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SUMMARY

Recent advances in smeared crack modeling and computational techniques for concrete structures are re-
viewed. Special attention is given to the issue of stability and uniqueness in numerical computations of
strain-softening concrete. Techniques for overcoming bifurcation and limit points are discussed whereby spe-
cial attention is given to cases with highly localized failure modes. The techniques are applied to some rein-
forced and unreinforced concrete structures.

RESUME

Les progrés récents dans la modélisation des fissures homogénéisées et les techniques de calcul a 'ordi-
nateur pour les structures en béton sont passés en revue. Une attention particuliére est portée au cas de la
stabilite et de I'unicité, dans de nombreux calculs, du béton se plastifiant sous contrainte. Des techniques
pour résoudre les problemes de bifurcation et de points limites sont discutées et une attention particuliére
est portée aux cas de modes de rupture hautement localisés. Les techniques sont appliquées a certaines
structures en béton armé et non-armé.

ZUSAMMENFASSUNG .

In diesem Beitrag wird eine Ubersicht iber neue Entwicklungen der ausgeglichenen Rissbildung und Re-
chenverfahren fiir Betonkonstruktionen gegeben. Hauptaugenmerk wird gerichtet auf Stabilitat und Eindeu-
tigkeit in numerischen Berechnungen von entfestigendem Beton. Ldsungsmethoden zur Vermeidung von Bi-
furkation und Grenzwerte werden diskutiert fiir hochstbelastete Bereiche. Die Methoden werden auf einige
bewehrte und unbewehrte Betonkonstruktionen angewandt.
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1. INTRODUCTION

Concrete is a very complicated material because of its heterogeneity, the presence of rein-
forcement, the low tensile strength, the change in properties when it matures, and so on. It is
therefore not surprising that predictions of the mechanical behavior of concrete structures
still suffer from a lack of reliability. Nevertheless, the discrepancy between analytical results
and the real behavior is often greater than necessary when considering the current level of
sophistication of testing procedures, constitutive models and computational technigues.
Significant, and in some areas seemingly insurmountable difficulties persist, but progress has
definitely been made in analyzing concrete structures with aid of finite elements.

It is the purpose of the present paper to give an overview of some recent achievements of the
DIANA-group in constitutive modeling and the application of computational techniques to con-
crete structures. The review is by no means intended to be exhaustive, and important issues
like for instance time-dependent behavior [11,13] or bond-slip behavior [27] will not be treated.
The main topics which will be considered, are smeared crack modeling and issues regarding
stability and uniqueness of computations for concrete structures. 1t is recognized that the
crack model, which we will henceforth refer to as the DIANA-crack model, has been treated
extensively in previous publications [7,8,10,13,26,29], but because crack formation plays such a
pivotal role in the behavior of concrete structures, there may be some justification in briefly
reviewing the main concepts of it before discussing issues regarding stability and uniqueness.

2. MODELING OF SMFARED CRACKING

The fundamental feature of the employed smeared crack model is a decomposition of the total
strain rate into a concrete strain rate £° and into a crack strain rate £ (e.g., also [4,22]):

é:i;co +écr (1)
The concrete strain rate itself may also be composed of several contributions e.g., an elastic

part and a viscous part. Similarly, the crack strain rate &’ may be decomposed into several
contributions:

ETSESTHESTH .. (@)

where £]7 is the strain rate of a primary crack, &5 is the strain rate of a secondary crack and
so on. Combining eqgs. (1) and (2), we obtain

= HETHES H e, (3)

The relation between the strain rate of a particular crack {either primary or secondary) and
the stress rate is most conveniently defined in the coordinate system which is aligned with the
crack. This necessitates a transformation between the crack strain rate €5 of crack n in the
global z,y,2-coordinates and a crack strain rate €, which is expressed in local coordinates.
Restricting the trealment to a two-dimensional configuration (which is not essential), we
observe that a crack only has a normal strain rate €,; and a shear strain rate 75, so that

e=(es" w7 (4)
where the superscript T denotes a transpose. The relation between &5 and €5 reads
En =Npe; (5)
with
cos®9, —sin,, cosv,,
N, = sin®y,, sin?d,, cosd, (6)

: 2 )
2sind,, cosv, cos“d, —sin“d,

where ¥, is the inclination angle of the normal of crack 7 with the x-axis. Substitution of eq.
(5) in eq. (2) gives for multiple cracks
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E"=N,e{"+Ne5"+......... .. (7)

For the derivation of the stress-strain law of the system of cracks and concrete, it is con-
venient to assemble all the crack strain rates which are expressed in their own local coordinate
system in a vector €7,

eT=(e5 YT 65" Y. i (8)
When we also introduce the matrix N,

N=[N Ny oo (9
we observe that we can rewrite eq. (7) as

£ =Ne®" (10)
In a similar way, we can define a vector s,

$n=(s; £)7 (11)

with §, the normal and f,, the shear stress rate in crack 1o of the integration point. The vector
S which assembles all stress rates with respect to their own local coordinate system then
reads:

$=($; £y Sp o b (12)
and the relation between the stress rate in the global coordinate system ¢ and the stress vec-
tor & can be derived to be

S'ZNT'O' (13)

To complete the system of equations, we need a constitutive model! for the intact concrete and
a stress-strain relation for the smeared cracks. For the concrete between the cracks we
assume a relationship which has the following structure

=D £°° (14)

where the matrix D contains the instantaneous moduli of the concrete. The formalism of eq.
(14) can be extended to deal with phenomena like thermal dilatation, shrinkage and creep
[11,13], but this will not be pursued in the present paper. In a similar way, we can define a
relation between the crack strain rate e, of crack n and the stress rate S, in that crack. In
this paper, we will assume a relation which formally reads:

S,=Drles’ (15)

with D§7 a 2*2 matrix. For the derivation of the stress-strain relation of the cracked concrete,
it is again convenient to assemble all the matrices Df’ in a matrix D7,

ps o ...
pr=lo DY ... (16)

r

so that the relation between § and €7 reads

s=DTe®" (17)

Using eqgs. (1), (10), (13), (14) and (17) we can obtain the compliance relation for the cracked
concrete:

é:{cw +NC°’NT}6 (18)

with €°=(D)"! and C" =(D°")~! the compliance matrices of the concrete and the cracks
respectively. With aid of the Sherman-Morrison-Woodbury formula we can also obtain the
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stiffness relation
t'r___[Dco —eo N[Dcr +NTDCON]—]NTDCO & (19)

The success of this multiple crack model is contingent upon a proper formulation of the consti-
tutive matrix
[
iy o
= 20

"o\DE D
for the smeared-out cracks. Fortunately, in many concrete structures the crack strains are so
small that coupling effects between the normal crack strain and the shear stress, or between
the shear crack strain and the normal stress can be disregarded, so that we may set the ofi-
diagonal terms in eq. {20} equal to zero (D§3=0 and D35]=0). If, such as in crack-dilatancy
models [4,32] or in jointed rock masses [2], D% and D§] can not be assumed to vanish, we face
significant additional difficulties, since the values for {5 and D5] generally differ consider-
ably. This implies that I} becomes nonsymmetric, which also destroys the major symmetry of
eq. (19). Apart from the fact, that this leads to significantly larger CPU-times, it also has conse-
quences for the stability of the model, as will be briefly discussed in the sequel of this paper.

The tangent modulus D§] represents the relation between the normal crack strain rate and the
normal stress rate. In practice, DY} is negative as we normally have a descending relation
between §,, and €,. However, the evaluation of D} from test data entails a complication, as
recent research [5,21] indicates that a straightforward translation from experimental data in a
value for Dj] leads to results which are not objective with regard to mesh refinement. To over-
come this problem, it has been proposed to consider the fracture energy Gf [5,21] as the fun-
damental parameter which governs crack propagation. It is beginning to emerge gradually that
this so-called '"tension-softening’ model is not free from deficiencies. This is particularly so
when we allow for the possibility of multiple cracks. Suppose that a primary crack has been
created with a Df] determined from the fracture energy Gy. If upon formation of a secondary
crack the same crack stress-strain relation is adopted for the second crack, the fracture
energy will be consumed twice. If both cracks are orthogonal to each other, this is not unrealis-
tic, but for any other inclination angle it seems incorrect. Hence, the concept of a fracture
energy as outlined above does not seem to suffice for multiple crack formation. Indeed, a solu-
tion in which the fracture energy is distributed over both cracks is not correct as the fracture
energy Gf is not a scalar, but a vector although this does not seem to have been recognized
widely.

The shear modulus D§5 of the crack is usually assigned a constant value. This leads to the ano-
maly that for very large crack strains we continue to compute an increase of the shear
stresses transferred across a crack, which may result in shear stresses of more than 15
N/mmz. A shear-softening model, quite similar to the tension-softening model, has recently
been proposed to remedy this anomaly [29]. Deployment of this model resulted in a major
improvement for some unreinforced shear beams, especially in the post-peak regime.

It is finally noted that the structure of eq. (19) is quite similar to the structure of an elastoplas-
tic stiffness tensor at a yield vertex. Indeed, any constitutive law in which a decomposition in
the sense of eq. (1) is assumed, will lead to an equation with a similar structure. This holds true
for a yield vertex in which two yield surfaces are active, but for instance also for the intersec-
tion of a yield surface and a fracture surface [13,14].

3. STABILITY AND UNIQUENESS OF DISCRETE MECHANICAL SYSTEMS

A body is said to be in a state of stable equilibrium if the response on a vanishingly small dis-
turbance also remains vanishingly small [20]. This condition is usually replaced by the condi-
tion that
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U=[eTaav (21)
v

is positive for all kinematically admissible strain rate fields &, while the equilibrium is unstable
under dead loading if U becomes negative for at least one kinematically admissible strain rate
field. Although it has not been proved rigorously for all classes of constitutive models that the
criterion that the second-order work (eq. 21) is positive, is indeed equivalent to the abovemen-
tioned definition, it seems to be a reasonable hypothesis.

For an incrementally-linear constitutive model,

o=De& (22)
with D the matrix which contains the stiffness moduli, eq. {21) can be replaced by
U= [¢TDe av (23)
4

Since we have, for the skew-symmetric part of I}, i:T[D - T]é=0, we can write eq. {23) also as
U=L[eT[D+DT)¢ aV (24)
v

Consequently, stability under dead loading is no lenger assured if

SeT[D+DT)é dv=0 (25)
14

for at least one kinematically admissible &.

To investigate the implications of the stability reguirement U>0 for discrete mechanical sys-
tems such as arise in finite element applications, we divide the continuum in an arbitrary
number of finite elements, and we interpolate the continuous velocity field » as follows:

v=Ha (26)

in which the matrix H contains the interpolation polynomials and & is a vector which contains
the nodal displacements (e.g., [3]). The relation between the velocity field ¥ and the strain rate
& can formally be written as

e=Lwv (R7)

with L a matrix which contains differential operators. The relation between the nodal veloci-
ties and the strain rate then becomes

e=Ba (28)
where the notation B=L H has been introduced.

With the notations and the definitions of the preceding, we can rewrite the stability condition
(23) as

[a"BTD Badv>0 (29)
14
for all kinematically admissible velocity fields @. With the notation

K=[BTDBdV (30)
14

for the tangent stiffness matrix of the underlying system, we obtain that the stability of the
equilibrium of a discrete mechanical system becomes critical if

a’Ka=0 (31)
for at least one kinematically admissible vector @. This condition is satisfied if
det(K)=0 (32)

which according to Vieta's rule,
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n
det(K)=11 A, (33)
with A; the eigenvalues of K, implies that at least one eigenvalue vanishes. For symmetric sys-
tems, eq. (32) is not only a sufficient, but also a necessary condition for eq. {31) to hold. How-
ever, for nonsymmetric matrices K eq. {(31) may also be satisfied when @ is orthogonal to Ka.
Hence, the vanishing of det(K) or alternatively, the vanishing of at least one eigenvalue of K
implies that the equilibrium is in a critical state, but for nonsymmetric systems this critical
state can also be attained when all eigenvalues of the tangent stiffness matrix of the underlying
solid are non-zero. Put differently, the positiveness of the eigenvalues of K is a necessary, but
not a sufficient condition for stability of a mechonical system which is gaverned by a nonsym-
metric matrixz K.

Let us next consider eq. (25). i.e., the case that we have removed the skew-symmetric part
from the functional of eq. (23). Then, we obtain that the equilibrium of a discrete mechanical
system becomes neutrally stable if

dT[K+KT a=0 (34)
for at least one kinematically admissible velocity field. Since K+KTis symmetric, this condi-
tion is satisfied if and only if

det(K+KT)=0 (35)

or equivalently, U vanishes if and only if an eigenvalue of K+K T vanishes. Consequently, the
positiveness of the eigenvalues of the matriz K+ K Tisa sufficient and necessary condition
for the stability of a discrete mechanical systemn which is governed by o nonsymmetric tangent
stiffness mafrizr K. For the limiting case of a symmetric stiffness matrix we recover the classi-
cal notion that we have stability when all eigenvalues of the tangent stifiness matrix K of the
underlying solid are positive.

With regard to uniqueness of solution, we observe that incremental equilibrium must be com-
plied with at each instant in the loading process

[BTadv=iq" (36)
1 4

In it, [t is the loading rate, and q ’ is a normalized load vector. Suppose that there would be
another stress rate distribution, which would result from the loading rate f& and which would
also satisfy incremental equilibrium. The difference A& of both stress rate distributions would
then satisfy the condition that

[BTAsdv=0 (37)
14

With egs. (22), (28) and (30), we can rewrite eq. {37) as

KAa=0 (38)
with Aa the difference between both velocity fields. A non-trivial solution may then exists if
and only if

det(K)=0 (39)

or equivalently, if at least one eigenvalue of K vanishes. If a non-trivial solution indeed exists,
such a point is commonly named a bifurcation point. Several equilibriurn branches ernanate
from such a point. There is yet another possibility that det(K) vanishes. If the load reaches a
maximum, j4 vanishes, and eq. {36) reduces to

Ka=0 (40)

so that for a non-zero vector & we also find that eq. (39) must be fulfilled. The latter possibility
is called a limit point.
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In passing from eq. {37) to eq. {(38) it has been tacitly assumed that both strain rates are
related to stress rales by the same matrix of (tangential) moduli £). For elastic-plastic or
elastic-fracturing solids, where we have different behavior in loading and unloading, this is not
necessary. Strictly speaking, we have to investigate all possible combinations of loading and
unloading for such a multi-valued constitutive law in order to determine whether eq. (37) holds
true for some Aa.

For nonsymmetric stress-strain laws, the situation is even more complicated, since
det(K+KT) may vanish prior to the vanishing of det(K). Hence, loss of stability may precede
loss of uniqueness of solution for solids with a nonsymmetric stress-strain relation.

Although there seems no convenient procedure available to determine whether a solution is
unique or not, the presence of negative eigenvalues of the tangent stiffness matrix K con-
versely clearly indicates the existence of alternative equilibrium branches or the fact that we
have passed a limit point. In the case that we have passed a limit point, which implies that the
load is descending, we find one negative eigenvalue which is associated with the descending
branch. The other possibility is that the negative eigenvalues belong to alternative equilibrium
states so that we have passed a bifurcation point. Again, two possibilities arise, since the basic
path after bifurcation may be ascending or descending. If it is still ascending, all the, say m
negative eigenvalues can be associated with ™ alternative equilibrium states which can in prin-
ciple be reached via a suitable combination of the incremental displacement vector of the
basic path and the corresponding eigenvector, as detailed in the next section. If the basic path
is descending after passing a bifurcation point, one negative eigenvalue is associated with the
descending basic path, while the remaining negative eigenvalues correspond to m -1 alternative
equilibrium states.

A final remark addresses the question whether the alternative equilibrium states are indeed
accessible. If a mechanical system is undergoing a continuous process, such an alternative
equilibrium state can only be reached via an equilibrium path. If a bifurcation point has been
passed and the system is on a path of unstable equilibrium thereafter, it will continue on this
unstable path because other equilibrium states cannot be reached under dead loading condi-
tions. If a temporal discretization of the loading process is employed, i.e. if the loading pro-
gram is subdivided into a number of finite intervals, alternative equilibrium states can also be
reached via non-equilibrium paths, because we then essentially deal with equilibrium states
and not with equilibrium paths. In fact, we obtain a sequence of non-equilibrium states when
iterating to a converged solution. An example of reaching a new equilibrium state via a number
of non-converged states will be given at the end of this paper.

4. NUMERICAL APPROACH FOR POST-BIFURCATION AND POSTFAILURE BEHAVIOR

In numerical applications, the lowest eigenvalue will never become exactly zero because of
round-off errors. Rather, we monitor the sign of the eigenvalues of the tangent stifiness matrix
and when we encounter a negative eigenvalue while the load is rising, or when we compute
more than one negative eigenvalue while the load is descending, we conclude that we have
passed a bifurcation point.

Continuation on an alternative equilibrium branch can then be forced by adding a part of the
eigenmode %4, which belongs to the vanishing eigenvalue, to the incremental displacement
field of the fundamental path Aa” [8,12,24]

Az =Aa " +fBv, (41)

with B a scalar. The magnitude of § is fixed by second-order terms or by switch conditions for
elastoplasticity or for plastic-fracturing materials. The most simple way to determine 8 numer-
ically is to construct a trial displacement increment Aa such that it is orthogonal to the basic
path:

AaTAa =0 (42)
Substituting eq. (41) in this expression yields for Aa
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(Ax’)TAa’
v, {43)
(Aa*)Tw,
Eq. (43) fails when (Am*)Tw;=0, i.e., when the eigenmode is orthogonal to the basic path. A
simple remedy is to normalize Am such that [8,12],

An=Aa’-

(Auv)TmtzAuTM (44)
or to put
Aa’=VAaTAawv, (45)

in such cases.

In general, the bifurcation path will not be orthogonal to the fundamental path, but when we
add equilibrium iterations, the orthogonality condition (42) will maximize the possibility that
we converge to a bifurcation branch and not to the basic path, although this is not necessarily
the lowest bifurcation path when there emanate several equilibrium branches from the bifurca-
tion point. When we do not converge on the lowest bifurcation path, this will be revealed by
negative eigenvalues of the stiffness matrix of the bifurcated solution. The above described pro-
cedure can then be repeated until we ultimately arrive at the lowest bifurcation path.

The procedure described in the preceding is well suited for assessing post-bifurcation behavior.
Bifurcations however are rather rare in normal structures owing to imperfections, and even if a
bifurcation point exists, numerical round-off errors and spatial discretization usually transfer
the bifurcation point into a limit point unless we have a horogeneous stress field.This observa-
tion does not render the approach to bifurcation problems worthless as it provides a thorough
insight which is of importance for the associated limit problems, but it is obvious that numeri-
cal procedures must also be capable of locating limit points and tracing post-limit behavior.

In a nonlinear finite element analysis, the load is applied in a number of small increments (e.g.,
[3]). Within each load increment, equilibrium iterations are applied and the iterative improve-
ment 8a&; in iteration number i to the displacement increment A&, _, is given by

sa. =K.\ [pi s +0ug’

K, _, is the possibly updated stiffness matrix, Ay; is the value of the load increment which may
change from iteration to iteration and p,_, is defined by

(46)

Pior=hoq "~ f BT o;-dV (47)
In (47), the symbols g and 0;_; have been introduced for the value of the scalar load parame-
ter at the beginning of the current increment and the stress vector at iteration number i -1.

The essence of controlling the iterative solution procedure indirectly by displacements, is that
da,; is conceived to be composed of two contributions

Sa, =da/+Au; Sl (48)
with

da;=K | p,_, (49)
and

ba/'=K\ q" (50)

After calculating the displacement vectors 60.,—1 and Ja.,-”, Ae; is determined from some con-
straint equation on the displacement increments and Am,; is subsequently calculated from

Aa;=An, ,+da; (51)

Crisfield [15] for instance uses the norm of the incremental displacements as constraint
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equation

AalAa; —ALR (52)
where Al is the arc-length of the equilibrium path in the 7 -dimensional displacement space.
The drawback of this so-called spherical arc-length method is that it yields a quadratic equa-
tion for the load increment. To circumvent this problem, we may linearize eq. (52). yielding
[23]):

AalAa; =M7 (53)
This method, known as the updated normal path method, results in a linear equation for the
load increment. With the additional approximation [8,12]

6a;~2(Ax; —Az; o) (542
we obtain for Au;:
Aa/, daf
A= — W (55)

Both egs. (52) and (53) have been employed successfully within the realm of geometrically non-
linear problems, where snapping and buckling of thin shells can be traced quite elegantly.
Nevertheless, for materially nonlinear problems the method scmetimes fails, which may be
explained by considering that for materially nonlinear problems, failure or bifurcation modes
are often highly localized. Hence, only o few nodes confribute to the norm of displacement
increments, and failure is not sensed accurately by such a global norm. As straightforward
application of egs. {52) or (53) is not always successful, we may amend these constraint equa-
tions by applying weights to the different degrees of freedomn or omitting some of them from
the constraint equation. The constraint equation (53) then changes into

Auhu, =Al2 (56)
where Au,; contains only a limited number of the degrees of freedom of those of Aa;, and eq.
(55) changes in a similar fashion. The term "arc-length" control now no longer seems very
appropriate, and the term "indirect displacement control” is probably more suitable. The
disadvantage of modifying the constraint equation is that the constraint equation becomes
problem dependent. As a consequence, the method loses some of its generality and elegance.

5. EXAMPLES

We will now illustrate some of the procedures discussed in the preceding by a few examples and
we will begin with the simple case of an unreinforced bar loaded in pure tension. This example
has been used before by other researchers [18], but so much insight can be gained from it,
both in a theoretical and in a numerical sense, that we will again resort to it. The bar is
modeled with m elements and is composed of an elastic-softening material with an ultimate
strain &, at which the tensile strength has vanished completely. £, is assumed to be equal to
T times the strain at the tensile strength. A perfect bar would deform uniformly throughout
the loading process and the load-deflection curve is simply a copy of the imposed stress-strain
law. However, if one element has a slight imperfection, only this element will show loading while
the other elements will show unloading. Then, the imposed stress-strain law at a local level is
not reproduced. Instead, an average strain is calculated in the post-peak regime which is
smaller than the strain of the stress-strain law since the element which shows loading, will fol-
low the path A-B in Fig. 1, while the other elements will follow the path A-C. This implies that
when all elements have the same dimensions, we have for the average strain increment Af

Ao
& (57

Consequently, when we increase the number of elements while keeping the length of the bar
fixed, the average strain in the post-peak regime gradually becomes smaller and for m >7n the

AE=[-7-"—-1
m
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Fig. 1. Stress vs. average strain for an unreinforced bar,
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Fig. 2. Eigenmodes for two-elermnent bar just beyond the limit point.
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Fig. 3. Total displacements at zero load level.

average strain in the post-peak regime even becomes smaller than the strain at peak load. This
implies that for m >n, the load-deflection curve shows a snap-back [8,12,17,29,30]. Obviously,
"snap-back"” behavior cannot be anolyzed under direct displacement control, but only with
indirect displacement control. Yet, the possibility of this phenomenon has been ignored fre-
quently in the past, and many analyses have been terminated at such a point because of diver-
gence of the iterative procedure. A further parallel can be drawn with experiments which can
net be carried out properly under displacemeni control, e.g., with shear or other brittle
failures. The observed explosive failure is then simply the result of an attempt to traverse an
equilibrium path under improper static loading conditions.

A numerical simulation of this problem is shown in Figs. 2 and 3 for the case that the bar is
divided in two elements and that the length of the softening branch is equal to ten times the
strain at the tensile strength (m =2 and n.=10). In this case a perfect bar is loaded just beyond
the limit load, using indirect displacement control {eq. 56). If the solution is continued the solid
post-peak line of Fig. 1 is obtained. However, when we carry out an eigenvalue analysis of the
tangent stiffness matrix just beyond peak strength (Fig. 2) and perturb the fundamental solu-
tion using eq. (41), we obtain the localization of Fig. 3. Continuing the solution then results in
an ultimate average strain €=% ¢,,.

From the preceding discussion it will be clear that the response of an imperfect bar in the
post-failure regime will depend upon the number of elements and the degree of interpolation
within the elements. It has been attempted to control this mesh-dependence in the softening
regime using energy approaches [5,25,26,28,33]. Such approaches can only be partially suc-
cessful since the spread of the softening region is not known in advance. Consequently, the
observation that use of a local softening law may involve snap-back behavior on structural level
and to a strongly mesh-dependent and a non-unique post-peak response may hold even when
such an energy approach is adopted. This is exemplified by the beam of Figs. 4 and 5, which
exhibits a violent snap-back behavior in spite of the fact that the length of the softening branch
had been adapted to some structural size. Also, the mesh-dependence of the calculated failure
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Fig. 8. Incremental displacements for a biaxial test on a sand sample. The failure state shows a
strong mesh-dependence.

mode persists. This is demonstrated by the example of Fig. 8, which is a bifurcation analysis for
a (plane-strain) biaxal test on sand. We observe that the width of the shear band which
develops, is highly dependent on the fineness of the grid [8,9]. A possible solution to these basic
deficiencies might be the use of non-local constitutive laws in the softening regime [6,31].
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Addition of reinforcement not always improves the behavior described in the preceding. When
the reinforcement is densely distributed, we mostly obtain a rather ductiie response and we
seldom encounter numerical difficulties, but when we have a dorminant, concentrated reinforc-
ing bar, the presence of reinforcement only adds to the possibility that spurious alternative
equilibrium states and snap-back behavior occur [12,17]. We will demonstrate this by the sim-
ple tension-pull specimen of Fig. 7 [ 19]. The reinforcing bar is given by the line AB and a linear
bond-slip law is assumed between the concrete and the reinforcement. For the concrete, steel
and interface properties the reader is referred to Rots [27].

The loading is applied to point A (Fig. 7) in the form of a concentrated load and the ensuing
load-displacement diagram is given in Fig. 8. The present problem is well suited for demon-
strating that straightforward application of a norm of incremental displacements to control the
solution process often does not work effectively for localized failures. To this end we consider
the incremental displacement fields just prior to and just beyond the limit point (Figs. 9 and
10). Prior to the limit point, the elastic deformations of the bar are relatively so great, that
they dominate the norm of incremental displacements. Just beyond the peak, when the crack
near the center-line has localized, the incremental deformations of the reinforcing bar nearly
vanish {they even change sign, so that we again have a snap-back) and the concrete is the
prime contributor to the total norm of incremental displacements. However, because of the
relatively great magnitudes of the steel deformations just prior to the limit point, the arc-
length in the displacement space is not influenced significantly. In this case, the degrees of
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freedom belonging to the steel have therefore been omitted from the nerm of incremental dis-
placements for overcoming the limit point. For traversing the valley in the load-displacement
curve of Fig. B on the other hand, the solution process has been controlled by the displace-
ments of the steel, as then these displacements increase monotonically.

The present example is also well suited for assessing the gquestion whether an equilibrium state
can be reached via a non-equilibrium path. It is the Author’'s experience that this is often pos-
sible when we adopt direct displacement control and if there exists another equilibrium state
which is located '"not too far away" from the current state. Indeed, when we attempted to
analyze the present problem by prescribing the displacement of point A, we obtained a number
of non-converged states just after the limit point. This non-equilibrium path is indicated by the
dotted line in Fig. 8. However, after the crack had localized, we again obtained converged
equilibrium states (dashed line in Fig. 8), which indicated that we had arrived on a new equili-
brium path. This illustrates that reaching another part of the equilibrium path via a number of
non-equilibriurn states is sometimes possible, provided that there exists a new equilibrium
state which is "sufficiently close” to the previous equilibrium state. Here, the tension-pull
specimen contrasts with the example of Figs. 4 and 5, as in the latter case equilibrium could
not be restored using direct displacement control.

6. STRAIN-SOFTENING AND SPURIOUS ZERO-ENERGY MODES

A major problem which presently hampers finite element calculations of material models in
which use is made of strain-softening (like for instance crack models), is the fact that strain-
softening triggers spurious zero-energy modes. This has been recognized by Dodds et al. [18],
de Borst and Nauta {7] and Crisfield [17] for the case of underintegrated elernents, but Rots
and de Borst [29] have recently demonstrated that it may also happen for e.g., eight-noded ele-
ments with nine-point integration or four-noded elements with four-peint integration. In fact,
the analysis of the beam of Fig. 4 had to be terminated because of the occurrence of such a
zero-energy mode which was triggered by strain-softening. A converged solution could no
longer be obtained at the point where the load-displacement curve of Fig. 5 is terminated. An
eigenvalue analysis of the tangent stiffness matrix revealed two negative eigenvalues. The
eigenmode of Fig. 11 has a clear physical meaning, since it represents the localization which
has by then progressed through the depth of the beam. The eigenmode of Fig. 12 is due to
pathological behavior of one element at the top of the beam. It is emphasized that this behavior
occurred in spite of the fact that nine-point Gaussian quadrature had been used. Later
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Fig. 11. First eigenmode at residual load of the unreinforced beam of Fig. 4.

‘ 0.13F

Fig. 12. Second eigenmode at residual load of the unreinforced beam of Fig. 4.

investigations also revealed that groups of four elements displayed spurious zero-energy modes
when four-noded elements with four-point integration were employed [29].

7. CONCLUDING REMARKS

The essential features of the DIANA-crack model have been described. By dividing the total
strain rate rigorously into a concrete and a crack strain rate, and by subdividing these strain
rates again into a number of distinct contributions each of which is associated with a clearly
defined physical phenomenon, it is possible to simultaneously analyze non-crthogonal cracks,
creep, shrinkage, thermal dilatation and plasticity within a smeared context.

The incorporation of strain-softening models on integration point level may lead to unexpected
behavior on structural level. An example is snap-back behavior. This phenomenon cannot be
analyzed under direct displacement control, but only using indirect displacement control.
Another consequence of deployment of strain-softening models is the possibility that bifurca-
tions occur even under the assumption of small displacement gradients. Techniques have been
discussed which permit tracing snap-back and post-bifurcation behavior. Some examples have
been included to demonstrate that such techniques broaden the class of concrete structures
which can be analyzed numerically.

On the other hand, it is not justified to state that any concrete structure can now easily be
analyzed. A major problem which still hampers finite element analyses is the fact that strain-
softening triggers the formation of spurious zero-energy modes. Techniques to control such
modes in strain-softening materials must be developed before the limits of the class of prob-
lems which can be solved properly can be pushed further away.

Considering nonsymmetric stress-strain laws, we observe that little numerical work has been
done. This is partly due to the fact that only a few finite element codes have been adapted for
ncnsymmetric solvers. But even if a finite element code with a nonsymmetric solver is avail-
able to the analyst, he faces the problem that the issues of stability and uniqueness of solution
are much less clear-cut than for symmetric problems. This is particularly relevant when an
analysis diverges, since in such a case it is much more difficult to trace whether the divergence
is caused by failure or bifurcation phenomena in the model of the structure, or is simply
caused by e.g., a trivial programming error. Yet, as soon as frictional processes take place,
which is the case for concrete, stress-strain laws necessarily become nonsymmetric, which
calls for an enhanced research effort to develop numerical procedures for such models.
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