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SUMMARY

Numerical solution techniques are presented for simulating the behaviour of reinforced concrete plates and
shells stiffened with eccentric beam systems when subjected to short term loading conditions. Degenerate
quadratic thick shell elements are employed for the shell and for the beams a curved element formulation
is adopted based on beam theory incorporating transverse shear deformation. A through thickness layered
representation is used for both the shell and the beam in order to model progressive failure characteristics.
Comparison is made with several experimental results.

RESUME

Des solutions numériques sont présentées pour la simulation du comportement de plaques et de coques en
béton armé raidies avec des systémes de poutres excentriques, lorsqu’elles sont soumises a des conditions
de charges de courte durée. Des éléments de coque épais particuliers sont employés pour la coque tandis
qu’une formulation d’éléments courbes est adoptée pour les poutres, sur la base de la théorie des poutres
prenant en compte les déformations dues au cisaillement. Une représentation en couches successives est
utilisée pour la coque et la poutre afin d’inclure les caractéristiques de la rupture progressive dans le mo-
déle. Une comparaison est faite avec plusieurs résultats expérimentaux.

ZUSAMMENFASSUNG

Numerische Lésungsmethoden werden gezeigt, die das Verhalten von balkenversteiften Stahibetonplatten
und -schalen unter Kurzzeitbelastung simulieren. Entartete quadratische dicke Schalenelemente werden
fiir Schalen verwendet, wahrend fiir die Balken ein krummliniges Element angewandt wird, das die Schub-
verzerrung miteinschliesst. Eine tber die ganze Dicke reichende Schichtendarstellung wird sowohl fiir die
Schale wie fiir den Balken gewahit, um fortschreitendes Versagen zu modellieren. Die Ergebnisse werden
mit einigen Versuchsresultaten verglichen.
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1. INTRODUCTION

The continuing trend towards limit state design of reinforced concrete
structures makes increasing demands on the development of adequate
computational models for their analysis, The situation is particularly
crucial for stiffened shell structures where uncertainties still exist with
regards to appropriate element formulation and material modelling wunder
ultimate load conditions. The work presented in this paper represents a
further, though small step towards the ultimate goal of a reliable and
robust computer code capable of predicting the response of arbitrary
stiffened shell structures thronghout the entire loading range leading to
collapse.

The primary objective of a finite element model developed for global
analysis and design purposes is the accurate prediction of the overall
deformational and load carrying characteristics of structures together with
the corresponding 1limit loads. The modelling of the complex behaviour of
reinforced concrete is frequently simplified in the local context (e.g.
crack discontinuities, bond slip) in order to render the problem more
tractable and provide numerical solutions within acceptable computational
costs. A successful model, however, must be capable of simulating the
fundamental nonlinear behaviour up to collapse and must be based on
material parameters which can be unambiguously determined from simple
tests. The present paper is concerned with developing a numerical approach
for modelling the ultimate 1load response of reinforced concrete shell
structures with integral stiffening beams under quasi-static short term
loading within these constraints.

The degenerate quadratic thick shell element , employing a layered
representation through the thickness, has been successfully employed for
the analysis of reinforced concrete plates and shells [1]. Several versioms
of this element (Lagrangian , Heterosis , Serendipity ) have been utilized
with various material constitutive models. Most approaches have been based
on a dual criterion for yield and crushing in compression expressed in
terms of stresses and strains which is complemented with a tension cut—off
representation, A smeared or distributed model for cracked concrete is
assumed and an average shear modulus is used for cracked zones . Gradual
bond deterioration with progressive cracking is simulated by means of a
tension stiffening model. Such an approach is again employed in this work
as a basis for plate and shell modelling,

The need for a curved beam element to model integral reinforced concrete
stiffeners, or even seperate beams, has led to the introduction of various
types of elements [2,3] In the present analysis, the curved beam element
used by Tirousek [2] for the 1linear analysis of stiffenmed shells, is
adopted. This element exhibits the required displacement compatibilty with
the degenerate guadratic thick shell element. The six degrees of freedom
associated with any node are capable of representing torsiomal and
transverse bending behaviour and the element formulation also models
transverse shear effects . The constitutive model referred to above must
also be modified to allow prediction of the ultimate load behaviour of beam
components,

The finite element computational model is summarized and four numerical
examples are presented which both illustrate the capabilities of the
present code and draw attention to some problems that still exist in the
numerical prediction of the nultimate 1load behaviour of stiffened shell
structures.
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2. FINITE ELEMENT FORMULATION FOR ECCENTRICALLY STIFFENED PLATES AND SHELLS

2.1 Eccentric curvilinear beam element
2.1.1 Reference, joint and centroidal axes

Fig. 1 illustrates a typical 3 noded curvilinear beam element, with six
degrees of freedom comprising three global displacements ui,vi,wiand three

global rotations aL’ﬁL'YL

L1
Reference / £
axis T~/ Joint axis
L=2

!

/ e \/E G
L=3/ =
9y

E, G Eenfr0|dal
axis
Gy
L )
Fig.l Geometry of the Fig.2 Local coordinate
eccentric beam element system in a nodal section

of the eccentric beam element

The points G1, G2, and G3 are the nodes on the element centroidal axis
and § is a curvilinear coordinate which varies between (-1,+1). Any point
on the element centroidal axis can be defined from

G 3 6L
Yg = > N@ lyg AU ¢ § |
Z6 L=1 Z6L

where NL are the shape functions, and %61 Yo’ ZgL  2re the global

cartesian coordinates of the nodes on the element centroidal axis.

When employing such an element in conjuction with a thick shell element to
model a stiffened shell, two additional axes have to be introduced, the
reference axis, situated at the mid surface of the corresponding thick
shell element, and the joint axis on the contact between the beam and the
shell, denoted in Fig.l by points E1,E2 and E3.

Points on the reference axis and on the joint axis can be defined in terms
of the corresponding mnodal coordinates and the curvilinear coordinate in
the same way as points on the centroidal axis are defined in Eq. (1)},

The position of the points G, EL with respect to the referemce axis camn
be specified using vectors EL, §L. Consequently nodal coordinates on the

centroidal axis can be expressed in terms of the nodal coordinates on the
reference axis as

6L XL X Az,

s + ~ + ~ =
yGL yL eL BL YL + AyL ssesancaesa (2)
z z A Az

GL L L L
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The local cartesian coordinates xﬂyﬂz'where x' is normal to the plane of the
element cross section and y', z'are the principal axes of area of the cross
section, are shown in Fig.2 .

The beam cross section at a given ¢ should ideally contain point E on
the joint axis

*E 3 *EL
Yg | = :E NL(E) VgL i Ee Vi N essss e ass(3)
Zg L=1 Zpr

This requirement cannot be fulfilled in general, if one insists on having
the cross section plane rigorously perpendicular to the centroidal axis.
It is assumed that the the vector b coincides with the direction of the
local y“axis so that the cross section plane is approximately normal to the
centroidal axis, For intermediate section along the axis it holds that

3 3
B (&)= D) N (8) B ch©= 20 M@ by ..l (4)
L=1 L=1

Using the vectors g and b ,the unit vectors in the local coordinate system
X,y,Z can be computed

- 3 N b a 3
i’ = ' = , k' = TP TIPRIPO £
fal ! Ib| le|
where
a= bxg and c=axb w8 5w e 6 e s 00D

The matrix of the orthogonal transformation from the local to global axes
will therefore be given as

() = [T 31°€8) 5768 K'(E)] it (D)

2.1.2 Generalized stress—strain relationship.

Assuming that the cross section plane is perpendicular to the centroidal
axis, the constitutive equation relating the generalized stress o (Fig.3)
to the generalized strain ¢ will be of the form

=D ¢ e g (8)
where
(N ] EA [ g L
g = .‘y' : E = GAY' 0 g E = VGJX'_Y'
Qz' GAz' wG,x'+ﬁ'
M, EIY' a',x’
M 0 EI_, B',x'
A
T GY v',x'
] ! ] | ]
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r

where , ', denotes the local reference frame amd ,x stands for

differentiation with respect to x' .

The cross sectional properties for each layer are
A cross section area

A ,, A, equivalent shear area

E modulus of elasticity

G shear modulus

J torsional constant

I ,,I , principal moment of inertia

Fig.3 Generalized stress of a curved beam element

The displacements and rotations in the local and global reference system
are related through

u' n a' a

R I B T

VG - Q VG » ﬁ _9 B quc-nnn-acl(g)
w'G L v’ T

By mneglecting the possible small difference between the local axis x' and
the tangent to the centroidal axis it follows that

d 1 d
dx,“t d --------n.-.(lo)
where t is modulus of the vector t
B
*6L
“ 3 dNL(t)
t(e) = — | YL P € [ By
L=1 4¢
Z
GLJ

2.1.3 Element stiffness matrix

Standard finite element procedures can be followed for computing the

stiffness matrix KG associated with the centroidal axis displacements SG

Ln 1 T
Ko = > [;] BgD By tdg s o w0 0wl L2

where, Ln is the number of layers through the thickness
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The calculation (at the Gauss points) of the strain matrix BG for each
layer follows from

3

€ = BG SG = ja BGL GGL R p— .
L=1

In turn, BG for each layer can be written by using the definition of the

L
the generalized strain and the transformation matrix Q as

0

I R 7 o f N T
t dt ; L

Bor, = w3

: L J ceeeeaea(14)

0 A o

: t dag
e : J

The K matrix associated with the reference axis can be obtained by either
transforming KG matrix or by transforming the strain matrix B from each

layer into a strain matrix BG associated with the reference axis which has

been found to be more ecconmomical. This 1latter transformation will be
discussed after the formulation of the thick shell element .

2.2 Thick _shell element

Formulation of the standard quadratic degenmerate shell element (Ahmad’'s
element) is well known [4], and therefore only a brief description of the
element will be presented here. Since the element formnlation does not
allow a direct combination with the beam element described above, the
necessary modifications are also summarised.

The degenerate shell element (Fig.4) has five nodal degrees of freedom, i.e
three global displacements (ui. vy wi) and two local rotations ( a;.ﬁ;)

about the x"and y'axes respectively.

ZW

y.v

X,U

Fig.4 Geometry of a standard thick shell element
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The displacement field is assumed to be of the form

v n %i 1 n . . d.
V= DM@ v g TG, § 0 ). (8)
w i=1 W, . i=l -

1

no_n . A :
where x, y, Z are the local coordinate system, V14 ’GZi '$3i are unit

vectors and n is the number of nodes.

For the nodes where the shell element is 1linked to a stiffening beam
element, the local rotations (a{,ﬁi) must be expressed in terms of the

global rotations (aL,ﬁL,yL)

"
L L
= TL BL chtesasreansannes (16}
u
PL L
where TL is a matrix which can be derived from geometric considerations
as - y 1
—A z —_—
vau || © A V3L,
_ .z X
= V3L 4 V3L e (A7)
AT y . Z
V1L YL V3L o]

The transformation of the generalized degenerated shell degrees of freedom

] < :
SL to SL is then given by

(uL uL
L ! . ¢ I
w,‘; = .. ... (18)
L o,
]
= J_YLJ

2.3 Beam element combined with the degenerate shell element

To meet the requirements of displacement compatibility along the joint
axis, it is assumed that the displacement field of the curved beam element
is generated by linking each cross—section to the reference axis by means
of a rigid rod vector EL(E). It can be shown [2] that

Y6L L o,
Yool =V |* AL BL S e w s w e s w (200
YeL i 7 L
vwhere
AL = —AzL 0 AxL
Ay —-Ax 0

L L



374 ULTIMATE LOAD ANALYSIS OF SHELL STRUCTURES ///A

The BGL submatrix in Eq. (15) associated with the centroidal axis nodes
can be transformed to BG (associated with the reference axis nodes) by
BL = BGL TRL § M E 0 Bd wswaw e i s aw (21)
where
I 0
0 A

Finally the total stiffness matrix can be assembled following standard
finite element procedures.

3. MATERTAL MODELLING

Usnally, a simplified formulation of the highly complex behaviour of
reinforced concrete is employed [6] and the formulation adopted here has
been found very effective despite its simplicity [5].

The compressive behaviour of concrete is modellled using the flow theory of
plasticity [8]. Fmploying Kupfer's results [7], the yield condition for
the plate and shell elements is written in stress component form as

2 2 2 2 2
f(o)=[1.335[(c +0 6 ¢ )+ 3{(z +1 +T_}]
Xy Xy Xy XZ YZ
1/2

/

+0.3550 (6 _+0_ )] =0 e e o s m e GO
0 x Yy o

This yield condition is a function of only one material parameter (o _=f£7)

which can be obtained relatively easily from experimental data.

The crushing condition is controlled by the state of straining and can be

written in terms of total strain components again based on Kupfer's results
as

2 2 2 2
1.3 = . 4
35[(8x+8y axey)+ 0 75(7xy sz+yyz)]
2

+0.355 ¢ (¢ +2 ) = ¢ cecaasensnsas(23)
nox y u

When & reaches the specified limiting wvalue the concrete is assumed to
have lost all its characteristics of strength and stiffness.

For the beam element, the uniaxial behaviounr of concrete Fig.5 is adopted.

Stresses
¢+ ' Crushing Stresses
e
& fy |
——— Pert Plastic Hodel “f 056 < 07
lozd- ~—— Work-Hardening Model £m=00020
¥ unload ﬁj__ O R,
= ension SHiffani . >
9_3 el TJension Stiffaning ; /:/ !
I ﬁ/ ! tension
Lo . At ; >
oo i Compression - zompression E¢ Et Em  Sirains
Teosion ~~~_ - Eu Sirains
Cratking Th
Fig.5 Uniaxial representation of Fig.6 Tension stiffening

the concrete constitutive model diagram
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The response of concrete nunder stress is assumed to be linearly elastic
nntil the fracture surface is reached. V¥Vhen the maximum tensile stress is
reached, c¢racks are assumed to form in planes perpendicular to the
direction of the maximum principal stress.

After cracking has occured, either a sudden release or gradual relaxation
of the normal stress on the cracked plane is adopted according to a2 tension
stiffening diagram as shown in Fig. (6). The modvlus of elasticity and
the Poisson’s ratio are reduced to zero in the direction perpendicular to
the crack plane. A reduced shear modulus taken as a function of tenmsile
strain is employed to simulate aggregate interlock.

The behaviour of steel in tension and compression is modelled by
considering the reinforcing steel bars as layers of equivalent thickness.
Each steel layer has a uniaxial behaviour, i.e resisting only the axial
force in the bar direction,

An incremental/iterative numerical solution technique is nsed in order to
trace the response of the structure throughout the 1loading history. The
modified Newton-Raphson method has been employed to avoid frequent
calculation and factorization of the tangential stiffness matrix.

4, NUMERICAL EXAMPLES

4.1 Duddeck’s two span beam

A simply supported reinforced concrete beam, continuous over two spans
tested by Duddeck et al [9] is shown in Fig.7. The material properties as
reported by Muller [10] are given in Table 1.

| |

¥ C~ = =
/ 601, b20 , 420 , 420 . 420 |60
8% i< | a5 1800
Q =1
5 i
3, 5S4 3
T 60 e

Dimensions in mm
CROSS SECTION
Fig.7 Geometry and details of Duddeck's beam

Table 1 Material properties for Duddeck’s beam in (N,mm)

concrete steel
Young's Modulus Ec = 16660, Young's Modulus E_ = 196000.0
Poisson’s ratio v =0.,0 Young’s Modulus Es = 28000.0
Ult. Comp. St. fé = 32,0 Yield Stress FY = 490.,0
Ult. Tens. St. fé = 1,67

Uit, Comp. Stn, e = .0027

u
Tens. Stiff. Coeff.ca 0.5
Tens, Stiff. Coeff.em 0,0015

Taking advantage of symmetry only one half of the beam is considered and
idealized by 8 beam elements.

Results from the analysis in Fig.8 are in close agreement with experimental
observations and data.



376 ULTIMATE LOAD ANALYSIS OF SHELL STRUCTURES

3D

28

Total Lload (KN)

21

14
— Experimental

—¥— Present

12 16 20

1 Cmm)

Fig.8 comparison of the load deflection curve for Duddeck’s beam.

4.2 Cope and Rao 'T’' beam analysis

The reinforced concrete 'T' beam tested by Cope and Rao [11] is chosen to
assess the present approach in solving problems involving an assembly of
plates and beams. The details of the T beam are shown in Fig.9 , and the
relevant material properties are given in Table 2.

- ]
_l]
'

210

!_150 1650

T BEAM - HALF ELEVATION
100

[ x ] T'
T/zwl lll ” \—¢5mm 3 150mm C/c
#5mm #12mm

120
10mm COVER -—]_ t—=

Dimensions in mm
CROSS SECTION

Fig.9 Geometry and details of the Cope/Rao T beam

Table 2 Material properties for Cope/Rao T beam in (N,mm)

concrete steel
Young's Modulus Ec = 35000, Young’s Modulus Es = 200000.0
Poisson’s ratio v =10,2 Young's Modulus E. = 0.00
Ult. Comp. St. fé = 48.0 Yield Stress FY = 340.0
Ult. Tens. St. f; = 4,80
Ult. Comp. Stn. g, .003
Tens. Stiff. Coeff. a = 0.5
Tens. Stiff. Coeff. g = 0.0015

Using symmetry conditions, omne guarter of the T beam is idealized by 12
shell elements and 12 beam elements.
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those of the experiment in Fig.10
stage of the response. This

Comparison of the numerical results with
indicates a difference at the initial

difference was also reported by Cope and Rao [11], and can be explained by
the existence of micro cracks which reduce the effective tensile strength
of the concrete. The close agreement in the later stages up to failure,
shows that the present predictive approach is both efficient and adequate.
The predicted ultimate load of 36 KN was very close to the experimental
load of 40 EN.
Z 40
> t
C —Y
= o IESEISI s
g %k R
— ¢ A7
3 z
= 24 X
—— Experimental
16t w —%— Serendipity 2X2 6.P.
/" —— Heterosis 2X2 G.P,
£
8r
F
PRRVEEE W0 IO T WL T S I W T WO T WA S N U U UV SN A S0 T N W T A W WG U S0 S O T O WO A A
4 8 12 16 29

Deflection (mm)
Fip.10 Comparison of load deflection curves for Cope/Rao T beam

4.3 Bouma's cylindrical shell with edge beams

From a series of experimental tests performed on various cylindrical shell
roofs [12,13] two tests are chosen for comparison with the present
numerical formulation. Fig.11 illustrates the dimensions and reinforcement
details of the c¢ylindrical shell and the edge beams. The shell has end
diaphragms and is simply supported at the edge of these diaphragms, The
shell surface is subjected to uniformly distributed load in the vertical
direction with the free edges being subjected to line loading, and both
loads are increased in the same ratio during testing.

/ t=1 - L=336-
. e I~ K
|4-«=7§§§:§ el= m|
: = A__A |
: | 2 =2 v
a) £ 1 | K=t
L N \ b=1305 | = ~ o
b Y 1 51_2_-/ =
N | 3 2
b [ ra—— e |
! 012-2.8

1
. " " T
All dimensions in cm * 136 __I

Test N° 1

Be3

Test N* 2

Rejnfor:eme:\f of the shell body

@11
- g Cover 1mm
' N1z

Section A-A

Reinforcement of the edge beam

Fig.11 Geometry and details of Bouma'’s cylindrical shell
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For both models, one quarter of the stiffened shell roof has been idealized
by 12 shell elements and 4 beam elements, noting the dual symmetry of the
problem,

The material properties are assumed to be those indicated in Table 3. The
properties are identical to those assumed by both Anerson [13] and Ramm
[14] in their analysis of the same shell,which allows comparison with their
published predictions.

Table 3 Material properties for Bouma's shells in (N,mm)

concrete steel
Young's Modulus Ec = 30000, Young's Modulus Es = 210000.0
Poisson’s ratio Vo= 0.2 Young's Modulus E! = 2000.0
Ult. Comp. St. f' = 30.0 Yield Stress FY = 295.0
Ult. Tens. St. £% = 3.00
DIt Comps St *a #003 For the edge beam
Tens. Stiff. Coeff, o = 0.5
Tens. Stiff. Coeff, g = 0.0015 Yield Stress FY = 280.0
éﬁ'ﬁ_
Z 2 -
- [ Xz
=
= 40
3 |
o [ ’~
3L ;
zg? — Experimental
: —%— Lagrangian 2X2 G.P.
3 —— Serendipity 2X2 G.P.
18} —%— Serendipity 3X3 G.P.
8- Heterosis 2x2 G.P.
nnnnnn I I STV G T SO 0 S VU GO DO 0 A0S S . [N T S T 0 S SO A T O W Y 6 N OO W
18 20 39 40 59

Deflection (mm)

Fig.12 Comparison of load-deflection curves for the middle of
the edge beam (Bouma'’s shell test No.2)

In Fig.12 the numerical results for test No.2 are shown for different types
of element and are compared with the test results. The Heterosis element
formulation (with reduced integration) shows an excellent agreement with
the experimental results up to approximately half the failure load, while
the Lagrangian element formulation (with reduced integration) indicates
good shell response prediction up to failure load. Full integration leads
to a completely ’'locked’ solution, as expected.



A

A.Y. THANNON - N. BICANIC - D.R.J. OWEN

379

a
=

Total load (KN)
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Fig.13 Comparison of load-deflection curves for the middle of

the edge beam (Bouma’s shell test No.l)

The numerical results for test No.l are shown in Fig.1l
element formulation shows a better agreement with the experimental results
than the Lagrangian element formulation.

Total Load (KN)
A [&)]
[ae] [a~]

(9%
[a)

~o
=

3. The Heterosis

-
—_—
—— Experimental
—%— Present
—+— RefF, [14]
—%— Ref., {15]
il taalai PIITIE I N B0 ANV I I N N T N U . 0 N T AU S T A T N T OO W T O |
] 18 20 30 14 59

DeFlection C(mm)

Fig.14 Comparison of load— deflection curves for the middle of the
edge beam (Bouma's shell test No.2) with results in Ref. [14,15]

In Fig.l4,
predictions

the numerical results for test No.2 are
from the analyses of Anerson [14] and Ramm

experiment results.

compared with the
[15] and with the
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It is worth mentioning that in Anerson’'s analysis the beam was idealized as
a shell element connected at it's mid height (inner face) to the shell
surface. Ramm [15] also idealized the edge beam as a shell element, and
tried 3 different heights of connection point at the middle plane of the
beam. The results chosen for comparison here are the best ones reported by
Ramm [15]. In addition, both Ramm [15) and Anerson [14] did not mention
that the 1load imposed on the shell during the actual test was composed of
two parts, one uniformly distributed on the shell surface and the second
being a line load applied to the edge beam, as clearly stated by Bouma et
al. [13].

Finally the applicability of the present code is evident from the
comparison of the predicted ultimate loads with the experimental values, as
shown in Table 4 .

Table 4
experimental | predicted
Test No.l 53.4 KN 53.0 KN
.Test No.2 42 .3 KN 46.0 KN
X182
@JZ_
B'@lillllllllllllll L2t
261 1844 383

— Present
—¥— Experimental

Deflection (mm)

Fig.1l5 Shell mid section near failure for test No.2

In Fig.15 the shell mid section is shown at different load levels, compared
with those measured during test and the very close agreement again
illustrates the efficiency of the present approach. The analyses of both
Anerson and Ramm did not predict the inward bending of the edge beam and
the upward rising of the shell longitudinal centre line.
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Fig,16 Crack distribution on the upper surface of test No.2

The c¢rack distribation on the upper surface of test No.2 is shown in
Fig.16, and is in good agreement with a photograph of the shell taken after
failure [12].
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5. DISCUSSION AND CONCLUSIONS

A finite element computational model for the ultimate 1load analysis of
stiffened plate and shell structures has been presented and evaluated by
application to several problems for which both experimental results and
other numerical solutions are available. A good correlation was found
between experimental and the present numerical results throughout the
entire structural response which demonstrates the effectivness of the
solution procedure. The curved beam element, developed to be compatible
with degenerate thick shell elements, performed satisfactory and proved to
be superior to modelling beam components by additional shell elements.

Further development work is currently being undertaken on the model to
include geometric mnonlinear effects which have been shown [1] to be
significant in the case of unstiffened shells.

Considerable further verification of the solution procedure and associated
code is necessary before use in engineering practice can be contemplated.
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