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Numerical Comparisons Involving Different ‘Concrete-Models’
Comparaisons numériques sur la base de différents modéles de béton
Numerische Vergleiche verschiedener Beton-Modelle

Michael A. CRISFIELD
Transp. and Road Res.
Lab.

Crowthorne, Berkshire

England

Michael Crisfield obtained
both his B.Sc. and Ph.D. at
the Queen’s University of Bel-
fast. Since that time he has
mainly worked at the Trans-
port and Road Research La-
boratory on the application of
non-linear  finite  element
methods to bridge structures.

)

-

John Wills graduated from
Cambridge University in 1955
with a First Class Honours

Degree in Mechanical
Sciences. He worked for ten
years in the gas-turbine re-
search field before joining the
Transport and Road Research
Laboratory where he is

John WILLS

Transp. and Road Res.
Lab.

Crowthorne, Berkshire
England

working on the numerical an-
alysis of bridge structures.

SUMMARY

The paper applies different concrete models to the finite element analysis of simple reinforced-concrete
panels subject to monotonically increasing states of uniform stress. The panels involve: a) a hypothetical
model designed to test the limit-loads when idealised material properties are assumed and b) Vecchio and
Collins’ experimental panels. The different ‘concrete models’ involve: 1) fixed orthogonal-cracks, 2)
‘swinging cracks’ in which the directions of principal stress and principal strain are assumed to coincide, 3) a
modification to the previous model whereby the stress in one swinging direction is influenced by the strain in
the swinging direction, 4) simple plasticity-models involving both flow and deformation theory which as-
sume no-tension and a ‘square yield-criterion’.

RESUME

La contribution applique différents modéles de béton pour I'analyse par éléments finis de panneaux
simples en béton armé soumis a des contraintes uniformes croissant de facon monotonique. Les panneaux
sont definis dans un cas par un modéle théorique analysant les charges limites pour des matériaux idéaux;
dans I'autre cas, il s’agit des panneaux expérimentaux de Vecchio et Collins. Les différents modéles de bé-
ton prennent en considération les fissures fixes orthogonales; les fissures mouvantes dans lesquelles la
direction des contraintes principales et des déformations principales sont les mémes par hypothése; une
modification du modele précédent dans lequel la contrainte dans une direction mouvante est influencée
par la deformation dans une autre direction; enfin les modéles plastiques simple basés sur la théorie
d’écoulement et de déformation, en considérant qu’il n’y a pas de tension et qu’il y a un critére d’écoule-
ment.

ZUSAMMENFASSUNG

Der Beitrag verwendet verschiedene Werkstoffmodelle fiir Beton bei der Anwendung auf statisch belastete
Scheiben. Die Scheiben betreffen einen hypothetischen Fall und die Experimente von Vecchio/Collins. Die
Werkstoffmodelle sind: festgelegte orthonogale Risse, Risse in der Richtung der Hauptspannungen bzw. -
Dehnungen, Interaktion zwischen Spannung und Dehnung in Rissrichtung und schliesslich ein einfaches
Plastizitdtsmodell.
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1. INTRODUCTION

Most current finite element programs adopt the fixed-orthogonal crack model [1]
to treat the cracking of concrete. In this approach, the direction of cracking
is governed by the direction of the first principal tensile stress that exceeds
the cracking stress. The major drawback of this model involves the development
of principal tensile stresses greater than the cracking stress at angles that
differ from those of the original two fixed—-orthogonal directions. This
deficiency arises when the straining is "non-proportional”™. Even for monotonic,
proportional loading, such non—-proportional straining is often experienced at
the local, Gauss-point level as the adjacent stresses and stiffnesses change.
Consequently, the fixed-crack model can give solutions that are far too stiff
and collapse loads that are significantly too high [2-4].

Various attempts have been made to allow for non-orthogonal cracks [5-6]. (They
are surprisingly few. Non-orthogonal cracks are hardly mentioned in the ASCE
review [1])}. Of these formulations, the authors considered de Borst’s model
[6].in which the effect of cracking and plasticity are superimposed, to be most
hopeful. However, in attempting to implement this model, the authors
encountered significant numerical difficulties when "state changes™ occurred
within an increment. Difficulties are also associated with discontinuities
involving the "threshold angle” [5] beyond which the second non-orthogonal crack
is activated.

For these reasons, the authors have, for the time-being, reverted to a simple
swinging-crack model [2,4] in which the directions of principal stress and
principal strain are assumed to coincide. These models can be criticised [7]
for being "un-physical"” in that the properties originally relating to a crack,
or series of cracks, in one direction are assumed to rotate and relate to a new
direction. However, the direction of the principal strain can be considered as
relating to the currently-most-active crack for which the properties are
influenced by previous adjacent cracks.

Much previous work on reinforced concrete has employed limit-analysis and
plasticity with the square yield-criterion [8,9]. The authors have therefore
introduced such a yield-criterion into a finite element computer program and
have established a close relationship with the simple swinging-crack model.
Finally, the basic swinging~crack model has been improved by incorporating the
ideas of Vecchio and Collins [10] to degrade the compressive strength as a
function of the tensile strain in the orthogonal direction.

2. THE FIXED-CRACK MODEL

Once cracking has occurred, the fixed-crack model is based on the incremental
stiffness relationship:

Ao c2 52 -2sc Ao
X 2 2 k T
Aaky = Aay = |s” ¢ gsc2 A02 = T(8) A012 ......... (1)
AT sC —SC ¢ -§ AT
Xy ! 12
[E., 0 O
RS T
or: Aa'xy = T(8) |O Et2 0 Aelz = T(8) Et12 T(6) Aeky .- (2)
0 0 BG
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where ¢ = cos0 and s = sin(8) and 6 (Fig. 1) is fixed as the direction of the

principal stress (al) at first cracking. The terms Etl and Et2 in the matrix

Et12 of (2) are the slopes of the uniaxial stress—-strain curves. Immediately

after cracking, Etl will be negative to allow for the softening {(or
tension-stiffening) in tension (Fig. 2). When an incremental step moves from an
uncracked to a cracked state, the strain ratio r is computed whereby the old

stresses, o,. are augmented by rEAe such that the resulting stresses:
o = o_ + rEAe
r o

have a principal tensile stress that just reaches the cracking strength.
Assuming no plasticity prior to cracking, the matrix E in (4) is the elastic

isotropic modular matrix. The remaining strain step {l-r)Ae is applied using
equation (2).

3. THE SWINGING—CRACK MODEL

The simplest swinging—crack model assumes that the principal stresses and
strains coincide and that:

2 o1(,(8) . )

o, =5, |= T(6)" |og(es(8)) | = T'(G)T[a;] = T'(0) 0}y -(4)
T 0
Xy

where T'(B)T contains the first two columns of the matrix T(6) given in (1} with
B relating to the direction of the continuously varying principal strain.
Equation (4) can be differentiated to give:
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do do
L 1 1 -1 -~w
T 3&1 6&2 0.57 sin29(al—02)
So. = |T'(0) a a T (6) + 5 5 -1 1 w ||6e .(5)
Xy i ¥y (e € )"+~ 21 @
de,  Oe, ® N e Sl
1 2
601 do
where @ = cot20. The 5——-and 3c_ terms in (5) are zero if.as here, (4) is
2 1

adopted for the total stress—strain relationships. They are included in (5) in
order to allow for extensions in the next section. The special form of (5)
invelving a no-tension material with zero Poisson’s ratio and an elastic
compressive response was derived by Guptal et al [4]. The tangent modular
matrix in (5) follows directly from equation (4) and does not involve the
shear-retention factor, B, that is used in (2) for the fixed-crack model.

4. A SIMPLE PLASTICITY MODEL

The square yield criterion of Fig. 3(a) has often been used for "limit-load
plasticity computations” [8,9] involving reinforced concrete. In its basic
form, no tension 1is allowed and a perfectly plastic response is assumed in
compression (Fig. 3(b)) once the compressive strength (say the cylinder
strength, fé) is reached. Limit-load calculations also consider the elastic

strains to be negligible in comparison to the plastic strains but this
assumption will not be adopted here. From Fig. 3(a), the yield functions are
given by:

£ = 0,(0)05(0) = (7,(8) - £)(05(8) - £1) =0 ........... (6)

The principal stresses 61(9) and 02(9) can be related to a&y using standard

transformations and equations (6) become:

2 3 ; 2
f = 0'xay Txy = (ax fc)(ay fc) Tr = o ... (7)
A Os o
_fé
c: €
-f¢ - -l
(a} Square yield criterion (b) Idealised stress-strain curve

Fig. 3 Yield criterion and stress-strain relationship for plasticity model
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If we consider a deformation theory with Poisson’s ratio as zero, application of
normality to (7) leads to:

o, E[ex - 7\(cry - {fé})]

g = E ey~ A(UX - {fé})] .............. (8)

E
Vo = —2-(1xy % 27\‘rxy)

where A 1is a "plastic—strain multiplier"”. Depending on the particular part of
the yield surface on which the stresses lie, the {fé} term may or may not be
included. Equations (8) can be used to show that:

¥ 2T
tan20 = — ¥ — = X (9)

X y X y

and hence, as with the previous swinging-crack model, the principal stresses and
principal strains coincide. Following this observation, it can be shown that,
if both formulations adopt the stress/strain curves of Fig. 3(b), solutions
obtained with the swinging-crack equations (4) will coincide with those obtained
from the plasticity equations (6)-(8). The authors’ computer program adopts an
incremental flow-rule so that the o Uy‘ Txy terms on the left-hand-side of (8)

and the € ey, ny terms on the right-hand-side of {8) are replaced by Aak.
and A&x. ... respectively. In these circumstances, the directions of the

principal stresses and principal strains will only coincide when "proportional
straining” has been applied. Consequently, there is no longer a direct
relationship with the swinging-crack model. Solutions using deformation rather
than flow theory can be obtained numerically by applying the complete load in a
single step.

5.0 THE MODIFIED SWINGING-CRACK MODEL

Numerical results have shown that the basic swinging-crack formulation (Section
3.0) leads to overestimates of the strength of panels failing by

shear/compression. This finding is consistent with the relationship that has
been demonstrated between the  basic swinging—-crack model and simple
plasticity—-theory. For, it is well established that an "effectiveness factor”

[9] is required to reduce the compressive strengths when applying the latter
theory to the limit-analysis of beams failing in shear [9].

The previous swinging-crack model involves no Poisson or biaxial effects.
Milford and Schnobrich [3] have introduced these effects into a swinging-crack
formulation by adopting the orthotropic stress—strain relationships of Liu et al
[11] and a "failure criterion” relating closely to the experimental results of
Kupfer et al [12]. For the present we will ignore any enhanced strength in
biaxial compression but are concerned to allow for the reduced compressive
strength under tension/compression. To this end, we could have followed Milford
and Schnobrick and used failure criteria, involving stresses, that are related
to the experimental results of Kupfer et al. However, as the concrete softens,
the tensile strain will reach & e in Fig. 2 and the orthogonal tensile stress

will be zero. Hence no strength degradation will be introduced. Consequently,
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we have followed Vecchio and Collins [10] in adopting a degradation involving
the orthogonal tensile strain rather than the orthogonal tensile stress.

The strength degradations have been incorporated into the swinging-crack model
by modifying the simple relationship of (4) to:

_ T,(G)T[al(el(e).ez(e))]

= a,(e1(8).€,(6))

Xy

Following from their experimental results on a series of reinforced concrete
panels [10], Vecchio and Collins modified the standard compressive parabola to
take the form:

« D
€ _ = 2 f’ (E. - €, )‘. ’
a, = fc[2E—2J - u[;z-] ] or g, = u—c[l - —= 2p )2] ..{11)

o o (2eo - e2p
depending on whether the compressive strain €o is 1less or greater than the
strain e2p = eolu at which the peak stress f’c/u occurs. The term €, in {11) is

the strain corresponding under uniaxial conditions to fé. The "reduction

factor” 1/p caused by the-orthogonal'tensile strains, €1» is given by:

u=0.85 +O.27elle2 .............................. (12)
These formulae have been incorporated into a modified swinging-crack model and
do do.
the derivatives a—l, il have been used in the tangent stiffness of (5).
€y 662
do 602
However, the terms 3 Fo have been neglected since they introduce
€q 6&1
non—-symmetry. In order to make valid comparisons with the fixed and simple

swinging-crack models, the first part of egn. (11) with p = 1 has been adopted
in these models for the stress/strain relationship in compression.

6.0 IDEALISED PANELS

Gupta and Akbar [4] analysed a set of panels of unit dimensions, subject to
uniform stress states involving various combinations of Nx‘Ny and ny (Fig.

4(a)). The latter were proportionally increased until failure occurred by
yielding of both sets of reinforcement. The computations assumed that the
concrete had no tensile strength and behaved elastically in compression while
the steel was assumed to act in an elastic/ perfectly-plastic manner.

The non-linear finite element program has been used to analyse one of Gupta and
Akbar’s panels (Case 4 of [4]). The adopted properties and loadings were:

Percentage of steel, Py = 4.232, py = 0.768:

v =0, E_ = 20,000 N/mmZ, E_ = 200,000 N/mn2, 0,y = 500 N/ :

s
N =N_ = 2.5A Nom, N_ = 5.0A N/mm.
X y Xy
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(a) Panel of unit dimensions {b} Finite element configuration

Fig. 4 Idealised panel
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Fig. 5 Load/Deflection relationship Fig. 6 Influence of shear retention
for idealised model factor, B

where A is the loading parameter that is unity for the "exact collapse load™ [4]
obtained from equilibrium and the assumption of no-tension in the concrete.
This no-tension condition was approximated by providing a very small tensile
strength. In order to produce the simplest possible idealisation and yet use a
standard non-linear finite element program, the panel was analysed using a
single element with a single Gauss point. The two "mechanisms"” were removed via
constraint equations.

Fig. 5 plots the loading parameter, A against the x displacement at node 4 (Fig.
4(b)). It can be seen that both the swinging-crack and plasticity models give
the correct collapse load and very similar load/deflection relationships. When
the plasticity solutions were obtained in single steps, thus simulating
deformation theory, the resulting solutions coincided with the swinging-crack
results. For these models, the angle 6 (Fig. 1) of the principal tensile stress

was 750 when the limit-load was reached. The solutions that were obtained with
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the fixed-crack model depended heavily on the initial step-sizes (Fig. 5). For
example, when a very small first step was applied, the finite element model
provided a crack orthogonal to the principal tensile stress at 8 (Fig. 1) =

46.7°. This angle is very close to the angle of the maximum principal stress
before cracking. In total contrast, when one single-step was applied almost to
the limit—load (using the arc-length method [13])}, the fixed-crack model gave a

crack orthogonal to 8 = 75% and a solution that lay on the load/deflection curve
given by the swinging-crack model. This occurred because, in the limit as the
ratio, r, to give first cracking (eqn. (3)) tends to zero, the fixed-crack model
{see Section 2} gives:

0
Ys = T(G)T[EEQ(B) e (13)
[BG712(9)

But 6 1is given by the principal tensile stress direction of rEexy or,

equivalently, of Eg Hence, v,, = 0 and (13) coincides with (4) which governs

12
the swinging—crack model.

All the fixed—-crack solutions obtained in Fig. 5 involved a shear-retention
factor, B, of 0.25. Fig. 6. illustrates the effect of varying this factor. It
can be seen that, although this parameter affects the load/deflection response,
the final collapse load does not depend on 5.

7.0 THE PANELS OF VECCHIO AND OOLLINS

Numerical analyses have been carried out on five of the thirty panels tested by

Vecchio and Collins [10]. These five were chosen with a view to producing a
range of failure modes. The adopted compressive stress/strain laws have already
been discussed (Section b5). In tension, we normally introduce a simple

sof tening relationship of the form illustrated in Fig. 2. For the current
problems, this softening relates to the "tension stiffening” [1,14] which
compensates for the inadequacy of the mesh and modelling to capture the shear
transfer from the steel to the concrete. Vecchio and Collins have plotted the
experimental relationship between the principal tensile stresses and principal
tensile strains. From these plots, we have derived a simple relationship of the
form of Fig. 2 with € = 0.004. This strain is approximately twice the yield

strain of the reinforcement.

For the {finite element analyses, the panels were idealised using a similar
procedure to that described in Section 6 for the "idealised panel”. The
following models were adopted:

F-CT: the fixed crack model (Section 2) with tensile strength and
tension—-stiffening and the parabolic compressive stress—strain
relationship given by the first part of {11) with p = 1. The
shear-retention factor, B, of (2) is set to 0.25

F~CNT: The fixed-crack model (Section 2) with no tensile strength and a
stress/strain relationship as in Fig. 3{(b) with an E value of
O.75fé/eo and a maximum stress of 0.975f’c.

S—-CT: As F-CT but using the swinging-crack model of Section 3
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S-CNT: As F-CNT but using the swinging-crack model of Section 3

MS-CT As 8~CT but using the modified swinging-crack model of Section 5 with
compressive stress—strain relationsips as in (11)

MS-CNT As MS—CT but with no tensile strength

PNT: The plasticity model of Section 4 with no-tension and the idealised
compressive stress—-strain relationship of model F-CNT

For each analysis, the recorded collapse "loads” are specified (see Table) by

means of the maximum shear stress (N/mmz) applied to the panel. The ratio of
Nx:Ny:ny is given in the Table.

Table: Computed and experimental collapse 'loads"” (N/mmzlffor the panels of
Vecchio and Collins

PV11 PV19 PV22 PV25 PV27
N :N :N 0:0:1 0:0:1 0:0:1 0.69:0.69:1 0:0:1
xy xy
po J/po 1.37 3.83 1.28 1.0 1.0
X ysX 'y ysy
angles 45°-49 5° 45°-63° 45°-48.5° 45%-45° 45°-45°

Experimental 3.56(Y2) 3.95(S/C+Y1) 6.07(S/C)  9.12(S/C)  6.35(S/C)

3.84(Y1)
F-CT before 5.12(Y2) 7.29(S/C+Y2) 9.72(S/C)  7.89(Y2)
3.63(Y2)
F~CNT 3.61(Y2) 4.67(Y2) 7.27(Y2) 9.28(S/C)  7.89(Y2)
3.78(Y1)
S-CT before 4.18(Y2) 7.24(Y2) 9.72(S/C)  7.89(Y2)
3.59(Y2)
S—-CNT 3.59(Y2) 4.18(Y2) 7.24(Y2) 9.28(S/C)  7.89(Y2)
3.69(Y1)
MS—CT before  3.40(S/C+Y1) 5.71(S/C)  7.65(S/C)  5.96(S/C)
3.59(Y2)
MS—CNT 3.59(Y2) 3.39(S/C+Yl) 5.69(S/C)  7.15(S/C)  5.95(S/C)
PNT 3.59(Y2) 4.18(Y2) 7.24(Y2) 9.28(S/C)  7.89(Y2)

S/C = shear/compression failure in concrete

S/C + Y1 = shear/compression failure in concrete + yielding of one set of steel
Y1 failure by yielding of one set of steel

Y2 = failure by yielding of both sets of steel

In producing these results, an arc-length solution procedure [13] was adopted
and hence the limit-loads could be well established without any failure in the
iterative solution technique. Also, local limit-loads could be overcome. This
is apparent from the numerical results given in the Table for panel PV11l which
was the only one to fail exclusively by steel yielding. These local
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limit—points could have been removed by reducing the tension-stiffening.

Of all the methods tested, only the modified S-C models (MSCI and MS-CNT)
consistently gave the same collapse modes as those observed in the experiments.
These models also gave good or conservative predictions for the collapse
strength. The more basic swinging-crack models (S-CT and S-CNT) overestimated
the collapse load by about twenty per cent for two of the panels (PV22 and
PV27). The fixed-crack models were equally bad in these instances and
additionally gave an overestimate of thirty per cent for panel PV19 in which,

because the ratio p o /p o was high, there was a significant change in the
x ysx 'y ysy

angle of the principal strains.

For every panel, the simple plasticity-model, PNT, gave collapse loads that, as
anticipated, coincided with those given by the simple S-C model with no-tension
(S-CNT) although, for PV1S, imn which a significant “swing” occurred, there was
some difference in the computed load/deflection” response. However, as
predicted, these differences were eliminated when single large-steps were used
for the model PNT.

Milford and Schnobrich [3] rejected the use of Vecchio and Collin’s
strain-related compressive strength degradations because "predicting compression
related failures is very sensitive to the tension-stiffening”. However, the
present results indicate that even the use of a no-tension model in conjunction
with the "degraded compression curves” gives reasonable, safe solutions.

8. CONCLUSIONS

The following tentative conclusions have been derived from the numerical
tests that have been described. More tests will be required to substantiate
these findings.

1. When the straining is non—proportional, the fixed-crack model may give
excessively high collapse loads because the crack directions are totally
governed by the early straining. However, in some circumstances, the

introduction of large step-sizes will reduce the stiffness so that the
solutions tend towards those of the swinging-crack model.

2 For steel-dominated ductile failures, the computed load/def lection
response, but not the final collapse load, will depend on the
shear-retention factor, B, if the fixed-crack model is adopted.

3. If deformation-theory is combined with plastic approach involving the

square Yyield-criterion, the results will coincide with those obtained from
an equivalent swinging-crack model. If flow-theory is adopted, the results
will often be very similar.

4. A tangent stiffness matrix that is consistent with the swinging-crack model
does not require the provision of a shear-retention factor, .
5. The simple swinging-crack model may overestimate the strength and

incorrectly assesses the failure modes of panels failing due to
shear/compression.

6. This deficiency can be overcome by providing a compressive stress-strain
relationsip, similar to that proposed by Vecchio and Collins [10], whereby
the compressive strength is reduced by the presence of orthogonal tensile
strains (not stresses). Unfortunately this leads to a non-symmetric
tangent stiffness matrix that must be symmetrically approximated if
efficient solutions are to be obtained. It is probable that an equivalent
plasticity—-model would involve a non-associative flow-rule.

6. Depending on the choice of tension-stiffening, local limit-points may well
be encountered and it is essential to use a numerical solution procedure
that will handle these phenomena.
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In the absence of a simple, but effective fixed-crack model that allows for
multiple and non-orthogonal cracks, the modified swinging-crack model

appears to offer many advantages. Much further theoretical and
experimental work is required on the development of effective stress/strain
relationships in both tension and compression. These will need to be

functions of both the mesh size and the vicinity and nature of the
reinforcement,
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