
Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 54 (1987)

Artikel: Ultimate load analysis of eccentrically stiffenend shell structures

Autor: Thannon, A.Y. / Bicanic, N. / Owen, D.R.J.

DOI: https://doi.org/10.5169/seals-41944

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 17.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-41944
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


367

Ultimate Load Analysis of Eccentrically Stiffened Shell Structures
Calcul à la rupture de structures spatiales raidies
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SUMMARY
Numerical solution techniques are presented for simulating the behaviour of reinforced concrete plates and

shells stiffened with eccentric beam systems when subjected to short term loading conditions. Degenerate
quadratic thick shell elements are employed for the shell and for the beams a curved element formulation
is adopted based on beam theory incorporating transverse shear deformation. A through thickness layered
representation is used for both the shell and the beam in order to model progressive failure characteristics.
Comparison is made with several experimental results.

RÉSUMÉ
Des solutions numériques sont présentées pour la simulation du comportement de plaques et de coques en

béton armé raidies avec des systèmes de poutres excentriques, lorsqu'elles sont soumises à des conditions

de charges de courte durée. Des éléments de coque épais particuliers sont employés pour la coque tandis

qu'une formulation d'éléments courbes est adoptée pour les poutres, sur la base de la théorie des poutres

prenant en compte les déformations dues au cisaillement. Une représentation en couches successives est

utilisée pour la coque et la poutre afin d'inclure les caractéristiques de la rupture progressive dans le

modèle. Une comparaison est faite avec plusieurs résultats expérimentaux.

ZUSAMMENFASSUNG
Numerische Lösungsmethoden werden gezeigt, die das Verhalten von balkenversteiften Stahlbetonplatten
und -schalen unter Kurzzeitbelastung simulieren. Entartete quadratische dicke Schalenelemente werden

für Schalen verwendet, während für die Balken ein krummliniges Element angewandt wird, das die

Schubverzerrung miteinschliesst. Eine über die ganze Dicke reichende Schichtendarstellung wird sowohl für die

Schale wie für den Balken gewählt, um fortschreitendes Versagen zu modellieren. Die Ergebnisse werden

mit einigen Versuchsresultaten verglichen.
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1. INTRODUCTION

The continuing trend towards limit state design of reinforced concrete
structures makes increasing demands on the development of adequate
computational models for their analysis. The situation is particularly
crucial for stiffened shell structures where uncertainties still exist with
regards to appropriate element formulation and material modelling under
ultimate load conditions. The work presented in this paper represents a

further, though small step towards the ultimate goal of a reliable and
robust computer code capable of predicting the response of arbitrary
stiffened shell structures throughout the entire loading range leading to
collapse.
The primary objective of a finite element model developed for global
analysis and design purposes is the accurate prediction of the overall
deformational and load carrying characteristics of structures together with
the corresponding limit loads. The modelling of the complex behaviour of
reinforced concrete is frequently simplified in the local context (e.g.
crack discontinuities, bond slip) in order to render the problem more
tractable and provide numerical solutions within acceptable computational
costs. A successful model, however, must be capable of simulating the
fundamental nonlinear behaviour up to collapse and must be based on
material parameters which can be unambiguously determined from simple
tests. The present paper is concerned with developing a numerical approach
for modelling the ultimate load response of reinforced concrete shell
structures with integral stiffening beams under quasi-static short term
loading within these constraints.
The degenerate quadratic thick shell element employing a layered
representation through the thickness, has been successfully employed for
the analysis of reinforced concrete plates and shells [1], Several versions
of this element (Lagrangian Heterosis Serendipity have been utilized
with various material constitutive models. Most approaches have been based
on a dual criterion for yield and crushing in compression expressed in
terms of stresses and strains which is complemented with a tension cut-off
representation. A smeared or distributed model for cracked concrete is
assumed and an average shear modulus is used for cracked zones Gradual
bond deterioration with progressive cracking is simulated by means of a

tension stiffening model. Such an approach is again employed in this work
as a basis for plate and shell modelling.
The need for a curved beam element to model integral reinforced concrete
stiffeners, or even seperate beams, has led to the introduction of various
types of elements [2,3] In the present analysis, the curved beam element
used by Jirousek [2] for the linear analysis of stiffened shells, is
adopted. This element exhibits the required displacement compatibilty with
the degenerate quadratic thick shell element. The six degrees of freedom
associated with any node are capable of representing torsional and
transverse bending behaviour and the element formulation also models
transverse shear effects The constitutive model referred to above must
also be modified to allow prediction of the ultimate load behaviour of beam

components.
The finite element computational model is summarized and four numerical
examples are presented which both illustrate the capabilities of the
present code and draw attention to some problems that still exist in the
numerical prediction of the ultimate load behaviour of stiffened shell
structures.
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2. FINITE ELEMENT FORMULATION FOR ECCENTRICALLY STIFFENED PLATES AND SHELLS

2.1 Eccentric curvilinear beam element

2.1.1 Reference, joint and centroidal axes

Fig. 1 illustrates a typical 3 noded curvilinear beam element, with six
degrees of freedom comprising three global displacements u.,v^,w^and three
global rotations

L=3 ^

Joint axis

Fig.1 Geometry of the
eccentric beam element

Fig.2 Local coordinate
system in a nodal section
of the eccentric beam element

The points Gl, G2, and G3 are the nodes on the element centroidal axis
and Ç is a curvilinear coordinate which varies between (—1,+1). Any point
on the element centroidal axis can be defined from

2 V«>
L=1

GL

^GL

ZGL

(1)

where N, are the shape functions, and xGL' GL' GL are the global
cartesian coordinates of the nodes on the element centroidal axis.
When employing such an element in conjuction with a thick shell element to
model a stiffened shell, two additional axes have to be introduced, the
reference axis, situated at the mid surface of the corresponding thick
shell element, and the joint axis on the contact between the beam and the
shell, denoted in Fig.l by points E1,E2 and E3.

Points on the reference axis and on the joint axis can be defined in terms
of the corresponding nodal coordinates and the curvilinear coordinate in
the same way as points on the centroidal axis are defined in Eq.(l).

%•
e.

The position of the points
be specified using vectors e^, g^.
centroidal axis can be expressed in terms of the nodal coordinates on the
reference axis as

with respect to the reference axis can
Consequently nodal coordinates on the

XGL XL XL Axl

yGL yL + êL + *L yL + AyL

ZGL ZL ZL Azl

(2)
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The local cartesian coordinates x',y,z where x1 is normal to the plane of the
element cross section and y' z'are the principal axes of area of the cross
section, are shown in Fig.2
The beam cross section at a given
the joint axis

Ç should ideally contain point E on

S NL(Ç)
L=1

EL

^EL

EL

(3)

This requirement cannot be fulfilled in general, if one insists on having
the cross section plane rigorously perpendicular to the centroidal axis.
It is assumed that the the vector 6 coincides with the direction of the
local y'axis so that the cross section plane is approximately normal to the
centroidal axis. For intermediate section along the axis it holds that

g (Ç)= 2 nl(ç) £l
L=1

b (v= X
L=1

NL(Ç) bL (4)

Using the vectors g and b ,the unit vectors in the local coordinate system
x,y,z can be computed

£ *_s %. _s (5)|a| ' J |b| ' k
I c I

(5)

where
A A A AAAa= bxg and c=axb (6)

The matrix of the orthogonal transformation from the local to global axes
will therefore be given as

Ü (Ç) [ i'(0 j'(Ç) k'(Ç)] (7)

2.1.2 Generalized stress-strain relationship.
Assuming that the cross section plane is perpendicular to the centroidal
axis, the constitutive equation relating the generalized stress a (Fig.3)
to the generalized strain e will be of the form ~

where

cr D e (8)

"

N EA

V D GA 0
y

V GA
z

My' EV
MZ' 0 EI

z
T GJ

G.x
VG, x
wG,x
a', x

p x

y'.*

~y

+p-
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where denotes the local reference frame and x' stands for
differentiation with respect to x'

The cross sectional properties for each layer are
A cross section area
A A equivalent shear areay *•
E modulus of elasticity
G shear modulus
J torsional constant

principal moment of inertia

The displacements and rotations in the local and global reference system
are related through

G G

î) (9)

By neglecting the possible small difference between the local axis x' and
the tangent to the centroidal axis it follows that

d
dx'

where t is modulus of the vector t
X,

d
dÇ

(10)

4 dNL(Ç)
t(5> S -L—

L=1 d£

GL

'GL

GL

(11)

2.1.3 Element stiffness matrix
Standard finite element procedures can be followed for computing the
stiffness matrix Kr associated with the centroidal axis displacements 5

u G

KG E 4BGDBG td^ (12)

where, Ln is the number of layers through the thickness
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The calculation (at the Gauss points) of the strain matrix Bg for each

layer follows from

8 B0 6G S bgl 8gl
L=1

,(13)

In turn, B_. for each layer can be written by using the definition of the
uL

the generalized strain and the transformation matrix G as

GL

0

dNL T
~d {

0
* T

NL k'
A T

Nl j'T (14)

A T

t dÇ
u

The K matrix associated with the reference axis can be obtained by either
transforming
layer into a strain matrix
been found to be more ecconomical. This latter transformation will be
discussed after the formulation of the thick shell element

Kg matrix or by transforming the strain matrix B from each

Bg associated with the reference axis which has

2.2 Thick shell element

Formulation of the standard quadratic degenerate shell element (Ahmad's
element) is well known [4], and therefore only a brief description of the
element will be presented here. Since the element formulation does not
allow a direct combination with the beam element described above, the
necessary modifications are also summarised.

The degenerate shell element (Fig.4) has five nodal degrees of freedom, i.e
three global displacements (u^, v., w^) and two local rotations a^.ßj)
about the x" and y'axes respectively.

z,W

•y.v

x,u

Fig.4 Geometry of a standard thick shell element
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The displacement field is assumed to be of the form

2Mi(4'n)
i l

u.1

w.
1

+ T~ EMi(Ç',l)[^2i Çli]
i=l

..(15)

t, il il awhere x, y, z are the loca 1 coordinate system, v^^ '^2i '^3i are un*t
vectors and n is the number of nodes.
For the nodes where the shell element is linked to a stiffening beam
element, the local rotations o^,ß^) must be expressed in terms of the
global rotations (aL 'PL'rL*

r h i
°L °L

U

II h (16)
t
a

ca

•
yL

where T is a matrix which can be derived from geometric considerations

V
2L

'iL

3L

3L

3L

0

z
'3L

3L
x

"3Î,

0

.(17)

The transformation of the generalized degenerated shell degrees of freedom

8^ to 8^ is then given by

UL UL

V- I 0 V,L L
WL WL

"L °L
PL o tl h

.v

...(18)

2.3 Beam element combined with the degenerate shell element

To meet the requirements of displacement compatibility along the joint
axis, it is assumed that the displacement field of the curved beam element
is generated by linking each cross-section to the reference axis by means
of a rigid rod vector ê (Ç). It can be shown [2] that

where

UGL UL "L
VGL VL + *L h
WGL WL rL

(20)

0 Azl -AyL

-Azl 0 AXL

AyL -Axl 0
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The B„. submatrix in Eq. (15) associated with the centroidal axis nodes
(jL

can be transformed to B„ (associated with the reference axis nodes) by
U

bgl (21)

where

^L

Finally the total stiffness matrix can be assembled following standard
finite element procedures.

3. MATERIAL MODELLING

Usually, a simplified formulation of the highly complex behaviour of
reinforced concrete is employed [6] and the formulation adopted here has
been found very effective despite its simplicity [5].
The compressive behaviour of concrete is modellled using the flow theory of
plasticity [8]. Employing Kupfer's results [7], the yield condition for
the plate and shell elements is written in stress component form as

f (o) [l.335 [(<r +a -a a )+ 3(t +r +r )]
x y x y xy xz yz

1/2
+0.355a (a +o )] a (22)

o x y o

This yield condition is a function of only one material parameter (a =f')J r o c
which can be obtained relatively easily from experimental data.
The crushing condition is controlled by the state of straining and can be
written in terms of total strain components again based on Kupfer's results

1.335[(s +e -e e )+ 0.75(y +y +y )]x y x y xy xz yz
+0.355 e (e +e e

u x y u
(23)

When s^ reaches the specified limiting value the concrete is assumed to
have lost all its characteristics of strength and stiffness.
For the beam element, the uniaxial behaviour of concrete Fig.5 is adopted.

Fig.5 Uniaxial representation of
the concrete constitutive model

Fig.6 Tension stiffening
diagram
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The response of concrete under stress is assumed to be linearly elastic
until the fracture surface is reached. When the maximum tensile stress is
reached, cracks are assumed to form in planes perpendicular to the
direction of the maximum principal stress.
After cracking has occured, either a sudden release or gradual relaxation
of the normal stress on the cracked plane is adopted according to a tension
stiffening diagram as shown in Fig. (6). The modulus of elasticity and
the Poisson's ratio are reduced to zero in the direction perpendicular to
the crack plane. A reduced shear modulus taken as a function of tensile
strain is employed to simulate aggregate interlock.
The behaviour of steel in tension and compression is modelled by
considering the reinforcing steel bars as layers of equivalent thickness.
Each steel layer has a uniaxial behaviour, i.e resisting only the axial
force in the bar direction.
An incremental/iterative numerical solution technique is used in order to
trace the response of the structure throughout the loading history. The
modified Newton-Raphson method has been employed to avoid frequent
calculation and factorization of the tangential stiffness matrix.

4. NUMERICAL EXAMPLES

4.1 Puddeck's two span beam

A simply supported reinforced concrete beam, continuous over two spans
tested by Duddeck et al [9] is shown in Fig.7. The material properties as
reported by Muller [10] are given in Table 1. \

<t> 4mm

54

60

60 420 420 420 420 60

1800

Dimensions in mm

CROSS SECTION

Fie.7 Geometry and details of Puddeck's beam

Table 1 Material properties for Puddeck's beam in (N,mm)

concrete steel

Young's Modulus E 16660.
Poisson's ratio V 0.0
Ult. Comp. St. f^ 32.0
Ult. Tens. St. f^ 1.67
Ult. Comp. Stn. s .0027

u
Tens. Stiff. Coeff.a 0.5
Tens. Stiff. Coeff.e 0.0015

m

Young's Modulus E 196000.0
Young's Modulus E 28000.0
Yield Stress Fy 490.0

Taking advantage of symmetry only one half of the beam is considered and
idealized by 8 beam elements.

Results from the analysis in Fig.8 are in close agreement with experimental
observations and data.
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Fie.8 comparison of the load deflection curve for Duddeck's beam.

4.2 Cope and Rao 'T' beam analysis
The reinforced concrete 'T' beam tested by Cope and Rao [11] is chosen to
assess the present approach in solving problems involving an assembly of
plates and beams. The details of the T beam are shown in Fig.9 and the
relevant material properties are given in Table 2.

150 1650

T BEAM - HALF ELEVATION

AO J_ |*
100

05mm
210

10mm COVER

CROSS SECTION

1

H jJ5mm COVER

3~r
-05mm a 150mm /t

-012mm
120

Dimensions in mm

Fig.9 Geometry and details of the Cope/Rao T beam

Table 2 Material properties for Cope/Rao T beam in (N,mm)

concrete steel
Young's Modulus E 35000.

c
Poisson's ratio V 0.2
Ult. Comp. St. f' 48.0
Ult. Tens. St. f^ 4.80
Ult. Comp. Stn. g .003

u
Tens. Stiff. Coeff. a 0.5
Tens. Stiff. Coeff. e 0.0015

m

Young's Modulus E 200000.0
Young's Modulus E^ 0.00
Yield Stress Fy 340.0

Using symmetry conditions, one quarter of the T beam is idealized by 12
shell elements and 12 beam elements.
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Comparison of the numerical results with those of the experiment in Fig.10
indicates a difference at the initial stage of the response. This
difference was also reported by Cope and Rao [11], and can he explained by
the existence of micro cracks which reduce the effective tensile strength
of the concrete. The close agreement in the later stages up to failure,
shows that the present predictive approach is both efficient and adequate.
The predicted ultimate load of 36 KN was very close to the experimental
load of 40 EN.

Experimental
Serendipity 2X2 G.P.

Heterosis 2X2 G.P.

G I I ».. ' 1 '»» 1 ' 1

IG 20

Deflection (mm)

Fie10 Comparison of load deflection curves for Cope/Rao T beam

4.3 Bouma's cylindrical shell with edge beams

From a series of experimental tests performed
roofs [12,13] two tests are chosen for c
numerical formulation. Fig.11 illustrates the d

details of the cylindrical shell and the edg
diaphragms and is simply supported at the edg
shell surface is subjected to uniformly dist
direction with the free edges being subject
loads are increased in the same ratio during te

on various cylindrical shell
omparison with the present
intensions and reinforcement
e beams. The shell has end
e of these diaphragms. The
ributed load in the vertical
ed to line loading, and both
sting.

All dimensions in cm

Test N* 1 Test N* 2 Reinforcement of the edge beam

Fig.11 Geometry and details of Bouma's cylindrical shell
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For both models, one quarter of the stiffened shell roof has been idealized
by 12 shell elements and 4 beam elements, noting the dual symmetry of the
problem.
The material properties are assumed to be those indicated in Table 3. The
properties are identical to those assumed by both Anerson [13] and Ramm

[14] in their analysis of the same shell,which allows comparison with their
published predictions.

Table 3 Material properties for Bouma's shells in (N,mm)

concrete steel
Young's Modulus Eç 30000.
Poisson's ratio V 0.2
Hit. Comp. St. f' 30.0
Ult. Tens. St. f^ 3.00
Ult. Comp. Stn. s .003
Tens. Stiff. Coeff. a 0.5
Tens. Stiff. Coeff. s 0.0015

m

Young's Modulus E 210000.0
Young's Modulus Es' 2000.0
Yield Stress Fy 295.0

For the edge beam

Yield Stress Fy 280.0

Fig.12 Comparison of load-deflection curves for the middle of
the edge beam (Bouma's shell test No.2)

In Fig.12 the numerical results for test No.2 are shown for different types
of element and are compared with the test results. The Heterosis element
formulation (with reduced integration) shows an excellent agreement with
the experimental results up to approximately half the failure load, while
the Lagrangian element formulation (with reduced integration) indicates
good shell response prediction up to failure load. Full integration leads
to a completely 'locked' solution, as expected.
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Fig .13 Comparison of load-deflection curves for the middle of
the edge beam (Bouma's shell test No.l)

The numerical results for test No.l are shown in Fig.13. The Heterosis
element formulation shows a better agreement with the experimental results
than the Lagrangian element formulation.

Fig.14 Comparison of load- deflection curves for the middle of the
edge beam (Bouma's shell test No.2) with results in Ref. [14,15]

In Fig.14, the numerical results for test No.2 are compared with the
predictions from the analyses of Anerson [14] and Ramm [15] and with the
experiment results.
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It is worth mentioning that in Anerson's analysis the beam was idealized as
a shell element connected at it's mid height (inner face) to the shell
surface. Ramm [15] also idealized the edge beam as a shell element, and
tried 3 different heights of connection point at the middle plane of the
beam. The results chosen for comparison here are the best ones reported by
Ramm [15]. In addition, both Ramm [15] and Anerson [14] did not mention
that the load imposed on the shell during the actual test was composed of
two parts, one uniformly distributed on the shell surface and the second
being a line load applied to the edge beam, as clearly stated by Bouma et
al. [13].

Finally the applicability of the present code is evident from the
comparison of the predicted ultimate loads with the experimental values, as
shown in Table 4

Table 4

experimental predicted
Test No.l
.Test No.2

53.4 KN

42.3 KN

53.0 KN

46.0 KN

X102

Fig.15 Shell mid section near failure for test No.2

In Fig.15 the shell mid section is shown at different load levels, compared
with those measured during test and the very close agreement again
illustrates the efficiency of the present approach. The analyses of both
Anerson and Ramm did not predict the inward bending of the edge beam and
the upward rising of the shell longitudinal centre line.

y - + + + + +
S y y y — — — —

/ y* — — — — —

1 y S y y y —

/ / y -- -- —

/ / y y y
/ y
/ y / y

Fie.16 Crack distribution on the upper surface of test No.2

The crack distribution on the upper surface of test No.2 is shown in
Fig.16, and is in good agreement with a photograph of the shell taken after
failure [12],
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5. DISCUSSION AND CONCLUSIONS

A finite element computational model for the ultimate load analysis of
stiffened plate and shell structures has been presented and evaluated by
application to several problems for which both experimental results and
other numerical solutions are available. A good correlation was found
between experimental and the present numerical results throughout the
entire structural response which demonstrates the effectivness of the
solution procedure. The curved beam element, developed to be compatible
with degenerate thick shell elements, performed satisfactory and proved to
be superior to modelling beam components by additional shell elements.

Further development work is currently being undertaken on the model to
include geometric nonlinear effects which have been shown [1] to be
significant in the case of unstiffened shells.
Considerable further verification of the solution procedure and associated
code is necessary before use in engineering practice can be contemplated.
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