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Discrete Element Method and Beam Dynamics, an Application of TILLY
Méthode des éléments discrets et dynamique des poutres, une application de TILLY

Methode der diskreten Elementen und dynamische Analyse von Trägern,
eine Anwendung von TILLY
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SUMMARY
A discrete element method (DEM) is applied for the dynamic response of a reinforced beam. The motives to
do so are explained and an example is discussed. A comparison with the results of a test and a finite
element analysis shows the possibilities and limitations.

RÉSUMÉ
Une méthode des éléments discrets est appliquée pour déterminer le comportement dynamique d'une
poutre en béton armé. On explique les motifs pour cette application et on présente un exemple. Une comparaison

entre les résultats d'un essai et d'un calcul à l'aide de la méthode des éléments finis montre les
possibilités et les limites.

ZUSAMMENFASSUNG
Eine Methode mit diskreten Elementen wird auf das dynamische Verhalten eines Trägers aus Stahlbeton
angewandt. Der Anlass wird erklärt und ein Beispiel wird besprochen. Ein Vergleich zwischen den Ergebnissen

eines Versuchs und einer Berechnung zeigt die Möglichkeiten und Grenzen dieser speziellen
Methode der Finiten Elemente.
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t. WHY AND WHEN A SIMPLE MODEL
In this paper the name "discrete element method", in short DEM, is used for a mechanical model,
which is a composition of undeformable rigid finite elements, which are connected by deformable
lumped springs and dampers. Lumped masses can be applied which correspond with the degrees of
freedom of the model. The spring behaviour can be defined in a free way, such that nonlinearities and
time dependency is involved. Simular options are included for the dampers. The name of the program is

TILLY, which is composed of the first characters of the following list of specifications:
* Transient and static analysis: Both dynamic and rhéologie transient processes have to be simulated

by the model
* Incremental loading and initial strains: The load and initial strains are always applied step-wise in

time; even for static calculations one has to introduce one or more time steps.

* Linear and nonlinear behaviour: In due time both material nonlinearity and geometrical
nonlinearity will be covered. Material nonlinearity may be plasticity and fracturing, hardening and

softening.

* Lumped masses, springs and dampers: In due time to be extended to elements of two and more
generalized deformations.

* Young and aging materials: Material properties can be constant in time, but also dependency of
time must be included. Material stiffness and damping data may increase in time (for instance:

young concrete) or may deteriorate (for instance: damaging by cyclic loading).

Reference is made to [1] and [2] for more details. The reasons to develop and apply such a program are
manifold. An important consideration has been the immense computing time which is involved in the
use of finite element programs for dynamic analysis in combination with nonlinear behaviour. A
complete run on a high speed computer demands many man weeks and cpu hours. The state of the art
makes clear, that major changes are needed to place these tools at the disposal of the profession. One

way to achieve that, is to use supercomputers and specially designed finite element machines. A
remarkable improvement is expected from these new facilities, but it is to be doubted, that practizing
engineers will apply them. Research engineers are more likely to profit from these new tools.
Another way to serve the profession is to simplify the model. The engineer does not require exact data.

Ile will be satisfied with approximating engineering models. For him the only requirement is, that
researchers have proved by the use of their advanced models, that the course model is sufficiently
appropriate.
We conclude, that two parallel activities are needed: continuing research on advanced finite element
models (FEM) and the development of approximating course models. The discrete element model
(DEM) is an attempt for such a simplified engineering tool. Another reason to start the development of
TILLY has been the wish to involve as much graduate students as possible in the development and use of
numerical models. Large and powerful finite element packages restrict the number of students, which
can participate. Computing time is limited and also the number of specialistic supervisors. A more
simple model can run on the PC's of the students themselves and other supervisors can be involved as

well.

2. THE FALLING BEAM PROBLEM

To demonstrate the use of TILLY, the falling beam has been calculated which was analyzed earlier using
the Dutch finite element package DIANA [3]. The reinforced beam is one of a series which has been
tested in Switzerland [4]. In this example the bending and shear behaviour is modelled, so rotational and
shear springs are the obvious discrete elements. The reader should keep in mind, that only a specific
application of TILLY is discussed. Other spring types and compositions of discrete elements can be used

in other cases.

The beam of reinforced concrete has the following dimensions: the total length is 8.15 m, the depth of
the beam is 0.3 m and the width 0.4 m. The span 1 between the two supports is 7.85 m. The support at
the right hand end is a hinge. The beam was elevated at the left hand end over the height h 3.75 m and



J. BLAAUWENDRAAD - A.G.T.J. HEINSBROEK - L.J. SLUIJS 533

then was dropped. The left hand support is a shock absorbing one and has a progressive spring stiffness.

For TILI,Y the average stiffness k 6800 N/m has been chosen. The reinforcement percentage is

constant over the beam span. Both the top reinforcement and the bottom reinforcement are 0.56 %. For
the rest, the following strength and other data apply: specific density p 2500 kg/m3, f 650 N/mm2

(steel), fct 4.8 N/mm2 (concrete), Eg= 210000 N/mm2.

From the test result it is known, that the shock absorber is compressed over about 6 cm at the very start,
when the falling beam gets in contact with the shock absorber (t 0), but ignorable compression occurs
at later time. The maximum displacement at midspan is 0.69 m at time t 0.164 s. This displacement is

mainly due to plastic bending deformation. The final state is the result of a complex history. The beam

cross- section starts to become a plastic hinge near to the shock absorber and this plastic region then

moves in midspan direction. So, at maximum deflection the deformation state is more or less to be

compared with the failure mechanism for static loading, but it takes some time and it requires some other

intermediate limit states to achieve the final state.

For the rest, we do not need a computer at all to explain the ultimate deflection. A simple calculation by

hand already provides a fair estimate of the maximum displacement w at midspan and the time t at

which it occurs. If one neglects the early limit states, one can assume a rigid plastic behaviour of the

beam with a plastic hinge at midspan. The triangular speed distribution with v0 V3gh at the shock
absorber immediately transforms in another triangular distribution with the maximum speed v 3/4 v0 at

midspan. This yields a rigid plastic model with one degree of freedom. In this model a mass M with
initial momentum P is decelerated by a plastic force Fp and accelerated by a gravity force Fg. The

equivalent mass is M 1/3 ml in which m is the mass per unit length, the equivalent momentum P at

t o is P= Mv, the equivalent force from dead weight is F =1/2 mgl in which g is the acceleration due

to gravity and the equivalent yield force Fp 4Mp /I, in which Mp is the full plastic moment of the

cross- section. The resulting force on the mass M is F Fg - F The time Î at maximum deflection is

calculated from t P/F, the acceleration of the mass from a -v/t and the maximum displacement
w= vf - 1/2 at2 Applying all available data, it is found that t 0.16 s and w= 0.62 m, which is close

to the test results t 0.164 s and w= 0.69 m.

3. THF, DISCRETE ELEMENT MODEL
The beam has been divided in 21 elements. The length of the end elements is 0.275 m and all other
elements are 0.4 m in length. Four different models have been used. One difference between the 4

models is the number of springs (model A and model B) and another difference regards the nonlinear
characteristics of the spring (type I and type II). Model A contains rotational springs only. Fig. 1 shows

this model and makes clear, that 1 degree of freedom occurs between the rigid elements at the position of

1 rTT7-r^_
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i I M S &
MODEL A bending only

Fig. 1 Two different discrete element models

MODEL B bending and shear
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each rotational spring. The degrees of freedom are vertical displacements. The mass is lumped at the
same position. This model takes into account the inertia of translation, but neglects the inertia of
rotation. Also shear deformation is ignored. This model predicts moments and displacements but does
not provide any information on shear forces. Model B uses both rotational springs and shear springs
(fig. 1 Now the degrees of freedom are defined in the mid of the rigid elements and 2 ones occur per
element, a vertical displacement and a rotation. This model can account for bending deformation, shear
deformation, inertia of translation and inertia of rotation. The results are displacements, bending
moments and shear forces. The extra information for the shear forces is got at the cost of more
computing time. The number of degrees of freedom is doubled, which makes the computing time
increase by a factor 1.5 to 2.

Type I Type II

•hY
Plastic model (type I
Plastic-fracture mode! (type H

Fig. 2 Decomposition of constitutive model Fig. 3 Results for model 1 (rotational springs only),
in two components. Left: two elastic- Spring type I is far more stiff than spring
plastic springs representing the plastic type 11 which models fracturing,
model. Right: one elastic-fracture spring
representing the plastic-fracture model.

Fig. 2 is helpful to explain the similarity and the difference between the two rotational spring types I and
II. They have in common, that a moment-curvature relation is used which consists of three branches,
one for the uncracked state, one for the cracked state and one for the limit state at yield of the
reinforcement. In both models the tri-linear behaviour is simulated by a fraction model of two parallel
springs, which have different stiffnesses and fail at different stress levels. In both models an ultimate
value can be specified for the plastic curvature (deformation capacity). Type I is a fraction model of two
elastic-plastic springs. This means, that unloading always takes place with the stiffness of the branch for
the uncracked state. In type II one elastic-plastic spring is used and one elastic-fracture element. This
last one represents the softening at the first loading cycle due to cracking in the tensile zone. In concrete
research this contribution sometimes is mentioned tension stiffening. It is not present any more after full
loading has been applied. This type II is closer to reality than the approximation of type I. Also the

unloading stiffness is better. For the shear spring in model B only one stiffness type is applied. Both
rotational type I and rotational type II have been combined with an elastic shear spring.
To be honest, at the time the runs were made, the softening spring did not exist yet. At that time this
spring was built from five separate parallel elastic springs which fail in a brittle way at different ultimate
strengths. The result is practically the same, but the needed CPU time is higher.

4. RESULTS

The difference between the models A and B is not noticeable. Almost the same displacements and

bending moments are found. The most important extra of model B proves to be that also shear forces can
be calculated. The difference between the spring types I and II, however, is notable. Fig. 3 shows the
results for model A (only rotational springs). Spring type I is far more stiff. The maximum displacement
is smaller and the natural frequency after unloading is roughly two times higher. The result of type II is

closer to the test results than type I. From here" we only show data for type II.
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position (m)

Fig. 4 Deflection lines for two limes (t=0.02 s and t Comparison of test, DIANA and TILLY
(model B, type II) max

In fig. 4 deflection lines are shown at two different times, viz. t 0.02 s and tmax max at which the
maximum value is reached. In both cases 3 lines are presented, namely the test result, the result of the
finite element package DIANA and the TILLY result. At t 0.02 s the largest curvature occurs between
1 and 2 meters distance from the left hand end. The DIANA result is closer to the test than the TILLY
result, but TILLY does pretty well taking in account that the number of degrees of freedom is 8 times
smaller (DIANA 344, TILLY 41). At the time of the maximum deflection, both TILLY and DIANA
differ from the test. Near the shock absorber DIANA fits better than TILLY, but in a global sense the
result of TILLY is sufficiently accurate. Fig. 5 shows a plot of the maximum displacement at x 3.35 m
versus time. TILLY and DIANA produce comparable results. The natural period of the beam after the
maximum deflection is reached seems to be longer in the test than in the analysis. However, for later
cycles the period in the test becomes smaller and is closer to the analysis result.

^TILLY
— EXPERIMENT

DIANA

position x 3 35 m

0 0 2 0.4

time (a)

Fig. 5 Displacement close to midspan as function of time. Comparison of test, DIANA and TILLY
(model B, type II)
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time (s)

Fig. 6 Support reaction in shock absorber and shear force close to shock absorber for model B and type II.

Fig. 6 is a time-plot for the support reaction in the shock absorber and the shear force in the beam at x

0.125 m close to the absorber. The shear force is strongly influenced by the high frequencies of the
discrete model, so dampers have been used parallel with the springs to moderate the high-frequent
signals.

time (s)

Fig. 7 Moment close to midspan as a function of time. During a long period a full
plastic moment occurs.

Fig. 7 is a typical plot for the bending moment versus time for a cross-section close to the mid of the

span. It can be seen, that a constant plastic moment occurs during a long time untill the maximum
displacement is reached. This plot is more or less a confirmation of the assumptions for the course
calculation by hand.
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Fig 8 Bending moment diagrams at different times and location of the plastic bending zones

Fig 8 shows some moment diagrams at different times It also makes clear which part of the beam is m a

plastic bending state at different times This figure once more verifies the assumption, that the plastic
zone in the mid of the span comes into being already at an early time The shown result holds for the
model in which dampers have been applied In the TILLY run no correct model has been used for the
shock absorber It is believed that this does not influence the final results worth mentioning However
the reaction force in the shock absorber will not be too correct In the test the time is shorter to reach
the first zero value of the reaction force At that time the beam looses contact with the absorber for a

very short time In the TILLY run a tensile force comes into being during this short time So a more
refined absorber behaviour should be modelled m order to attach much value to detailed data at early
times of the calculation This may even be an explanation why TILLY does not produce a very correct
deflection line at early times The results for later times are highly credible, even for the non- correct
modelling of the absorber After tmax the beam is vibrating in its natural mode around a permanent
plastic deflection line, which has a displacement of about 0 65 m at midspan Moments and shear forces
oscillate then around the low values which occur statically for dead weight.
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5. FINAL REMARKS AND CONCLUSIONS

The TILLY computations were done on an Olivetti M24 personal computer and require computing times
of the order of 1 hour CPU. Runs for the same beam by the advanced finite element package DIANA
demand in the order of 20 hours CPU on a far more powerful SEL GOULD computer. A TILLY-run is

prepared and executed in a time which is expressed in a number of days. It requires weeks to complete
an intensive DIANA-run. One can conclude, that the use of the course TILLY model has big advantages
in all cases for which it has been proved that such a model provides sufficiently accurate results.

The program TILLY is still being developed. Other element features will be implemented in due time,
for instance gap elements or contact elements. Such options are helpful to model slip of reinforcement
and related phenomena. The authors are fully aware, that the applicability of models like TILLY has its
own limitations. However, the engineering problems for which TILLY does apply, are sufficiently
numerous to proceed. The category of simple models is another mechanism to transfer high-tech
knowledge on reinforced concrete structures to the engineering profession and construction industry.
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