Zeitschrift:	IABSE reports = Rapports AIPC = IVBH Berichte
Band:	55 (1987)
Artikel:	"Wishbone tree" pipe layout for concrete pumping
Autor:	Tanabe, K. / Takase, S.
DOI:	https://doi.org/10.5169/seals-42812

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 05.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

"Wishbone Tree" Pipe Layout for Concrete Pumping

Nouveau procédé pour le pompage du béton

Neues Verfahren zum Pumpen von Beton

K. TANABE and S. TAKASE Taisei Corporation Tokyo, Japan

1. PREFACE

The new "Wishbone Tree Pipe (Bifurcating Pipe) Layout Method" for pumping concrete represents a breakthrough in concrete casting. It has solved all the problems inherent to conventional methods. The new method has been developed and used for the construction of inground liquefied natural gas (LNG) storage tanks, where concrete has to be cast downward through vertical pipes into tank walls and base slabs.

2. CONCRETE PUMPING METHOD

Conventional methods for such construction work employ a single pipe for each pump outlet. The procedure is repeated for each casting lift, where disjointing and rejointing of pipes is required. This previous method suffers several draw-

backs: (1) The efficiency of concrete casting is impaired because of the interruption of about 30 minutes required for the disjointing and rejointing of pipes. (2) Safety and working environment in the work area are problematic because during the disjointing and rejointing operation the pipe members and residual concrete are in a state of disarray. (3) Cold joints are likely to form between the subsequent concrete lifts.

The new method employs a fixed positioning of the pipe systems, as illustrated in Fig.l. The pipe system originates at the pump outlet, bifurcates symmetrically at several steps

Fig. 1 Concept of concrete pumping

(Photo 1), and ends at multiple outlets, the number of which varies between 2 and 16, depending on the requirements. This method enables casting of monolithic concrete by concurrent and continuous casting operations.

3. EXAMPLE OF AN UNDERGROUND LNG STORAGE TANK

Actual pipe layouts for the casting of the walls and slab of an LNG tank are illustrated in Fig.2 and Photo 2.

The concrete casting was successful. No pipe clogging occurred despite the adverse conditions of: (1) very lean mix proportion concrete to restrain hydration

Fig. 2 Layout of pipes of wall

heat; and (2) downward casting with a maximum vertical descent of 40 m. A total volume of 15,000 cubic meters of base concrete, diameter 55 m and thickness 7 m, was place continuously in 48 hours using only 6 pumps.

4. CONCLUSION

The favorable results experienced can be summarized as follows:

- The casting capacity was increased by about 30% to 40%. The enhanced efficiency is attributed to (a) elimination of the operation of disjointing and rejointing pipes, and (b) reduction of the casting and consolidation work load, both of which are a result of the new fixed concrete pipe outlets;
- (2) The quality of the concrete was improved by the elimination of cold joints;
- (3) Labor safety was improved by (a) reduction of the size of each work area, and elimination of the heavy labor previously required for disjointing and rejointing pipes.

Photo 2 Layout of pipes on bottom slab

