that it is possible to represent propositions as true, false or unknown. The
first number of the support pair, the necessary support, is given the value a from the connectivity
analysis. The second number, the possible support, is always 1. Thus for outcome X a strong
indicator is the group (B,C) with support pair (1,1). In support logic notation (a modified PROLOG
rule) this is written X (B,C) : [1,1]. Other rules would be

X:-(A,B,C) : [2/3,1] X (A.B.C.D) : ['/3,1] X (A,B,C,D,E) : [0,1]

The computer program implementing the connectivity method allows the step levels at which the
connected groups are determined (in the range 0 < a < 1) to be chosen by the user. This enables
the structure of the groups at different connectivity levels to be examined as appropriate to the
application. The values 0,1/3,2/3, 1 have been selected for this example since the small number of
feature groupings are portrayed adequately. A more complex example in Section 3 illustrates a
closer division at increments of 0 • 1.

3. FAILURE ANALYSIS BY SIMPLE SUMMATION

A detailed account of a simple analysis of structural failures has been given previously by Blockley
[8]. This paper describes the application of the connectivity and discrimination analyses to
Blockley's data, which were assessments of the relative truth (or dependability) and importance of
a number of statements concerning well documented failures. The original investigation examined
twenty four statements about twenty three failures, ranging from the Tay Bridge collapse of 1879 to
the loss of the oil drilling barge Trans Ocean 3 in the North Sea in 1974. Typical statements were
"the structure is not sensitive to random hazards", "the designers are adequately experienced in
this type of work" and "the contractual arrangements are perfectly normal". The assessments,
although made with engineering judgement and experience, were entirely subjective and
personal, made with the benefit of hindsight, and a different investigator may have chosen quite
different values. They do, however, represent a useful basis for analysis since they are a consistent
set of interpretations carried out with a common method and purpose.

The assessments were made on the basis of five categories for both truth and importance. The
level of confidence in the truth of a statement was graded between 1 (very high) and 5 (very low),
and its importance between A (very low) and E (very high). Numerical values were assigned to
each of the assessment ratings 1 -5 and A-E on the following scale: 1 and A 0-2,2 and ß 0 • 4,
3 and C 0-6, 4 and D 0-8,5 and f 10. An overall 'combined rating' was calculated as the
product of the two individual values and lying in the interval [0,1]. Thus a rating of 4 for truth and C
for importance yields a combined figure of 0 • 48. The new combined assessments are therefore
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represented in the form of a fuzzy incidence matrix as described in Section 3.1. A simple analysis
was made [8] by summing the combined ratings over all twenty three failures. Table 7 is a short
extract form the results.

Order Statement Brief description sum
1 5a design error 15-48
2 6c construction error 11 -88
3 6e contractor's staff 11-76
4 5d designer's site staff 11-68
5 2b R&D information 10-88

Table 7 Simple summation of accident statement parameters

These values have been interpreted elsewhere [8], but it is important to emphasise here that the
sample of failures from which they were derived is not random and includes only failures important
enough to merit individual reports of inquiry. The scores are not precise numerical quantities but
only relative indications of the importance of the statements.

4. FAILURE ANALYSIS BY DISCRIMINATION AND CONNECTIVITY

The following example illustrates the application of the discrimination and connectivity methods to
the analysis of the failure data given in Section 3. Note that all the cases selected refer to failures,
so at one level there is therefore only one outcome to be considered. This means that a
discrimination analysis cannot be performed, since it by definition determines an ability to
.discriminate between outcomes. However, it is apparent that the cases may also be classified by
other means, such as mode of failure (e.g. fatigue, overstress etc.), structural form (e.g. bridge, oil-
platform) or other criteria as desired. With more than one outcome, a discrimination analysis may
be made. For example, if the cases are partitioned into 'bridges' and 'others' then the positive
discrimination matrix shown in Table 8 is obtained.

statement bridges others state¬
ment

bridges others state¬
ment

bridges others

1a 0-00 0-23 4c 0-00 0-22 6a 0-39 0-00
1b 1-00 0-00 4d 0-13 0-00 6b 0-40 0-00
2a 0-00 0-18 ; 4e 0-09 0-00 6c 0-00 0-11
2b 0-15 0-00 5a 0-00 0-04 6d 0-44 0-00
3a 0-04 0-00 5b 0-00 0-00 6e 0-14 0-00
3b 0-00 1 00 5c 0-83 0-00 7a 0-00 0-00
4a 0-02 0-00 5d 0-10 0-00 7b 0-54 0-00
4b 0-00 0-48 5e 0-36 0-00 8 0-00 0-36

Table 8 Positive discrimination values

The reader is referred to the original analysis [8] for the full list of the meaning of each of the
statements 1 a - 8. It is apparent that statement 1 b (strength variability) discriminates strongly in
favour of a bridge failure, and statement 3b (sensitivity to random hazards) in favour of 'other'
failure. From the original data [8] it can be seen that the only occasions on which statement 1 b
was assessed as being of other than minimal significance both related to bridge failures (Tay and
Quebec 2). It never appeared as a significant factor in any of the 'other' failures, and therefore
discriminates in favour of bridge failures. A similar argument applies to statement 3b, which only
occurred as a significant factor once, relating to an 'other' failure (Ronan Point).
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From the discrimination analysis the frequency of occurrence of a feature for an outcome is

obtained relative to all the other possible outcomes. Thus even a single occurrence can be
significant if it occurs only for one outcome and never for any of the others, as seen above with
statement 3b. A connectivity analysis carried out on the same data gives the following groups of
positively connected statements:

a 0-5
a 0-4
a 0-3
a 0-2
a 0-1

(5d,6e)
(5d, 6c, 6e)

(5a, 5d, 6c, 6e)

(2a, 2b, 5a, 5d, 6c, 6e)

(1a, 2a, 2b, 4a, 4b, 4d, 4e, 5a, 5d, 5e, 6c, 6e, 7a, 7b, 8)

Note that no statements are connected more strongly than at a connectivity level of 0 -5. This
reflects the diverse nature of the practical problem, and is in contrast to the artificially chosen
example of Section 3.2 where some features were connected at a 1 • 0. It is interesting to
compare the above connected groups with the results from the previous analysis shown in Table
7. The most strongly connected pair of statements from the connectivity analysis, 5d and 6e,
occur as the fourth and third most frequent statements respectively in Table 7. Two connectivity
intervals lower, at a 0-3, all the top four of the previous results - 5a, 6c, 6e and 5d - are now
found to be connected in one group.

The meaning of the connected groups may be considered as a new entity rather than in terms of
the individual features. For example, the two most strongly connected statements (5d and 6e)
each relate to a specific aspect of site control staff. "Site control staff" may therefore be thought of
as a higher level, or more general, description encompassing both of the statements. Similarly,
the second level group (5d, 6c and 6e) adds "construction error" to the top level group, and might
therefore be thought of as "site procedure". Grouping together concepts in this fashion leads to
the possibility of constructing a hierarchical knowledge base, consisting of progressively more
general concepts at higher levels, and grounded in specific concepts relating to individual case
histories at the bottom.

5. HIERARCHICAL KNOWLEDGE BASE

The analysis based upon connectivity, discrimination and the grouping together of related
concepts can be extended [9] to develop a hierarchically structured knowledge base of case
histories of failures. The case histories are 'captured' by the use of event sequence diagrams
(ESDs) [10]. These diagrams show the temporal order and relationship of events leading up to a
particular outcome. For example, Figure 2 shows a hierarchy of three ESD representations of the
same 'story'. The lowest level (Level 1) is the most detailed, corresponding to specific detailed
concepts from a case history. Level 2 is an intermediate representation, in which a number of the
bottom level concepts have been 'merged' to form new, broader concepts as noted above. The
most general representation, Level 3, is obtained by further merging of concepts by repeated
application of the connectivity analysis.

The advantage of representing knowledge in a hierarchical form is realised when it is wished to
query the knowledge base. The user is able to pursue a query about a concept to an appropriate
level of detail.

Figure 3 is an outline of the structure of our proposed development of a knowledge-based system
(KBS) to fulfil the objective stated in the Introduction. The upper section of the diagram, concerned
with building the knowledge base, has been implemented in C on an IBM PC/AT. The lower
section illustrates the proposed future development and use of the system. 'FRISP' is 'Fuzzy
Relational Inference with SuPport logic' [11], a PROLOG program which allows a user to query a
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knowledge base and to receive information with the associated uncertainty expressed in the form
of a support pair.The structure of the KBS includes two 'learning' loops. The first is in the upper,
'building' section, where knowledge from case histories is accumulated and merged into the
hierarchical knowledge base. The second joins the 'building' and 'user' sections, and commences
when the representation of the 'world' embodied in the knowledge base and the FRISP responses
become unsatisfactory. This situation can only be remedied by the user providing the 'building'
phase of the system with more case histories, which may result in the formation of new concepts
in the knowledge base following a new connectivity analysis.

TIME ^

M

LEVEL 1 (MOST GENERAL)

LEVEL 2

]— -£3

a
D

LEVEL 3 (MOST DETAILED)

denotes outcome

Figure 2 Hierarchy of Event Sequence Diagrams
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Figure 3 Outline of structural safety KBS

6. CONCLUSIONS

The application of a method of machine learning based upon the techniques of discrimination and
connectivity to the assessment of structural safety has been described. The following points are
significant

1) Many engineering failures contain common features. Attempts to learn from failures may
therefore be based upon pattern recognition techniques.

2) The detection of common patterns of features may consider either single features
(discrimination) or groups of features (connectivity).

3) The support logic calculus allows an appropriate 'open world' representation of uncertainty, in
which propositions are either true, false or unknown.

4) The use of the connectivity analysis allows the meaning of groups of features to be merged in

a hierarchical form suitable for inclusion in a structural safety knowledge base.
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