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SUMMARY

A model for the simulation of the time-dependent mechanical behaviour of concrete at an early age is
outlined. Next, an efficient algorithm is derived for this model. The model is verified with experimental data.
To demonstrate the applicability of the model, the stress is calculated as a function of time for an axisym-
metric structure.

RESUME

Un modeéle pour la simulation du comportement mécanique du béton en fonction de I’dge est présenté pour
un béton jeune. Un algorithme efficace est dérivé de ce modéle. Le modéle est vérifié a I'aide de données
expérimentales. Afin de montrer la valeur du modéle, la contrainte est calculée comme une fonction du
temps pour une structure axisymétrique.

ZUSAMMENFASSUNG

Ein Modell zur Simulation der zeitabh&ngigen Eigenschaften von jungem Beton wird beschrieben. Danach
wird ein leistungsfahiger Rechenalgorithmus abgeleitet. Das Modell wird an Versuchsresultaten verifiziert.
Die Anwendung wird an einem symmetrischen Betonbauteil demonstriert.



340 MECHANICAL BEHAVIOUR OF YOUNG CONCRETE A

1. INTRODUCTION

The material properties in a hardening cement paste develop gradually during the hydratation
process in which cement forms a compound with water. This chemical process produces heat
and a consequence thereof we observe an increase in temperature in the structure. Stresses
are introduced when thermal volume changes are prohibited. This happens especially in con-
crete members with a great volume compared with the surface.

In hardening cement paste we first observe an increase in temperature owing to the generated
hydratation energy. Thereafter, a "'cooling process"” takes place during which crack formation
is often observed. The temperature increase in the first period results in compressive stresses
because the thermal expansion is suppressed by the surrounding concrete. These stresses,
however, will not be significant since the stiffness of the young concrete is still low. The
decrease in temperature in the second phase will cause higher tensile stresses because of the
greater maturity and as a consequence thereof, the higher value for Young's modulus.

Basically, the hardening of the cement paste is a coupled thermomechanical problem. Because
of the weak coupling in the preseni case, we can suffice by solving the separate problems of
heat conduction and stress development. In the first part the temperature field and a so-called
degree of maturity are calculated as a function of time taking account of the heat production
by the cement paste [7,8]. Thereafter, the temperature field and the degree of maturity are
used as input for the calculation of the stresses in the hardening cement paste.

In this paper a creep model is employed which has the form of a double power law (e.g.. also
[1]). The power law is developed in a Taylor series to make the model suitable for implementa-
tion in numerical programs. Experimental measurements are used to derive parameters for
the model [8]. The model and the derived material parameters are subsequently employed in a
finite element analysis of a cover element for a breakwater. Attention is also paid to the com-
munication between the heat conduction analysis and the mechanical problem.

2. HEAT PRODUCTION IN HARDENING CEMENT PASTE

The hydratation process can be characterized by different parameters (e.g., [4,7.8]). In this
paper Reinhardt [7,8] will be followed, and the degree of maturity 7 (¢) is employed, which is
defined as the quotient of the accumulated heat production (¢) at time ¢ and the total heat
production at infinity Qu:

r(t) = 2L )

25
The actual heat production g [J/m3s] at time ¢ is calculated using [8]:
9= qma f(r)=a e T f(r) (@

with o and b material constants, 7 the absolute temperature [K] and f (r) the heat produc-
tion characteristic. f (r) is a function of the degree of maturity and must be determined
experimentally. ‘

Next, an evolution formula for Young’'s modulus can be developed based upon the known tem-
perature T'(f) and the degree of maturity 7(t). In this paper, the expression proposed by
Reinhardt, Blaauwendraad and Jongedijk [B] is utilized:

r(t) 7
E(t) = E, { {—T—-] [1 — exp :‘37(*;7)— ]dr(t). (3)

In eq. (3), T is the time at which the increment dr is added, Ey is the initial value of Young's
modulus, which depends on the amount of cement, and £ is a "delay” factor. In the example
which will be discussed in a subsequent section, the values Fg=20000N/ mm? and $=0.075 have

been employed.
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3. VISCO-ELASTIC MODEL

The creep behavior of young concrete will be described with a visco-elastic model. As point of
departure the creep formulation

t
E;j(t) = C}ju_[ ﬁ-.f(t —T) 0 (7) d, (1)

is used. In eq. (4), 03 (7) is the the stress rate tensor, E(7) is Young's modulus at £ =7, J (£ =)
is a dimensionless function which describes the creep behavior and the summation convention
is employed for repeated subscripts. The compliance term 1/ E(T) is usually combined with
J(t—T) in a creep function, but this convention is not followed here because of the important
role of the time dependent Young's modulus. Furthermore, the fourth-order tensor (jq is
defined by:

- 1
Girt = 5 (1 +V)[6a6; + 640, ] — Vo6, (5)
with ¥ Poisson’s ratio, which is assumed to be independent of the degree of maturity.

The function J (¢ —7) has been assumed to have the following form [1,4]:
JE-T)= 1 +a1t@ (t—7)° {6)

with &x, p and d material constants. The factor i represents the influence of the time of the
application of the load on the creep behavior, while (£ —T)P constitutes the load duration.

For d=0 and p=1 the power law of eq. {6) degenerates to the same mechanical model as a sin-
gle Maxwell unit. This case as well as other integer values of p are interesting since analytical
solutions can then be obtained, which permits verification of the numerical algorithm to be dis-
cussed in the next section.

4. NUMERICAL ALGORITHMS
When we define J, (¢ —7)=a1"%(t —7)® and substitute eg. (), we can rewrite eq. (4) as

t
£5(t) = G { E(l—TT(1+Jc(t—v>> G () d, (7)

Differentiating eq. {7), using Leibniz' rule, assuming that J, (0) vanishes, and rearranging gives:
£

0 (£) = Dy E(t)en(t) — f T (t—T1) o5 (1) dT (8)
0

In eq. (B), J'c(t—T) is the first derivative of J, with respect to ({—T). When assume that
0; (¢)At =ho; (¢), with Al the time step, and define Aeg (1) in a similar fashion, we get for time
increment 7.:

[n-1
Aoy (t) = Dy E(t)Aey(t) — At 20 J'c (8 —74) Boyi(1g) (9

q:
so that the stress increment Aoy; (t) from £ to £t +Atf can be calculated from the strain incre-
ment Aeij (t) of the current time step and the stress increments Aoij(Tq) of all previous time
steps. The product of an additional strain increment Aeij(t) and the actual Young's modulus
E(t) increases the current stress, while the second term in eq. {9) describes the relaxation
process. The disadvantages of algorithm (9) are the fact that the entire load history of each
material point needs to be stored and that the computational times explode as the period
increases which has to be analyzed. Even for modern computer equipment this is an impossible

requirement if realistic engineering structures have to be analyzed.

To derive an algorithm which is more suitable for use in numerical programs, J'; (¢ —T) is
developed in a Taylor series at time £ =t [5]. Alternatively, J'c (£ =T) can be developed in a Dir-
ichlet series {e.g., [1.3]). Indeed, long time periods can be described better using a Dirichlet
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Fig. 1. Temperature functions from [6] and smooth input.

series, but for short time periods which are of interest in this study, a Taylor series is probably
quite accurate. Developing J'c (£ —T) at £ =¢ gives

J'e(t—7) = J'c(to) + J"c (L) (t —T—Ep) + EITJ"'c (to)(t—T—to)?
+ LI (-t + - - (10)

When we substitute J, (£ —7)=ar2(f —T), eq. {10) can be rewritten as
J'c (t —T) —ap T—d {ao + O.l(t —T—to) + a.z(t —T—to)z + aa(t —T—‘to)s + - (1 1)

Qg 23 ete. are functions of the power p and of {,. Collecting terms with the same power of T
yields:

re
Je(t-m)=ap 7% Y h(tto)7" (12)
r=0
with 7 the number of series used in the Taylor expansion. When m =3, hy(¢,£;) is defined by
ho(t,to) = ag + ay(t~to) + ea(t —to)? + ag(t —to)? (13)

and h,(t,£q), hp(t,lg) are defined in a similar way. In principle, there is no restriction on the
value of m, but significant gains in accuracy are usually not made by using more than five
terms. Eq. {12) can be substituted in eq. (9), whereupon we get after rearranging:

- -1
Aoy () = Dipy E(t)Aey(t) — At Z‘oaph—r(t o) [“207;1 g 80y (Tq) (14}
r= g=

Expression (14) has the desired properties, since the actual time £ no longer appears in the
—1 ti 3 2 - ..r

sum over 1. —1 time steps. Every time a load step is executed the sum Tq 'rqAU‘-J- (‘rq) can be

updated. In this way only m values need to be stored for each material point, and the calcula-

tion time will not grow with an increasing number of time steps.

As stated before, an analytical solution can be obtained for d=0 and for integer values of p. It
appeared [2] that for small time steps the numerical algorithm yielded a solution which could
hardly be distinguished from the analytical solution. An analytical solution could also be con-
structed for the case of d=0 and p=J% However, the agreement between the numerical solution
and the analytical solution, which involves an error-function [2], was not as good as in the cases
with the integer values for p, especially in the first hours of the simulation. This is not surpris-
ing, since a Taylor series already consists of polynomials. The error in the first hours can be
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35000

made smaller by taking a smaller valueN/mm? |

for g but the consequence of doing so 300001

is that the Taylor series cannot capture i

the creep function accurately at later 250001

stages of the simulation. In the exam- I

ples shown in this paper %3 has been 26000

elected in the middle of the simulation [

g 15000

period [2].
100090

5. PARAMETER DETERMINATION

The application of the power law model 5000

to the prediction of the creep and relax- y [ .

ation behavior of hardening cement 0 " 5'0 100 T 200

paste, needs realistic values of the
parameters a, d and p. A direct use of
values which are found in the literature
is rather difficult, for similar parame-
ters are often used in a slightly
different form [1,4]. In this study the
values for d range from 0.30 to 0.40,
while the range for p is from 0.25 to
0.35. The specific values depend on the
hardening conditions (humidity, tem-
perature etc.) and the amount and type
of cement. The shrinkage caused by
drying of the hardening cement paste is
not taken into account in this calcula-
tions. Incorporation of this phenomenon
would result in different values of o, d
and p.

Van Heyningen and Boon [6] have meas-
ured the development of the tempera-
ture, the stifiness and the stresses in
concrete cubes in a laboratory environ-
ment. In Fig. 1 two temperature fune-
tions are plotted as a function of time,
with the dashed line a smooth approxi-
mation. A smooth approximation of the
measured time-temperature curve is
used since a slight disturbance in the
temperature results in a proncunced
variation in the stress. The smooth tem-
perature curve of Fig. 1 is subsequently
used to determine Young's modulus
with aid of eq. (3) and is compared with
experimental data in Fig. 2.

The calculation of the stresses is per-
formed on one element with a
coefficient of thermal expansion of
11X107%n/ mK and a step size Al =1h. is
used. Figs. 3 and 4 show the develop-
ment of the stress in the first 7 days for
different combinations of the parame-
ters. Unfortunately, different

——= time [h]

Fig. 2 Development of the stiffness E(¢) accord-
ing to [6] and eq. (3).
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Fig. 3. Calculated stresses with p= 0.30, {,= 80h.,
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Fig. 4. Calculated stresses with a= 4.0, {5= 80h.,

Al =

1.0h.
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combinations of a, d and p result in nearly T
the same stress history. In particular, the c D
influence of the parameters on the peak stress
is virtually the same. An increase of a yields a \ \ \X\

smaller peak stress, but the same effect can
be established by increasing p or decreasing
d. Moreover, an increase of & or p and a
decrease of d all cause the same shift of the \
peak stress to a later time. To improve the

stress simulation in the early hours and to \
control the time at which the peak stress \

occurs, it is necessary to extend the power law
model with an additional function. When the

possibility of crack formation is the primary

goal of the analysis, the inaccuracies in the "HM
first 2 days are less important, since crack for- 8 PL@E
mation usually takes place during the cooling

process. It is finally noted that the range of
parameter values which is employed here, rea-
sonably compares with values quoted by other
investigators [1,4], especially d and p. Fig. 5. Element mesh of cne leg of a tetrapod.

A ———

6. STRESS CALCULATION IN A TETRAPCD

An example is now presented. It involves the calculation of the stresses during the hardening
precess in a tetrapod, which is used as a cover element for a breakwater. The element mesh is
shown in Fig. 5. The boundary conditions of the heat conduction are a prescribed temperature
of 15° C along the edges CD and DE, while along the axis of axi-symmetry AC and edge AE no
heat flow is permitted. For sake of simplicity the day-night cycle of the temperature has not
been modeled.

The resulting time-temperature and time versus the degree of maturity curves are plotted
respectively in Fig. 8 and Fig. 7 for some characteristic points in the tetraped. The tempera-
ture as well as the degree of maturity are subsequently stored in a tabular form, whereby the
time increments have been chosen smaller in the first 24 hours than afterwards.

Based upon the temperature and the degree of maturity as a function of time, the evolution of
Young’s modulus can be calculated using eq. (3). This results in the curves of Fig. 8, which give
the development of Young's modulus in the corners of the tetrapod. A typical value for Young’s
modulus is in the order of 35000 N/mm?2 Fig. B, however, shows a value of more than 55000
N/ mm? near point A. This high value is caused by the fact that eq. (3) is rather sensitive for
high temperatures, whereby it is noted that the temperature is again a function of the degree
of maturity.

The fact that scalar variables {temperature) as well as vectorial quantities (displacements)
enter the calculation has some consequences for the degree of interpolation and for the finite
element discretization. Use of quadrilateral four-noded elements in a heat conduction analysis
for instance results in a bilinear temperature distribution. When the result of the heat conduec-
tion analysis is subsequently used in the stress analysis, a linear temperature distribution also
results in a linear thermal strain distribution. This strain distribution can only be described by
a second-order displacement field, which necessitates the use of a quadratic element for the
stress analysis. Mcre general, we need an element for the stress analysis with an interpolation
pelynomial which is one order higher than the interpolation polynomial used in the heat con-
duction problem.

A related issue is the choice of the element mesh. The heat conduction preblem and the stress
analysis usually impose different requirements on the spatial discretization. ¥ different meshes
are employed for each analysis, the temperatures and the degrees of maturity which result
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from the first calculation, must be
interpolated to give nodal values in the
mesh to be used in the stress analysis.
Since the temperatures are primary
variables in the heat conduction
analysis, this interpolation is straight-
forward and results in a unique value of
the temperature in each node of the
mesh for the stress analysis. The calcu-
lation of the degree of maturity in the
nodes of the new mesh is more compli-
cated, for the degree of maturily is ecal-
culated in the integration points during
the heat conduction analysis. To obtain
a value for the degree of maturity in the
nodes, the values in the integration
points are extrapolated. This method
gives a non-unique value of the degree
of maturity in each node. If the same
element mesh is used again for the
stress analysis, this is not a major prob-
lem, since the interpolation to the (pos-
sibly new) integration points can be car-
ried cul using the old extrapolated
nodal values of that particular element.
When different meshes are employed in
both analyses, it may be more correct
to directly interpolate the degree of
maturity in the new integration point
from the integration points of the heat
conduction analysis.

A third issue is the calculation of
Young's modulus. This quantity must be
known in the integration points of mesh
for the stress analysis. To this end the
temperature and the degree of maturity
must be interpolated from the nodes to
the integration points. Thereafter,
Young’'s modulus can be computed as a
function of time with aid of eq. (3).

Figs. 9, 10 and 11 show the development
of the principal stresses in some points
of the cross section BE in the course of
time. In these figures o, is the principal
stress which is oriented approximately
parallel to the x-axis, and 03 is the prin-
cipal stress which is oriented approxi-
mately parallel to the Yy -axis.

7. CONCLUDING REMARKS

The development of a power law model
in a Taylor series is an efficient way to
sirnulate the creep behavior of concrete
at early ages. A good simulation of the

60 .
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Fig. 8. Temperature as a function of time in the
corners of the tetrapod.
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Fig. 7. Development of the maturity 7(¢) in the
corners of the tetrapod.
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stress development in a young concrete
member can be made with the power
law mode! after the first two days, while
an additional function is needed for a
better prediction in the initial phase. A
good qualitative agreement between
model prediction and experimental data
could be achieved for some sets of the
parameters o, p and d.

Special attention has to be paid to the
communication between the heat con-
duction analysis and the stress analysis.
When both calculations are carried out
with the same element mesh, a good
compromise must be found to describe
flow and peak stresses in a proper way.

In regions with high termperatures the
applied empirical model for the deter-
mination of Young's modulus results in
unrealistic high values. This may be
caused by the fact that the employed
empirical furictional for the determina-
tion of Young's modulus is rather sensi-
tive for high temperatures.
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