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SUMMARY
The paper firstly discusses the fundamental behaviour of RC-shells in the ultimate load range which is
characterized by a strong interaction of buckling and strength. It reviews current design procedures, few reported
structural failures as well as RC model tests and finite element formulations for geometrically and
materially nonlinear finite element analyses of RC-shells. Finally a brief description of one specific numerical
model is given. It is applied to the ultimate load and stability analyses of conically shaped cooling towers.

RÉSUMÉ
Le rapport traite du comportement fondamental des coques en béton armé dans le domaine de la charge de
rupture qui est caractérisé par l'interaction de la résistance moindre du matériau et du voilement. Il
présente la pratique de projet actuelle, quelques cas de dommage et des expériences à l'aide de modèles en
microbéton. Des calculs de coques en béton armé sur la base de la méthode des éléments finis sont
présentés, en tenant compte de la non-linéarité géométrique et matérielle. Finalement un modèle numérique
est décrit brièvement et appliqué aux calculs de charge de rupture et de stabilité des tours de réfrigération
de forme conique.

ZUSAMMENFASSUNG
Der Beitrag diskutiert zunächst das prinzipielle Verhalten von Stahlbetonschalen im Grenzlastbereich, der
durch kombiniertes Beul- und Materialversagen charakterisiert ist. Es wird ein Überblick gegeben über die
gegenwärtige Entwurfspraxis, einige Schadenfälle, Modellversuche aus Mikrobeton und finite
Elementformulierungen für geometrisch und materiell nichtlineare Berechnungen von Stahlbetonschalen. Schließlich

wird ein numerisches Modell kurz beschrieben und auf Traglast- und Stabilitätsberechnungen von
kegelförmigen Kühlturmschalen angewandt.
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1. INTRODUCTION: BUCKLING OR STRENGTH?

RC - shells are extremely thin structures with radius to thickness ratios from
300 to 800, in particular if they are compared to classical domes or even natural
egg shells with ratios up to 50 and 100, respectively. Therefore, it is obvious
that each designer immediately is concerned that buckling may be a dominant
phenomenon. However, most engineers have in mind the classical elastic stability
problems when they think of buckling where the failure is usually caused by
extreme symmetry in geometry, load, boundary conditions, stress state (uniform
membrane) etc. Typical examples are the diamond shaped buckling of axially loaded
cylinders or the snap - through behaviour of spherical shells under external
pressure. It is natural that problems associated with buckling like imperfection
sensitivity then have to be considered. This is the reason that for many RC -
shell structures elastic model tests have been carried out in order to investigate

the safety against buckling.
The question has to be raised whether this kind of buckling phenomenon can be
met with RC - shells. It is well-known that the material behaviour may have a

severe influence on stability, f.e. in the range of plastic buckling. The strong
interaction can already be seen in the simple formula for classical linear
buckling of shells with double curvature under external pressure:

Per,ideal c • E • t2^ • R2

The buckling load depends on the material stiffness (Young's modulus E), the
thickness t and the Gaussian curvature 1/Ri • R2. The factor c varies from one
shell to the other, it is 1.15 for spheres. Quality and nonlinear behaviour of
the concrete, creep and shrinkage, yielding of the reinforcement enter the
formula via the material property E. The effective thickness is influenced by
cracking, the percentage of the reinforcement and the number of layers (single
or double). Moreover, creep may drastically change the original shape (flattening).

All together these material effects may contribute more to the failure of
the structure than the purely geometrical phenomenon of buckling.
Even if most people call a collapse of a shell structure in analysis, test or
reality a buckling problem it is better to distinguish between the influence of
material and geometrical nonlinearities. Therefore, let us call the collapse of
a shell a buckling phenomenon when it is a finite deformation problem with little
influence of the material failure and a strength problem when it is just the
other way around (Fig. 1).

Figure 1 : Contribution to Collapse

Unfortunately it is often not known in advance in what range the real structure
has to be classified. However, certain parameters exist which qualitatively
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indicate the tendency to the one or the other kind of failure (Fig. 2). Many
practical cases are located in the intermediate range where both effects
influence each other.

symmetry in geometry asymmetric geometry
symmetry in load asymmetric load
global loading localized loading
perfect structure imperfections
smooth boundary cond. 1 nonuniform boundary cond.
no bending fy/Y/ / bending
pure membrane state V//// 1 tension/compression
compression tens ion/tens ion
no cracks cracks (temperature/shrinkage)

/ ^ ' '' / ' ' 1 1
1 i i

^//// ///W/W/y/W//7/////////ZV////7777777';,,,

Figure 2: Buckling versus strength

The purpose of this paper is to review the literature with respect to this topic,
to give some remarks to existing finite element models and first of all to call
attention to this problem.

2. BASIC NONLINEAR STRUCTURAL BEHAVIOUR OF RC - SHELLS

An excellent compilation of the current state of understanding of concrete shell
buckling is the ACI publication [1]. But the report also makes clear that
beyond the classical type of buckling a considerable lack of information exists.

2.1 Current Design Procedures

Most codes on concrete structures only briefly stress the importance of shell
buckling, enumerate several buckling load reducing effects and specify high
safety factor, e.g. 5, in order to indicate the uncertainty of parameters and
analysis (DIN 1045, ACI Standard 318). No details are given how the check
against buckling has to be made. An exception are the IASS Recommendations [2]
which are mostly based on the work of Dulacska [3]. The procedure contains five
steps reducing the linear elastic buckling load of the homogeneous uncracked
shell to the design load p (Fig. 3).

reduction due to

creep

deflection
and geometrical
imperfections

reinforcement and cracking
inelasticity of concrete
safety factor

u

Figure 3: Buckling load according to IASS Recommendation [2]

-,Un

pj.'rn (creep)

cr,reinf
plQSt
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The calculation which is essentially based on a local failure criterion does not
cover the realistic situation because it accumulates all effects neglecting their
different interactions. Despite the fact that it leads to a conservative design
the scatter of results may be very large depending on the size of imperfections
assumed. Reduction factors of less than 0.01 are possible. The Recommendations
also address the possibility of one middle layer of reinforcement, a case which
should not be used in practise due to unexpected local bending effects like
concentrated loading (wind gusts), temperature change etc.

The situation with concrete cooling towers - even though more extensively
investigated - is nearly the same [1], [4], [5]: independent design procedures
against buckling on one side and yielding on the other side determining the wall
thickness and the amount of reinforcement, respectively. The buckling analysis
is mostly based on linear stability analyses or elastic model tests using
reduction factors to account for imperfections, nonlinear behaviour, creep, cracking

etc. In addition, high safety factors, e.g. 5, compared to the regular values
of 1.75 for the yielding or the reinforcement, are introduced. In [6] it has
been demonstrated through nonlinear finite element analyses that this discrepancy

in safety factors is unrealistic since both effects strongly interact. A

factor of safety 2.8 against buckling is proposed.

Although the more empirical approach is not satisfactory from the scientific
point of view it has nearly always led to safe designs. A perfect example is the
Swiss engineer Isler who has built more than 1400 concrete shells without any
failure [7], [8].

2.2 Structural Failures
Very few failures of RC - shells have been reported (Table 1). Non of them can
be attributed to buckling in the real sense. In most cases poor design and/or

Hungary
[9], [10]

1954 EP 19 x 18 m near collapse after 2 years,
shell weakened by small
glass skylights

Ferrybridge,
GB

1965 cooling towers poor design (membrane theory,
working load design, one layer,
no ring reinforcement)

Virgin i a

[11]
1970 HP-gable shell

31 x 31 m
collapse after 7 years due to
creep

Ardeer,
GB

1973 cooling towers low circumference reinforcement,
vertical cracking due to thermal
gradients

Lati n

America
[12]

1975 EP 27 x 27 m collapse after 4 days, poor
concrete quality, significant
geometrical imperfections,
earthquake excitation

Port Gibson,
USA

1978 cooling towers damaged by toppling tower
crane due to tornado

Berlin
[13]

1980 HP not a shell design, partly
collapsed due to corrosion of
tendons

Table 1: Failures of RC - she!Is
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manufacturing can be made responsible, so that finally material failure caused
the damage. On the other side there are several examples where well designed
RC - shell structures withstood unexpected loadings, f.e. tornado (Port Gibson,
1978) or earthquake (Mexico, 1985).

2.3 Model Tests

The literature on small scale buckling tests of shells made of elastic material
or metal is immense. In contrast to this very little information exists on model
tests of RC - shells using microconcrete or mortar with and without reinforcement.

In Table 2 some documented experiments are classified with respect to their
kind of failure. This underlines the statements given in Fig. 2. If the structure
is thick the crushing strength is decisive. If certain cracking is possible, for
example due to boundary conditions, a combined buckling/material failure takes
place. The more cracking is excluded and the thin structure is in a uniform
compression state buckling becomes dominant. In this case the tangent modulus
approach for buckling can be applied [18]. In [20] the important influence of creep
on instability is stressed.

Schubiger
[14]

ellipsoid (R),
lateral load

628 * combined
buckling/strength

Bouma et al.
[15]

cylindrical
roof (R),
lateral load

100 material failure (bending),
small influence of
geometrical nonlinearity

Di Stefano
et al.
[16]

HP (R),
lateral load

a) shallow

b) deep

a) buckling with
material cracking

b) pure buckling

Haas et al.
[17]

cylinders (U),
axial
compression

50-120 material failure
(crushing)

Griggs
[18]

cylindrical
roof (R),
lateral load

238 combined
buckling/strength

spheres (R),
ext. pressure

340
V

buckling with some
* material influencecyl indrical

panel (R),
biaxial
compression

200

Müller et al.
[19]

spheres (R),
lateral load

a) 218 - 370

b) 303 perfect

a) material failure
(bending)

b) material failure
(comp, strength)

Vandepitte
et al.
[20]

spheres (U),
external
pressure

~ 350 a) combined
buckling/strength

b) creep buckling

Table 2: RC - model tests (U unreinforced, R reinforced, * r/t)
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2.4 Non!inear Analyses

Very few existing RC - shells have been investigated by a fully nonlinear analysis
taking into account geometrical as well as material nonlinearties. The reason

is that numerical models which are to some extend reliable came up only recently
(see Chapter 3.1). Here few selected examples are mentioned. In the work of

Scordelis and Chan [11], [21] an HP - gable shell is investigated which is
patterned from a real structure. The collapse analysis indicates a strong
interaction between both nonlinearities; it also points out the severe influence of
creep on the ultimate load.

Significant work on the analysis of cooling towers under dead and wind load has
been reported [4] but, as already mentioned in Chapter 2.1, most is based on
elastic bifurcation and geometrical nonlinear analyses. For example a buckling
criterion, the so-called buckling stress state (BSS), in conjunction with an
equivalent axisymmetric stress approach is proposed in [22]. It has already been
pointed out by Mang [23] that this assumption leads to the wrong conclusion that
the structure would fail by buckling due to biaxial compression. Through elaborate

materially and geometrically nonlinear analyses of two built cooling towers
the authors in [24], [25] demonstrated that the loss of structural integrity is
caused by cracking of the concrete on the windward side with some subsequent
redistributions of stresses in the postcracking range. It is rather a material
failure with little influence of large deformation effects than a buckling problem.

This has been confirmed for the same cooling tower in [26] where in addition
the noticeable influence of tension stiffening has been investigated.

For conical type of cooling towers see Chapter 3.2.

3. FINITE ELEMENT MODELS FOR RC - SHELLS

3.1 Review

The brief review is restricted to large deformation finite element models of
general RC-shells. It is not considered to be complete. Either flat, curved
shell or degenerated solid elements are applied. Due to the size and complexity
of the problem neither a microscopic nor a macroscopic modelling is used. It is
rather an intermediate type of idealization. That means that neither discrete
cracks, strain localization or individual rebars on one side nor material laws
defined in stress resultants like moment curvature relationships on the other
side are introduced. To the author's knowledge all models use a smeared crack,
layered approach. In each individual concrete layer a 2D stress state is assumed,
in most cases referring to Kupfer's 2D failure envelope. The majority (Table 3)
applies a nonlinear elastic, orthotropic material model introducing the
equivalent uniaxial strain concept by Darwin and Pecknold. The fact that this semi-
empirical formulation violates invariance requirements seems to be of little
consequence since the principal stress direction does not rotate very much.
Nearly all models assume a tension stiffening effect, either referred to the
concrete or to the steel and use a fixed or variable shear retention factor after
cracking. The steel layers always have uniaxial properties based on a bi- or
multilinear stress - strain curve with hardening and elastic unloading. Large
deformation effects are covered in the conventional way as in elastic analysis.

The assumption of a 2D stress state is certainly justified for most shell problems

in which the load is mainly carried by membrane action. But it has to be
noted that certain limitations exist: All stress states which deviate from the
2D situation like concentrated loading or localized support conditions cannot be
properly analysed. For such local problems the design anyway requires special
care, f.e. stirup reinforcement. In this case it is necessary to increase locally
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the strength reflecting the existence of confined concrete. Otherwise premature
failure occurs. Another possiblity is to resort to a 3D concrete model.

ref. material
model

tension
stiffening

extras

Ghoneim/Ghali [33] NE C prestress, creep,
shrinkage

Arnesen/Bergan [28] EC combined tensile
strain/stress,
criterion f. cracking

Floegl/Mang [24],[29] NE S

(bond slip)
influence of stress
gradient

Chan/Scordelis [21], [11] NE S creep, shrinkage
Kompfner/Ramm [30], [31] NE C -

Figueiras/Owen [32] P

(Kupfer)
C w. & w/o hardening

Mi 1 ford/
Schnobrich

[26],[27] NE S rotated crack model

Cervera/Abdel
Rahman/Hinton

[34] P

(v.Mises)
C rotated crack model

Table 3: Large deformation RC - shell models
(NE: nonlinear elastic model, EC: endochronic model,
P: plasticity model, C/S: concrete/steel referred)

3.2 Present Model

The present model is described in detail in [30], see also [31]. The main
characteristics of the formulation and the concrete model which is essentially an
extended Darwin/Pecknold model are summarized in Tables 4 and 5.

formulation arbitrarily large deformation, material mode (T.L.),
incremental/iterati ve

iteration scheme standard, modified, quasi Newton,
load-, displacement-, arc-length-control, line search

shell element isoparametric displacement model, degenerated solid,
linear, quadratic or cubic interpolation (serendipity,
Lagrange), full or reduced integration (Gauss),
layered model (Simpson's integration)

material model concrete: short time, nonlinear elastic, orthotropic,
equivalent uniaxial strain concept (Darwin/
Pecknold), tension stiffening

steel: smeared layers with uniaxial properties,
multilinear, elasto-plastic, isotropic
hardening

Table 4: RC - shell element formulation [30], [31]
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The failure envelope renders the limit stresses aic for each stress ratio a.
Together with the limit strain eic taken from test results it defines the
corresponding stress - equivalent uniaxial strain curve, from which the material
stiffness Ei is taken. In the finite element formulation nonproportional loading
in each individual point cannot be avoided. In this case the stress - strain
curve for that point varies. Ei is found according to the actual stress instead
of the actual uniaxial strain; in the descending portion Ei is set to zero.

Tab!e 5: Concrete material model

Cracking follows the usual maximum principal stress criterion. Tension stiffening
is included in a straightforward way. In the locally defined constitutive

matrix the zero stress/strain condition is enforced. The inplane and transverse
shear moduli are automatically adjusted according to the incremental orthotropic
material tensor.
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4. NUMERICAL EXAMPLES

In [30] ultimate load analyses of cylindrical roof shell and an HP-gable shell
are described applying this model.

Recently in two power plants near Stuttgart two so-called hybrid (dry/wet) cooling

towers have been built (Figures 5 and 7). Both towers with different size
consist of a conventional (frame/ring wall base structure with many openings and
a shell shaped as a conical frustum, the latter being investigated in the
following study, for details see [35]. The shell thickness is 16 cm (30 cm) for
tower I (II); only in the lower part 3.06 m (4.50 m) it is increased to 30 cm
(50 cm). In each production cycle one quarter section with a height of 1.45 m

is poured. The extreme loading is dead load, wind - taken constant along the
meridian - and concentrated loads at the free edge due to scaffolding on 90° with
added life load and fresh concrete. Preliminary studies have shown:

* The structural response is completely different from that of conventional
hyperbolic cooling towers.

* The critical period is the phase before the upper ring is built, leading to
a free edge boundary condition at the critical height hcr.

* The concentrated loading at the top could be localized at the free edge in
order to simplify the input data.

* Linear elastic buckling analyses restricted to axisymmetric modes lead to
unrealistic high buckling loads.

* The results are almost not influenced by the boundary conditions of the lower
edge (clamped or hinged).

The material properties of both towers are given in Figure 4.

ft 3000

eut 0 002

fy 420000

-- fL 25 000

E o 3-10

V =0 2

concrete

Figure 4: Material properties [kN/m2]

hoop
reinf

$ 10 mm

0 002 0 005
steel

114 mm

20 20cm
tower I

ï 5 iTc m

tower II

4.1 Cooling Tower I (Altbach)

The base structure of the small tower (Fig. 5) could be considered as very stiff.
Therefore, clamped boundary conditions at the lower edge are introduced. As a
conservative approach uniform thickness and axisymmetric loading is assumed.
Linear elastic buckling analyses lead to a critical load factor À 15.7 with
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40 5m

50 m

12 0

scaffolding

i 1 21/1*9=4 0

loading [ kN ; m ]

Figure 5: Cooling tower I (Altbach)

a buckling mode of 8 waves in hoop direction concentrated near the free edge.
The corresponding stresses are far beyond the compressive strength of the
concrete. A geometrically and materially nonlinear axisymmetric analysis of the
perfect shell resulted in a failure load g + 5.4 (w + c). The load factor is
reduced to 5.0 if tensile strength and ultimate strain are reduced (ft 10 kN/m2 ;

£ut ft/Eo)- Next nonsymmetric geometrical imperfections corresponding to
the buckling wave pattern (n 8) with a maximum amplitude of ± 5 cm are
introduced. One half wave sector is modelled, assuming a reduced Young's modulus
E0 2.8 • 107 kN/m2 for the upper 1.4 m and tension cut-off (fc 10 kN/m2 ; e^t 0).
These extreme conditions lower the load factor to 4.3 (Fig. 6). Cracking is
concentrated to the upper ring portion.

Figure 6: Load displacement diagram

4.2 Cooling Tower II (Neckarwestheim)

In contrast to tower I the base structure of cooling tower II (Fig. 7) is very
flexible. Despite its size and dimensions it is a relatively slender contruction
in which many precast elements are incorporated. Therefore, the shell itself has



E. RAMM 155

77 m

£8,5°
23,2m hcr =21,62 m

w1-18

117m
loading [ kN m ]

187

Figure 7: Cooling tower II (Neckarwestheim)

a lower ring beam (4.00 x 0.75 m; As= 482 cm2 but already under dead 1 oad the
beam is partly cracked (state II) so that a reduced membrane and bending stiffness
is introduced for the linear buckling analyses (EIVEI11 4.4; EAI/EA11 8.5).
Assuming that the ring/shell structure is hinged and radially as well as tangen-
tially unrestrained - i.e. neglecting the stiffness of the base structure - a
linear buckling analysis with axisymmetric loading leads to bifurcation loads
6.17 (g + w + c) or g + 13.50 (w + c) with five buckling waves in hoop direction.
In this case a nonlinear study of a half wave sector of the imperfect shell - as
for tower I - did not reflect the real situation since unsymmetric loading of wind
and scaffolding causes considerable inextensional deformations (ovalization) due
to the flexible base. Therefore, one half of the shell was modelled by a
nonuniform mesh 15 x 32 eight-node shell elements and 32 quadratic beam elements
for the edge beam which are compatible to the shell elements. Again the bending
stiffness of the edge beam is reduced to that of state II; the membrane stiffness

is restricted to the steel reinforcement alone. Regarding the different age
of concrete the Young's modulus of the upper portion (2.9 m) of the shell is
lowered by 20 percent. Now the base structure is simulated by radial and tangential

springs at each node. The spring stiffnesses of kr 25675 kN/m and kt
8190 kN/m taken from a preliminary linear study of the entire structure under
unfavourable conditions have been found essential for the safety of the structure.

The concentrated load c of the scaffolding over a 90°-sector was located
at the free edge on the windward side. Wind load and suction in hoop direction
are defined in the following way:

w (cD • 1.01 + 0.53) kN/m2

with
1 - 2.1

-1.1 + 0.6
-0.5

[sin (© - 90/71)]n
[sin (90 - 71) • 90/22]

0

71°
90,4C

â 101 < 71°
s lei < 90,4C
S I0I < 180°

n 2.395

The wind load is assumed constant along the meridian. Geometrical imperfections
correspoding to the first buckling mode with a maximum horizontal amplitude of
± 10 cm were superimposed. For this a linear buckling analysis of the structure
under nonsymmetric loading assuming a fixed lower boundary has been performed.
Few circumferential waves are concentrated at the windward compression zone. In
Figure 8 two materially nonlinear analyses with and without large deformation
effects are compared indicating the considerable influence of the geometrical
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max
20 40

displ free edge
[cm ;

lower ring
free edge

X 2 64

displacemenf pattern (top view]

T (j yg :» rl Hicnlaron I I wnnAI U I C IIIUUC

nonlinearity. The ultimate load is g + 2.70 (w + c). The ovalization of the
entire shell can be seen in the failure mode (Fig. 8). A supplementary study with
imperfections of ± 15 cm and a different loading sequence rendered an ultimate
load of 1.45 g + 1.45 w + 2.51 c.

According to Figures 1 and 2 tower I could be classified as a primary strength
problem whereas due to the flexible base structure tower II is located in the
combined buckling/strength range.

5. CONCLUSION

The present study has shown:

* The knowledge of the fundamental response of RC-shells in the ultimate
load range is still limited. Therefore, the question of reliable safety
factors against failure is not yet answered.

* The current design procedures with a more or less empirical coupling of
buckling with material failure is unsatisfactory.

* Elastic buckling analyses or tests are of limited value for RC-shells.
They are necessary but not sufficient.

* The current development of numerical oriented RC material models including
large deformation effects are a promising alternative to the current
procedure.

* High quality of analysis based on conservative assumptions in loading, im¬
perfections, boundary conditions, material properties allows to reduce
safety factors against failure, e.g. to 2.5. However, these analyses are
still expensive and need a lot of experience.

Further research is needed

* to gain further information on the basic nonlinear structural behaviour
of RC - shells and

* to further improve existing or to develop new nonlinear material formula¬
tions.
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SUMMARY
Recent advances in smeared crack modeling and computational techniques for concrete structures are re-
viewed. Special attention is given to the issue of stability and uniqueness in numerical computations of
strain-softening concrete. Techniques for overcoming bifurcation and limit points are discussed whereby special

attention is given to cases with highly localized failure modes. The techniques are applied to some
reinforced and unreinforced concrete structures.

RÉSUMÉ
Les progrès récents dans la modélisation des fissures homogénéisées et les techniques de calcul à
l'ordinateur pour les structures en béton sont passés en revue. Une attention particulière est portée au cas de la
stabilité et de l'unicité, dans de nombreux calculs, du béton se plastifiant sous contrainte. Des techniques
pour résoudre les problèmes de bifurcation et de points limites sont discutées et une attention particulière
est portée aux cas de modes de rupture hautement localisés. Les techniques sont appliquées à certaines
structures en béton armé et non-armé.

ZUSAMMENFASSUNG
In diesem Beitrag wird eine Übersicht über neue Entwicklungen der ausgeglichenen Rissbildung und
Rechenverfahren für Betonkonstruktionen gegeben. Hauptaugenmerk wird gerichtet auf Stabilität und Eindeutigkeit

in numerischen Berechnungen von entfestigendem Beton. Lösungsmethoden zur Vermeidung von Bi-
furkation und Grenzwerte werden diskutiert für höchstbelastete Bereiche. Die Methoden werden auf einige
bewehrte und unbewehrte Betonkonstruktionen angewandt.
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1. INTRODUCTION

Concrete is a very complicated material because of its heterogeneity, the presence of
reinforcement, the low tensile strength, the change in properties when it matures, and so on. It is
therefore not surprising that predictions of the mechanical behavior of concrete structures
still suffer from a lack of reliability. Nevertheless, the discrepancy between analytical results
and the real behavior is often greater than necessary when considering the current level of
sophistication of testing procedures, constitutive models and computational techniques.
Significant, and in some areas seemingly insurmountable difficulties persist, but progress has
definitely been made in analyzing concrete structures with aid of finite elements.

It is the purpose of the present paper to give an overview of some recent achievements of the
DIANA-group in constitutive modeling and the application of computational techniques to
concrete structures. The review is by no means intended to be exhaustive, and important issues
like for instance time-dependent behavior [11,13] or bond-slip behavior [27] will not be treated.
The main topics which will be considered, are smeared crack modeling and issues regarding
stability and uniqueness of computations for concrete structures. It is recognized that the
crack model, which we will henceforth refer to as the DIANA-crack model, has been treated
extensively in previous publications [7,8,10,13,26,29], but because crack formation plays such a
pivotal role in the behavior of concrete structures, there may be some justification in briefly
reviewing the main concepts of it before discussing issues regarding stability and uniqueness.

2. MODELING OF SMEARED CRACKING

The fundamental feature of the employed smeared crack model is a decomposition of the total
strain rate into a concrete strain rate cC0 and into a crack strain rate kCT (e.g., also [4,22]):

è=èc0 +ècr (1)

The concrete strain rate itself may also be composed of several contributions e.g., an elastic
part and a viscous part. Similarly, the crack strain rate kCT may be decomposed into several
contributions:

tcr =èiT+èzr+ (2)

where è" is the strain rate of a primary crack, k£r is the strain rate of a secondary crack and
so on. Combining eqs. (l) and (2), we obtain

è=éeo+èr+ér+ (3)

The relation between the strain rate of a particular crack (either primary or secondary) and
the stress rate is most conveniently defined in the coordinate system which is aligned with the
crack. This necessitates a transformation between the crack strain rate k^ of crack n m the
global x,y ,z-coordinates and a crack strain rate é£T which is expressed in local coordinates.
Restricting the treatment to a two-dimensional configuration (which is not essential), we
observe that a crack only has a normal strain rate and a shear strain rate y£r, so that

<T=«T 7n1r (4)

where the superscript T denotes a transpose. The relation between k" and k" reads

*?=**•? (5)

with
COS2!?,, —SlXlt?„ COST?„

AL sin2ii„ sim?n cosi?n

2sim?ncosi3n cos2i3n-sm2i5,

(6)

where is the inclination angle of the normal of crack n with the i-axis. Substitution of eq.
(5) in eq. (2) gives for multiple cracks
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i<r=N1i7+N2.f + (y)

For the derivation of the stress-strain law of the system of cracks and concrete, it is
convenient to assemble all the crack strain rates which are expressed in their own local coordinate
system in a vector è CT,

'=0*1er -ery i
•CT -CT
' 2 72 )3

When we also introduce the matrix N,

N \N, NZ

we observe that we can rewrite eq. (7) as

èCT=NèCT

In a similar way, we can define a vector sn

«71=0*1 ii)r
with s„ the normal and tn the shear stress rate in crack n of the integration point. The vector
s which assembles all stress rates with respect to their own local coordinate system then
reads:

)r

(8)

(9)

(10)

(11)

î=(Sj t j 52 *2- (12)

and the relation between the stress rate in the global coordinate system à and the stress vector

s can be derived to be

s =Nrà (13)

To complete the system of equations, we need a constitutive model for the intact concrete and
a stress-strain relation for the smeared cracks. For the concrete between the cracks we
assume a relationship which has the following structure

b=DC0 bc (14)

where the matrix Dco contains the instantaneous moduli of the concrete. The formalism of eq.
(14) can be extended to deal with phenomena like thermal dilatation, shrinkage and creep
[11,13], but this will not be pursued in the present paper. In a similar way, we can define a
relation between the crack strain rate è^ of crack n and the stress rate sn in that crack. In
this paper, we will assume a relation which formally reads:

Sn=Dnén (I5)
with DnT a 2*2 matrix. For the derivation of the stress-strain relation of the cracked concrete,
it is again convenient to assemble all the matrices D[r in a matrix DCT,

DCT

D\T 0

0 D\

so that the relation between s and è reads

s=DcrèCT

(16)

(17)

Using eqs. (l), (10), (13), (14) and (17) we can obtain the compliance relation for the cracked
concrete:

e C" +NCctNt (18)

with Cc°=(Dc°)~i and Ccr (I>er)-1 the compliance matrices of the concrete and the cracks
respectively. With aid of the Sherman-Morrison-Woodbury formula we can also obtain the
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stiffness relation

Dc° -Dco N[DCT + NrDCD N]~iNTDc0 (19)

The success of this multiple crack model is contingent upon a proper formulation of the constitutive

matrix

Dct-'yn
D\\ D\5

D% D%>
(20)

for the smeared-out cracks Fortunately, in many concrete structures the crack strains are so
small that coupling effects between the normal crack strain and the shear stress, or between
the shear crack strain and the normal stress can be disregarded, so that we may set the off-
diagonal terms in eq (20) equal to zero (D^—0 and D^—O) If, such as m crack-dilatancy
models [4,32] or m jointed rock masses [2], Dand D\\ can not be assumed to vanish, we face
significant additional difficulties, since the values for 2?]g and D^i generally differ considerably

This implies that D£T becomes nonsymmetric, which also destroys the major symmetry of
eq (19). Apart from the fact, that this leads to significantly larger CPU-times, it also has
consequences for the stability of the model, as will be briefly discussed in the sequel of this paper
The tangent modulus D\ j represents the relation between the normal crack strain rate and the
normal stress rate In practice, Z?jj is negative as we normally have a descending relation
between sn and e£T However, the evaluation of DY\ from test data entails a complication, as
recent research [5,21] indicates that a straightforward translation from experimental data in a
value for leads to results which are not objective with regard to mesh refinement To
overcome this problem, it has been proposed to consider the fracture energy Gj [5,21] as the
fundamental parameter which governs crack propagation It is beginning to emerge gradually that
this so-called "tension-softening" model is not free from deficiencies This is particularly so
when we allow for the possibility of multiple cracks Suppose that a primary crack has been
created with a DYi determined from the fracture energy Gj If upon formation of a secondary
crack the same crack stress-strain relation is adopted for the second crack, the fracture
energy will be consumed twice If both cracks are orthogonal to each other, this is not unrealistic,

but for any other inclination angle it seems incorrect Hence, the concept of a fracture
energy as outlined above does not seem to suffice for multiple crack formation Indeed, a solution

m which the fracture energy is distributed over both cracks is not correct as the fracture
energy Gj is not a scalar, but a vector although this does not seem to have been recogmzed
widely
The shear modulus D&> of the crack is usually assigned a constant value This leads to the
anomaly that for very large crack strains we continue to compute an increase of the shear
stresses transferred across a crack, which may result in shear stresses of more than 15

N/mm2 A shear-softening model, quite similar to the tension-softening model, has recently
been proposed to remedy this anomaly [29] Deployment of this model resulted in a major
improvement for some unreinforced shear beams, especially in the post-peak regime

It is finally noted that the structure of eq (19) is quite similar to the structure of an elastoplas-
tic stiffness tensor at a yield vertex Indeed, any constitutive law in which a decomposition in
the sense of eq (l) is assumed, will lead to an equation with a similar structure This holds true
for a yield vertex in which two yield surfaces are active, but for instance also for the intersection

of a yield surface and a fracture surface [13,14]

3. STABUJTY AND UNIQUENESS OF DISCRETE MECHANICAL SYSTEMS

A body is said to be in a state of stable equilibrium if the response on a vanishingly small
disturbance also remains vanishingly small [20] This condition is usually replaced by the condition

that
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U-fcTùdV (21)
v

is positive for all kinematically admissible strain rate fields e, while the equilibrium is unstable
under dead loading if U becomes negative for at least one kinematically admissible strain rate
field. Although it has not been proved rigorously for all classes of constitutive models that the
criterion that the second-order work (eq 21) is positive, is indeed equivalent to the abovemen-
tioned definition, it seems to be a reasonable hypothesis

For an incrementally-linear constitutive model,

a-Dk (22)

with D the matrix which contains the stiffness moduli, eq (21) can be replaced by

U feTDk dV (23)
V

Since we have, for the skew-symmetric part of D, e'I'[D—D7]k 0, we can write eq (23) also as

U=LftT[D+DT}e dV (24)
V

Consequently, stability under dead loading is no longer assured if
fkT[D+DT]e dV= 0 (25)
V

for at least one kinematically admissible c

To investigate the implications of the stability requirement U>0 for discrete mechanical
systems such as anse m finite element applications, we divide the continuum in an arbitrary
number of finite elements, and we interpolate the continuous velocity field v as follows

v =Hà (26)

in which the matrix H contains the interpolation polynomials and a is a vector which contains
the nodal displacements (e g., [3]) The relation between the velocity field v and the strain rate
k can formally be written as

k-Lv (27)

with L a matrix which contains differential operators The relation between the nodal velocities

and the strain rate then becomes

k=Bà (28)

where the notation B — L H has been introduced

With the notations and the definitions of the preceding, we can rewrite the stability condition
(23) as

fàTBTDBàdV>0 (29)
V

for all kinematically admissible velocity fields d With the notation

K-fBTD BdV (30)
v

for the tangent stiffness matrix of the underlying system, we obtain that the stability of the
equilibrium of a discrete mechanical system becomes critical if

àTKà =0 (31)

for at least one kinematically admissible vector d. This condition is satisfied if
det(/if)=0 (32)

which according to Vieta's rule.
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det(Ä")= Il At (33)
1=1

with Aj the eigenvalues of K, implies that at least one eigenvalue vanishes. For symmetric
systems, eq. (32) is not only a sufficient, but also a necessary condition for eq. (31) to hold.
However, for nonsymmetric matrices K eq. (31) may also be satisfied when d is orthogonal to Ad.
Hence, the vanishing of det(A) or alternatively, the vanishing of at least one eigenvalue of A
implies that the equilibrium is in a critical state, but for nonsymmetric systems this critical
state can also be attained when all eigenvalues of the tangent stiffness matrix of the underlying
solid are non-zero. Put differently, the positiveness of the eigenvalues of A is a necessary, but
not a sufficient condition for stability of a mechanical system which is governed by a nonsymmetric

matrix A.

Let us next consider eq. (25), i.e., the case that we have removed the skew-symmetric part
from the functioned of eq. (23). Then, we obtain that the equilibrium of a discrete mechanical
system becomes neutrally stable if

àT K+Kt\d=0 (34)

for at least one kinematically admissible velocity field. Since K+K7 is symmetric, this condition

is satisfied if and only if
det(A+Ar) 0 (35)

or equivalently, U vanishes if and only if an eigenvalue of K+KT vanishes. Consequently, the
positiveness of the eigenvalues of the matrix A+A^ is a sufficient and necessary condition
for the stability of a discrete mechanical system which is governed by a nonsymmetric tangent
stiffness matrix A. For the limiting case of a symmetric stiffness matrix we recover the classical

notion that we have stability when all eigenvalues of the tangent stiffness matrix A of the
underlying solid are positive.

With regard to umqueness of solution, we observe that incremental equilibrium must be
complied with at each instant in the loading process

fBTodV=fiq' (36)
V

In it, p, is the loading rate, and g
* is a normalized load vector. Suppose that there would be

another stress rate distribution, which would result from the loading rate jl and which would
also satisfy incremental equilibrium. The difference hif of both stress rate distributions would
then satisfy the condition that

fBTàodV=0 (37)

With eqs. (22), (28) and (30), we can rewrite eq. (37) as

AAd=0 (38)

with Ad the difference between both velocity fields A non-trivial solution may then exists if
and only if

det(A)=0 (39)

or equivalently, if at least one eigenvalue of A vanishes. If a non-trivial solution indeed exists,
such a point is commonly named a bifurcation point. Several equilibrium branches emanate
from such a point. There is yet another possibility that det(A) vanishes. If the load reaches a
maximum, il vanishes, and eq (36) reduces to

Ad=0 (40)

so that for a non-zero vector d we also find that eq. (39) must be fulfilled. The latter possibility
is called a limit point.
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In passing from eq (37) to eq (30) it has been tacitly assumed that both strain rates are
related to stress rates by the same matrix of (tangential) moduli D For elastic-plastic or
elastic-fracturing solids, where we have different behavior in loading and unloading, this is not
necessary. Strictly speaking, we have to investigate all possible combinations of loading and
unloading for such a multi-valued constitutive law in order to determine whether eq (37) holds
true for some Aà

For nonsymmetric stress-strain laws, the situation is even more complicated, since
det{K+KT) may vanish prior to the vanishing of det(AT) Hence, loss of stability may precede
loss of uniqueness of solution for solids with a nonsymmetric stress-strain relation

Although there seems no convenient procedure available to determine whether a solution is
unique or not, the presence of negative eigenvalues of the tangent stiffness matrix K
conversely clearly indicates the existence of alternative equilibrium branches or the fact that we
have passed a limit point In the case that we have passed a limit point, which implies that the
load is descending, we find one negative eigenvalue which is associated with the descending
branch The other possibility is that the negative eigenvalues belong to alternative equilibrium
states so that we have passed a bifurcation point Again, two possibilities arise, since the basic
path after bifurcation may be ascending or descending If it is still ascending, all the, say m
negative eigenvalues can be associated with m alternative equilibrium states which can in principle

be reached via a suitable combination of the incremental displacement vector of the
basic path and the corresponding eigenvector, as detailed in the next section If the basic path
is descending after passing a bifurcation point, one negative eigenvalue is associated with the
descending basic path, while the remaining negative eigenvalues correspond tom-1 alternative
equilibrium states

A final remark addresses the question whether the alternative equilibrium states are indeed
accessible If a mechanical system is undergoing a continuous process, such an alternative
equilibrium state can only be reached via an equilibrium path If a bifurcation point has been
passed and the system is on a path of unstable equilibrium thereafter, it will continue on this
unstable path because other equilibrium states cannot be reached under dead loading conditions

If a temporal discretization of the loading process is employed, i.e if the loading
program is subdivided into a number of finite intervals, alternative equilibrium states can also be
reached via non-equilibrium paths, because we then essentially deal with equilibrium states
and not with equilibrium paths In fact, we obtain a sequence of non-equilibrium states when
iterating to a converged solution An example of reaching a new equilibrium state via a number
of non-converged states will be given at the end of this paper

4. NUMERICAL APPROACH FOR POST-BIFURCATION AND POSTEAILUKE BEHAVIOR

In numerical applications, the lowest eigenvalue will never become exactly zero because of
round-off errors Rather, we monitor the sign of the eigenvalues of the tangent stiffness matrix
and when we encounter a negative eigenvalue while the load is rising, or when we compute
more than one negative eigenvalue while the load is descending, we conclude that we have
passed a bifurcation point
Continuation on an alternative equilibrium branch can then be forced by adding a part of the
eigenmode Vj, which belongs to the vanishing eigenvalue, to the incremental displacement
field of the fundamental path Aa' [8,12,24]

with ß a scalar The magnitude of ß is fixed by second-order terms or by switch conditions for
elastoplasticity or for plastic-fracturing materials The most simple way to determine ß numerically

is to construct a trial displacement increment Aa such that it is orthogonal to the basic
path

Aa=Aa '+ßv j (41)

AarAa*=0 (42)

Substituting eq (41) m this expression yields for Aa
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<43)
(Aa )JVj

Eq. (43) fails when (Ao*)^t»i=0, i.e., when the eigenmode is orthogonal to the basic path. A

simple remedy is to normalize Aa such that [8,12],

(An,)TAn'=An'rAn (44)

or to put
An*=ySAnTAav1 (45)

in such cases.

In general, the bifurcation path will not be orthogonal to the fundamental path, but when we
add equilibrium iterations, the orthogonality condition (42) will maximize the possibility that
we converge to a bifurcation branch and not to the basic path, although this is not necessarily
the lowest bifurcation path when there emanate several equilibrium branches from the bifurcation

point. When we do not converge on the lowest bifurcation path, this will be revealed by
negative eigenvalues of the stiffness matrix of the bifurcated solution. The above described
procedure can then be repeated until we ultimately arrive at the lowest bifurcation path.

The procedure described in the preceding is well suited for assessing post-bifurcation behavior.
Bifurcations however are rather rare in normal structures owing to imperfections, and even if a

bifurcation point exists, numerical round-off errors and spatial discretization usually transfer
the bifurcation point into a limit point unless we have a homogeneous stress field.This observation

does not render the approach to bifurcation problems worthless as it provides a thorough
insight which is of importance for the associated limit problems, but it is obvious that numerical

procedures must also be capable of locating limit points and tracing post-limit behavior.

In a nonlinear finite element analysis, the load is applied in a number of small increments (e.g.,
[3]). Within each load increment, equilibrium iterations are applied and the iterative improvement

An, in iteration number i to the displacement increment Aoj-i is given by

-r-i.L (46)

is the possibly updated stiffness matrix, A/z, is the value of the load increment which may
change from iteration to iteration andpt_] is defined by

P»-i=Mo9*-/BTol_idV (47)
V

In (47), the symbols and j have been introduced for the value of the scalar load parameter
at the beginning of the current increment and the stress vector at iteration number i—1.

The essence of controlling the iterative solution procedure indirectly by displacements, is that
is conceived to be composed of two contributions

Aoj da/+Aptj da/7 (48)

ôn[-K~_\ pt_i (49)

with

and

dol^KT^q' (50)

After calculating the displacement vectors da/ and da/7, A/ij is determined from some
constraint equation on the displacement increments and Ani is subsequently calculated from

Ani=Anl_1+6nl (51)

Crisfleld [15] for instance uses the norm of the incremental displacements as constraint
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equation

hajAal=àlz (52)

where AL is the arc-length of the equilibrium path in the n -dimensional displacement space.
The drawback of this so-called spherical arc-length method is that it yields a quadratic equation

for the load increment. To circumvent this problem, we may linearize eq. (52), yielding
[23]:

AoIrAal_j=Af2 (53)

This method, known as the updated normal path method, results in a linear equation for the
load increment. With the additional approximation [8,12]

Äalw2(Aal—Aoj-2) (54)

we obtain for hfj^ :

AOt-l Jo/
Ao/Lj 6*îlA»_.// (^5)

Both eqs. (52) and (53) have been employed successfully within the realm of geometrically
nonlinear problems, where snapping and buckling of thin shells can be traced quite elegantly.
Nevertheless, for materially nonlinear problems the method sometimes fails, which may be
explained by considering that for materially nonlinear problems, failure or bifurcation modes
are often highly localized. Hence, only a few nodes contribute to the norm, of displacement
increments, and failure is not sensed accurately by such a global norm. As straightforward
application of eqs. (52) or (53) is not always successful, we may amend these constraint equations

by applying weights to the different degrees of freedom or omitting some of them from
the constraint equation. The constraint equation (53) then changes into

Atil:rAtij_1=A£2 (56)

where Au, contains only a limited number of the degrees of freedom of those of Attj, and eq.
(55) changes in a similar fashion. The term "arc-length" control now no longer seems very
appropriate, and the term "indirect displacement control" is probably more suitable. The
disadvantage of modifying the constraint equation is that the constraint equation becomes
problem dependent. As a consequence, the method loses some of its generality and elegance.

5. EXAMPLES

We will now illustrate some of the procedures discussed in the preceding by a few examples and
we will begin with the simple case of an unreinforced bar loaded in pure tension. This example
has been used before by other researchers [16], but so much insight can be gained from it,
both in a theoretical and in a numerical sense, that we will again resort to it. The bar is
modeled with m elements and is composed of an elastic-softening material with an ultimate
streun Eu at which the tensile strength has vanished completely. cu is assumed to be equal to
n times the strain at the tensile strength. A perfect bar would deform uniformly throughout
the loading process and the load-deflection curve is simply a copy of the imposed stress-strain
law. However, if one element has a slight imperfection, only this element will show loading while
the other elements will show unloading. Then, the imposed stress-strain law at a local level is
not reproduced. Instead, an average strain is calculated in the post-peak regime which is
smaller than the strain of the stress-strain law since the element which shows loading, will follow

the path A-B in Fig. 1, while the other elements will follow the path A-C. This implies that
when all elements have the same dimensions, we have for the average strain increment Ae

MsHT- <57)

Consequently, when we increase the number of elements while keeping the length of the bar
fixed, the average streun in the post-peak regime gradually becomes smeiller and for m >n the
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elocal

Fig. 1. Stress vs. average strain for an unremforced bar.

Fie. 2. Eigenmodes for two-element bar just beyond the limit point.
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Fig. 3. Total displacements at zero load level.

average strain in the post-peak regime even becomes smaller than the strain at peak load. This
implies that for m>n, the load-deflection curve shows a snap-back [8,12,17,29,30]. Obviously,
"snap-back" behavior cannot be analyzed, under direct displacement control, but only wvth
indirect displacement control Yet, the possibility of this phenomenon has been ignored
frequently m the past, and many analyses have been terminated at such a point because of
divergence of the iterative procedure. A further parallel can be drawn with experiments which can
not be carried out properly under displacement control, e.g., with shear or other brittle
failures. The observed explosive failure is then simply the result of an attempt to traverse ein

equilibrium path under improper static loading conditions.

A numerical simulation of this problem is shown in Figs. 2 and 3 for the case that the bar is
divided in two elements and that the length of the softening branch is equal to ten times the
strain at the tensile strength (771=2 and n 10). In this case a perfect bar is loaded just beyond
the limit load, using indirect displacement control (eq. 56). If the solution is continued the solid
post-peak line of Fig. 1 is obtained. However, when we carry out an eigenvalue analysis of the
tangent stiffness matrix just beyond peak strength (Fig. 2) and perturb the fundamental solution

using eq. (41), we obtain the localization of Fig. 3. Continuing the solution then results in
an ultimate average strain £=}£ eu.

From the preceding discussion it will be clear that the response of an imperfect bar in the
post-failure regime will depend upon the number of elements and the degree of interpolation
within the elements. It has been attempted to control this mesh-dependence in the softening
regime using energy approaches [5,25,26,28,33]. Such approaches can only be partially
successful since the spread of the softening region is not known in advance. Consequently, the
observation that use of a local softening law may involve snap-back behavior on structural level
and to a strongly mesh-dependent and a non-unique post-peak response may hold even when
such an energy approach is adopted. This is exemplified by the beam of Figs. 4 and 5, which
exhibits a violent snap-back behavior in spite of the fact that the length of the softening branch
had been adapted to some structural size. Also, the mesh-dependence of the calculated failure
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Fig. 5. Load-deflection curve for point C.

Fig. 6. Incremental displacements for a biaxial test on a sand sample. The failure state shows a
strong mesh-dependence.

mode persists. This is demonstrated by the example of Fig. 6, which is a bifurcation analysis for
a (plane-strain) biaxal test on sand. We observe that the width of the shear band which
develops, is highly dependent on the fineness of the grid [8,9]. A possible solution to these basic
deficiencies might be the use of non-local constitutive laws in the softening regime [6,31],
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Fig. 7. Element mesh and dimensions for tension-pull specimen [19].
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Fig. 8. Load-deflection curve for point A.

Addition of reinforcement not always improves the behavior described in the preceding. When
the reinforcement is densely distributed, we mostly obtain a rather ductile response and we
seldom encounter numerical difficulties, but when we have a dominant, concentrated reinforcing

bar, the presence of reinforcement only adds to the possibility that spurious alternative
equilibrium states and snap-back behavior occur [12,17]. We will demonstrate this by the simple

tension-pull specimen of Fig. 7 [19]. The reinforcing bar is given by the line AB and a linear
bond-slip law is assumed between the concrete and the reinforcement. For the concrete, steel
and interface properties the reader is referred to Rots [27].

The loading is applied to point A (Fig. 7) in the form of a concentrated load and the ensuing
load-displacement diagram is given in Fig. 8. The present problem is well suited for
demonstrating that straightforward application of a norm of incremental displacements to control the
solution process often does not work effectively for localized failures. To this end we consider
the incremental displacement fields just prior to and just beyond the limit point (Figs. 9 and
10). Prior to the limit point, the elastic deformations of the bar are relatively so great, that
they dominate the norm of incremental displacements. Just beyond the peak, when the crack
near the center-line has localized, the incremental deformations of the reinforcing bar nearly
vanish (they even change sign, so that we again have a snap-back) and the concrete is the
prime contributor to the total norm of incremental displacements. However, because of the
relatively great magnitudes of the steel deformations just prior to the limit point, the arc-
length in the displacement space is not influenced significantly. In this case, the degrees of
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Fig. 10. Incremental displacements just beyond the limit point.

freedom belonging to the steel have therefore been omitted from the norm of incremental
displacements for overcoming the limit point. For traversing the valley in the load-displacement
curve of Fig. B on the other hand, the solution process has been controlled by the displacements

of the steel, as then these displacements increase monotonically.

The present example is also well suited for assessing the question whether an equilibrium state
can be reached via a non-equilibrium path. It is the Author's experience that this is often
possible when we adopt direct displacement control and if there exists another equilibrium state
which is located "not too far away" from the current state. Indeed, when we attempted to
analyze the present problem by prescribing the displacement of point A, we obtained a number
of non-converged states just after the limit point. This non-equilibrium path is indicated by the
dotted line in Fig. 8. However, after the crack had localized, we again obtained converged
equilibrium states (dashed line in Fig. 8), which indicated that we had arrived on a new equilibrium

path. This illustrates that reaching another part of the equilibrium path via a number of
non-equilibrium states is sometimes possible, provided that there exists a new equilibrium
state which is "sufficiently close" to the previous equilibrium state. Here, the tension-pull
specimen contrasts with the example of Figs. 4 and 5, as in the latter case equilibrium could
not be restored using direct displacement control.

6. STRAIN-SOFTENING AND SPURIOUS ZERO-ENKRGY MODES

A major problem which presently hampers finite element calculations of material models in
which use is made of strain-softening (like for instance crack models), is the fact that strain-
softening triggers spurious zero-energy modes. This has been recognized by Dodds et al. [18],
de Borst and Nauta [7] and Crisfield [17] for the case of underintegrated elements, but Rots
and de Borst [29] have recently demonstrated that it may also happen for e.g., eight-noded
elements with nine-point integration or four-noded elements with four-point integration. In fact,
the analysis of the beam of Fig. 4 had to be terminated because of the occurrence of such a

zero-energy mode which was triggered by strain-softening. A converged solution could no
longer be obtained at the point where the load-displacement curve of Fig. 5 is terminated. An

eigenvalue analysis of the tangent stiffness matrix revealed two negative eigenvalues. The
eigenmode of Fig. 11 has a clear physical meaning, since it represents the localization which
has by then progressed through the depth of the beam. The eigenmode of Fig. 12 is due to
pathological behavior of one element at the top of the beam. It is emphasized that this behavior
occurred in spite of the fact that nine-point Gaussian quadrature had been used. Later
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Fig 11 First eigenmode at residual load of the unreinforced beam of Fig 4

^ "" ~ /
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Fip 12 Second eigenmode at residual load of the unreinforced beam of Fig 4

investigations also revealed that groups of four elements displayed spurious zero-energy modes
when four-noded elements with four-point integration were employed [29]

7. CONCLUDING REMARKS

The essential features of the DIANA-crack model have been described By dividing the total
strain rate rigorously into a concrete and a crack strain rate, and by subdividing these strain
rates again into a number of distinct contributions each of which is associated with a clearly
defined physical phenomenon, it is possible to simultaneously analyze non-orthogonal cracks,
creep, shrinkage, thermal dilatation and plasticity within a smeared context

The incorporation of strain-softening models on integration point level may lead to unexpected
behavior on structural level An example is snap-back behavior This phenomenon cannot be
analyzed under direct displacement control, but only using indirect displacement control
Another consequence of deployment of strain-softening models is the possibility that bifurcations

occur even under the assumption of small displacement gradients Techniques have been
discussed which permit tracing snap-back and post-bifurcation behavior Some examples have
been included to demonstrate that such techniques broaden the class of concrete structures
which can be analyzed numerically
On the other hand, it is not justified to state that any concrete structure can now easily be
analyzed A major problem which still hampers finite element analyses is the fact that stram-
softening triggers the formation of spurious zero-energy modes Techniques to control such
modes m strain-softening materials must be developed before the limits of the class of problems

which can be solved properly can be pushed further away

Considering nonsymmetric stress-strain laws, we observe that little numerical work has been
done This is partly due to the fact that only a few finite element codes have been adapted for
nonsymmetric solvers But even if a finite element code with a nonsymmetric solver is available

to the analyst, he faces the problem that the issues of stability and uniqueness of solution
are much less clear-cut than for symmetric problems This is particularly relevant when an
analysis diverges, since in such a case it is much more difficult to trace whether the divergence
is caused by failure or bifurcation phenomena m the model of the structure, or is simply
caused by e g a trivial programming error Yet, as soon as fnctional processes take place,
which is the case for concrete, stress-strain laws necessarily become nonsymmetric, which
calls for an enhanced research effort to develop numerical procedures for such models
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SUMMARY
The paper applies different concrete models to the finite element analysis of simple reinforced-concrete
panels subject to monotonically increasing states of uniform stress. The panels involve: a) a hypothetical
model designed to test the limit-loads when idealised material properties are assumed and b) Vecchio and
Collins' experimental panels. The different 'concrete models' involve: 1) fixed orthogonal-cracks, 2)
'swinging cracks' in which the directions of principal stress and principal strain are assumed to coincide, 3) a
modification to the previous model whereby the stress in one swinging direction is influenced by the strain in
the swinging direction, 4) simple plasticity-models involving both flow and deformation theory which
assume no-tension and a 'square yield-criterion'.

Michael A. CRISFIELD
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England
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RÉSUMÉ
La contribution applique différents modèles de béton pour l'analyse par éléments finis de panneaux
simples en béton armé soumis à des contraintes uniformes croissant de façon monotonique. Les panneaux
sont définis dans un cas par un modèle théorique analysant les charges limites pour des matériaux idéaux;
dans l'autre cas, il s'agit des panneaux expérimentaux de Vecchio et Collins. Les différents modèles de béton

prennent en considération les fissures fixes orthogonales; les fissures mouvantes dans lesquelles la
direction des contraintes principales et des déformations principales sont les mêmes par hypothèse; une
modification du modèle précédent dans lequel la contrainte dans une direction mouvante est influencée
par la déformation dans une autre direction; enfin les modèles plastiques simple basés sur la théorie
d'écoulement et de déformation, en considérant qu'il n'y a pas de tension et qu'il y a un critère d'écoulement.

ZUSAMMENFASSUNG
Der Beitrag verwendet verschiedene Werkstoffmodelle für Beton bei der Anwendung auf statisch belastete
Scheiben. Die Scheiben betreffen einen hypothetischen Fall und die Experimente von Vecchio/Collins. Die
Werkstoffmodelle sind: festgelegte orthonogale Risse, Risse in der Richtung der Hauptspannungen bzw. -

Dehnungen, Interaktion zwischen Spannung und Dehnung in Rissrichtung und schliesslich ein einfaches
Plastizitätsmodell.
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1. INTRODUCTION

Most current finite element programs adopt the fixed-orthogonal crack model [1]
to treat the cracking of concrete. In this approach, the direction of cracking
is governed by the direction of the first principal tensile stress that exceeds
the cracking stress. The major drawback of this model involves the development
of principal tensile stresses greater than the cracking stress at angles that
differ from those of the original two fixed-orthogonal directions. This
deficiency arises when the straining is "non-proportional". Even for monotonie,
proportional loading, such non-proportional straining is often experienced at
the local. Gauss-point level as the adjacent stresses and stiffnesses change.
Consequently, the fixed-crack model can give solutions that are far too stiff
and collapse loads that are significantly too high [2-4].

Various attempts have been made to allow for non-orthogonal cracks [5-6]. (They
are surprisingly few. Non-orthogonal cracks are hardly mentioned in the ASCE

review [1]). Of these formulations, the authors considered de Borst's model
[5],in which the effect of cracking and plasticity are superimposed, to be most
hopeful. However, in attempting to implement this model, the authors
encountered significant numerical difficulties when "state changes" occurred
within an increment. Difficulties are also associated with discontinuities
involving the "threshold angle" [5] beyond which the second non-orthogonal crack
is activated.

For these reasons, the authors have, for the time-being, reverted to a simple
swinging-crack model [2,4] in which the directions of principal stress and
principal strain are assumed to coincide. These models can be criticised [7]
for being "un-physical" in that the properties originally relating to a crack,
or series of cracks, in one direction are assumed to rotate and relate to a new
direction. However, the direction of the principal strain can be considered as
relating to the currently-most-active crack for which the properties are
influenced by previous adjacent cracks.

Much previous work on reinforced concrete has employed limit-analysis and
plasticity with the square yield-criterion [8,9], The authors have therefore
introduced such a yield-criterion into a finite element computer program and
have established a close relationship with the simple swinging-crack model.
Finally, the basic swinging-crack model has been improved by incorporating the
ideas of Vecchio and Collins [10] to degrade the compressive strength as a
function of the tensile strain in the orthogonal direction.

2. THE FIXED-CRACK MODEL

Once cracking has occurred, the fixed-crack model is based on the incremental
stiffness relationship:
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Crack

Fig. 1 1 —2 and x—y coordinate system Fig. 2 Concrete softening (tension stiffening)

where c cos0 and s sin(0) and 0 (Fig. 1) is fixed as the direction of the
principal stress (a^) at first cracking. The terms and E ^ in the matrix
E.,„ of (2) are the slopes of the uniaxial stress-strain curves. ImmediatelyJtl2
af ter cracking, E^^ will be negative to allow for the softening (or
tension-stiffening) in tension (Fig. 2). When an incremental step moves from an
uncracked to a cracked state, the strain ratio r is computed whereby the old
stresses, a are augmented by rEAe such that the resulting stresses :

a a + rEAe
r o (3)

have a principal tensile stress that just reaches the cracking strength.
Assuming no plasticity prior to cracking, the matrix E in (4) is the elastic
isotropic modular matrix. The remaining strain step (l-r)Ae is applied using
equation (2).

3. THE SWINGING-CRACK MODEL

The simplest swinging-crack model assumes that
strains coincide and that:

the principal stresses and

axy

oX
o
y

T(0)T

T
xy L

T'(0) T'W1®^ .(4)

where T'(0) contains the first two columns of the matrix T(0) given in (1) with
0 relating to the direction of the continuously varying principal strain.
Equation (4) can be differentiated to give:
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The and g^— terms in (5) are zero if,as here, (4) is
-2 1

adopted for the total stress-strain relationships. They are included in (5) in
order to allow for extensions in the next section. The special form of (5)
involving a no-tension material with zero Poisson's ratio and an elastic
compressive response was derived by Guptal et al [4]. The tangent modular
matrix in (5) follows directly from equation (4) and does not involve the
shear-retention factor, ß, that is used in (2) for the fixed-crack model.

4. A SIMPLE PLASTICITY MODEL

The square yield criterion of Fig. 3(a) has often been used for "limit-load
plasticity computations" [8,9] involving reinforced concrete. In its basic
form, no tension is allowed and a perfectly plastic response is assumed in
compression (Fig. 3(b)) once the compressive strength (say the cylinder
strength, f^) is reached. Limit-load calculations also consider the elastic
strains to be negligible in comparison to the plastic strains but this
assumption will not be adopted here. From Fig. 3(a), the yield functions are
given by:

f c^(9)^(0) (^(0) - r )(a2(0) - r) 0 (6)

The principal stresses c^(0) and o^(Q) can be related to a using standard

transformations and equations (6) become:

a a - tx y xy
(aV V f ')(ac'v y f') - tc' xy

0 CO

(a) Square yield criterion (b) Idealised stress-strain curve

Fig. 3 Yield criterion and stress-strain relationship for plasticity model
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If we consider a deformation theory with Poisson's ratio as zero, application of
normality to (7) leads to:

ffx E[ex ~ X<ay - <fc»]

ay E[£y - X(ax - {r})] (8)

Txy ~~ 2^*"xy + 2XTxy^

where X is a "plastic-strain multiplier". Depending on the particular part of
the yield surface on which the stresses lie, the {f^} term may or may not be

included. Equations (8) can be used to show that:

i 2t
tan29 ^ (9)£ - £ a - a v 'x y x y

and hence, as with the previous swinging-crack model, the principal stresses and
principal strains coincide. Following this observation, it can be shown that,
if both formulations adopt the stress/strain curves of Fig. 3(b), solutions
obtained with the swinging-crack equations (4) will coincide with those obtained
from the plasticity equations (6)-(8). The authors* computer program adopts an
incremental flow-rule so that the a a r terms on the left-hand-side of (8)x y xy v '
and the £^, terms on the right-hand-side of (8) are replaced by Acr^,
and Aex, respectively. In these circumstances, the directions of the

principal stresses and principal strains will only coincide when "proportional
straining" has been applied. Consequently, there is no longer a direct
relationship with the swinging-crack model. Solutions using deformation rather
than flow theory can be obtained numerically by applying the complete load in a
single step.

5.0 THE MODIFIED SWINGING-CRACK MODEL

Numerical results have shown that the basic swinging-crack formulation (Section
3.0) leads to overestimates of the strength of panels failing by
shear/compression. This finding is consistent with the relationship that has
been demonstrated between the basic swinging-crack model and simple
plasticity-theory. For, it is well established that an "effectiveness factor"
[9] is required to reduce the compressive strengths when applying the latter
theory to the limit-analysis of beams failing in shear [9].
The previous swinging-crack model involves no Poisson or biaxial effects.
Milford and Schnobrich [3] have introduced these effects into a swinging-crack
formulation by adopting the orthotropic stress-strain relationships of Liu et al
[11] and a "failure criterion" relating closely to the experimental results of
Kupfer et al [12]. For the present we will ignore any enhanced strength in
biaxial compression but are concerned to allow for the reduced compressive
strength under tension/compression. To this end, we could have followed Milford
and Schnobrick and used failure criteria, involving stresses. that are related
to the experimental results of Kupfer et al. However, as the concrete softens,
the tensile strain will reach e in Fig. 2 and the orthogonal tensile stress
will be zero. Hence no strength degradation will be introduced. Consequently,
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we have followed Vecchio and Collins [10] in adopting a degradation involving
the orthogonal tensile strain rather than the orthogonal tensile stress.

The strength degradations have been incorporated into the swinging-crack model
by modifying the simple relationship of (4) to:

a T*(0)xy ' (10)

Following from their experimental results on a series of reinforced concrete
panels [10], Vecchio and Collins modified the standard compressive parabola to
take the form:

-2 f;[2H -*(?) ] «"2-rI1 (fc2 - fe2p>"

{2e0 " Ê2p)
-•(H)

depending on whether the compressive strain is less or greater than the

strain e„ e /p at which the peak stress f' /u occurs. The term e in (11) is2po c o K '
the strain corresponding under uniaxial conditions to f^. The "reduction
factor" 1/p caused by the orthogonal tensile strains, is given by:

p 0.85 +0.27e^/e2 (12)

These formulae have been incorporated into a modified swinging-crack model and
da^ ScTg

the derivatives =—, — have been used in the tangent stiffness of (5).
1 2

da^ do£the terms have been neglected since they introducede„However,
~c2 "W1

non-symmetry. In order to make valid comparisons with the fixed and simple
swinging-crack models, the first part of eqn. (11) with p 1 has been adopted
in these models for the stress/strain relationship in compression.

6.0 IDEALISED PANELS

Gupta and Akbar [4] analysed a set of panels of unit dimensions, subject to
uniform stress states involving various combinations of N ,N and N (Fig.x y xy v

4(a)). The latter were proportionally increased until failure occurred by
yielding of both sets of reinforcement. The computations assumed that the
concrete had no tensile strength and behaved elastically in compression while
the steel was assumed to act in an elastic/ perfectly-plastic manner.

The non-linear finite element program has been used to analyse one of Gupta and
Akbar's panels (Case 4 of [4]). The adopted properties and loadings were:

Percentage of steel, px 4.232, 0.768:

v 0, E 20,000 N/mm
c 200,000 N/mm

N N 2.5A N/mm, N 5.OA N/mm.x y xy

a 500 N/mm
ys
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(a) Panel of unit dimensions (b) Finite element configuration

Fig. 4 Idealised panel

Swinging-crack model
Fixed-A Initial step to just cracked "I

O Initial step 0.1 / model
+ Initial step 0.98 ß 0.25
X Plasticity model

0 0.1 0.2 0.3

x-Displ. at Node 4 (Fig. 4b), mm

Fig. 5 Load/Deflection relationship
for idealised model

0 0.1 0.2 0.3

x-Displ. at Node 4 (Fig. 4b), mm

Fig. 6 Influence of shear retention
factor, ß

where X is the loading parameter that is unity for the "exact collapse load" [4]
obtained from equilibrium and the assumption of no-tension in the concrete.
This no-tension condition was approximated by providing a very small tensile
strength. In order to produce the simplest possible idealisation and yet use a
standard non-linear finite element program, the panel was analysed using a
single element with a single Gauss point. The two "mechanisms" were removed via
constraint equations.

Fig. 5 plots the loading parameter, X against the x displacement at node 4 (Fig.
4(b)). It can be seen that both the swinging-crack and plasticity models give
the correct collapse load and very similar load/deflection relationships. When
the plasticity solutions were obtained in single steps, thus simulating
deformation theory, the resulting solutions coincided with the swinging-crack
results. For these models, the angle 0 (Fig. 1) of the principal tensile stress
was 75° when the limit-load was reached. The solutions that were obtained with
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the fixed-crack model depended heavily on the initial step-sizes (Fig. 5). For
example, when a very small first step was applied, the finite element model
provided a crack orthogonal to the principal tensile stress at 0 (Fig. 1)

46.7°. This angle is very close to the angle of the maximum principal stress
before cracking. In total contrast, when one single-step was applied almost to
the limit-load (using the arc-length method [13]), the fixed-crack model gave a

crack orthogonal to 0 75° and a solution that lay on the load/deflection curve
given by the swinging-crack model. This occurred because, in the limit as the
ratio, r, to give first cracking (eqn. (3)) tends to zero, the fixed-crack model
(see Section 2) gives:

T(0)'
-yy

"0

Ee2(0)

/3Gtt12(0)

But 0 is given by the principal tensile stress direction of r^eXy or'
equivalently, of e

xy
Hence, Tj2 0 and (13) coincides with (4) which governs

the swinging-crack model.

All the fixed-crack solutions obtained in Fig. 5 involved a shear-retention
factor, ß, of 0.25. Fig. 6. illustrates the effect of varying this factor. It
can be seen that, although this parameter affects the load/deflection response,
the final collapse load does not depend on ß.

7.0 THE PANELS OF VEOCHIO AND COLLINS

Numerical analyses have been carried out on five of the thirty panels tested by
Vecchio and Collins [10]. These five were chosen with a view to producing a
range of failure modes. The adopted compressive stress/strain laws have already
been discussed (Section 5). In tension, we normally introduce a simple
softening relationship of the form illustrated in Fig. 2. For the current
problems, this softening relates to the "tension stiffening" [1,14] which
compensates for the inadequacy of the mesh and modelling to capture the shear
transfer from the steel to the concrete. Vecchio and Collins have plotted the
experimental relationship between the principal tensile stresses and principal
tensile strains. From these plots, we have derived a simple relationship of the
form of Fig. 2 with e 0.004. This strain is approximately twice the yieldtm
strain of the reinforcement.

For the finite element analyses, the panels were idealised using a similar
procedure to that described in Section 6 for the "idealised panel". The
following models were adopted:

F-CT: the fixed crack model (Section 2) with tensile strength and
tension-stiffening and the parabolic compressive stress-strain
relationship given by the first part of (11) with p 1. The
shear-retention factor, ß, of (2) is set to 0.25

F-CNT: The fixed-crack model (Section 2) with no tensile strength and a
stress/strain relationship as in Fig. 3(b) with an E value of
0.75f'/e and a maximum stress of 0.975f'CO c

S-CT: As F-CT but using the swinging-crack model of Section 3
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S-CNT: As F-CNT but using the swinging-crack model of Section 3
MS-CT As S-CT but using the modified swinging-crack model of Section 5 with

compressive stress-strain relationsips as in (11)
MS-CNT As MS-CT but with no tensile strength
PNT: The plasticity model of Section 4 with no-tension and the idealised

compressive stress-strain relationship of model F-CNT

For each analysis, the recorded collapse "loads" are specified (see Table) by
2

means of the maximum shear stress (N/mm applied to the panel. The ratio of
N :N :N is given in the Table,x y xy

2Table: Computed and experimental collapse "loads" fN/mm 1 for the panels of
Vecchio and Collins

PV11 PV19 PV22 PV25 PV27

N :N :N
x y xy

pa /pax ysx y ysy
angles

0:0:1
1.37

45°-49.5°

0:0:1
3.83

45°-63°

0:0:1
1.28

45°-48.5°

0.69:0.69:1
1.0

.ro ._o45 -45

0:0:1
1.0

45°-45°

Experimental 3.56(Y2) 3.95(S/C+Y1) 6.07(S/C) 9.12(S/C) 6.35(S/C)

F-CT
3.84(Y1)
before

3.63(Y2)
5.12(Y2) 7.29(S/C+Y2) 9.72(S/C) 7.89(Y2)

F-CNT 3.61(Y2) 4.67(Y2) 7.27(Y2) 9.28(S/C) 7.89(Y2)

S-CT
3.78(Y1)
before

3.59(Y2)
4.18(Y2) 7.24(Y2) 9.72(S/C) 7.89(Y2)

S-CNT 3.59(Y2) 4.18(Y2) 7.24(Y2) 9.28(S/C) 7.89(Y2)

MS-CT
3.69(Y1)
before

3.59(Y2)
3.40(S/C+Y1) 5.71(S/C) 7.65(S/C) 5.96(S/C)

MS-CNT 3.59(Y2) 3.39(S/C+Y1) 5.69(S/C) 7.15(S/C) 5.95(S/C)

PNT 3.59(Y2) 4.18(Y2) 7.24(Y2) 9.28(S/C) 7.89(Y2)

S/C shear/compression failure in concrete
S/C + Y1 shear/compression failure in concrete + yielding of one set of steel
Y1 failure by yielding of one set of steel
Y2 failure by yielding of both sets of steel

In producing these results, an arc-length solution procedure [13] was adopted
and hence the limit-loads could be well established without any failure in the
iterative solution technique. Also, local limit-loads could be overcome. This
is apparent from the numerical results given in the Table for panel PV11 which
was the only one to fail exclusively by steel yielding. These local
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limit-points could have been removed by reducing the tension-stiffening.

Of all the methods tested, only the modified S-C models (MS-CT and MS-CNT)
consistently gave the same collapse modes as those observed in the experiments.
These models also gave good or conservative predictions for the collapse
strength. The more basic swinging-crack models (S-CT and S-CNT) overestimated
the collapse load by about twenty per cent for two of the panels (PV22 and
PV27). The fixed-crack models were equally bad in these instances and
additionally gave an overestimate of thirty per cent for panel PV19 in which,
because the ratio pa /pa was high, there was a significant change in the

x ysx y ysy
angle of the principal strains.

For every panel, the simple plasticity-model, PNT, gave collapse loads that, as
anticipated, coincided with those given by the simple S-C model with no-tension
(S-CNT) although, for PV19, in which a significant "swing" occurred, there was
some difference in the computed load/deflection" response. However, as
predicted, these differences were eliminated when single large-steps were used
for the model PNT.

Milford and Schnobrich [3] rejected the use of Vecchio and Collin's
strain-related compressive strength degradations because "predicting compression
related failures is very sensitive to the tension-stiffening". However, the
present results indicate that even the use of a no-tension model in conjunction
with the "degraded compression curves" gives reasonable, safe solutions.

8. CONCLUSIONS

The following tentative conclusions have been derived from the numerical
tests that have been described. More tests will be required to substantiate
these findings.
1. When the straining is non-proportional, the fixed-crack model may give

excessively high collapse loads because the crack directions are totally
governed by the early straining. However, in some circumstances, the
introduction of large step-sizes will reduce the stiffness so that the
solutions tend towards those of the swinging-crack model.

2 For steel-dominated ductile failures, the computed load/deflection
response, but not the final collapse load, will depend on the
shear-retention factor, ß, if the fixed-crack model is adopted.

3. If deformation-theory is combined with plastic approach involving the
square yield-criterion, the results will coincide with those obtained from
an equivalent swinging-crack model. If flow-theory is adopted, the results
will often be very similar.

4. A tangent stiffness matrix that is consistent with the swinging-crack model
does not require the provision of a shear-retention factor, ß.

5. The simple swinging-crack model may overestimate the strength and
incorrectly assesses the failure modes of panels failing due to
shear/compression.

6. This deficiency can be overcome by providing a compressive stress-strain
relationsip, similar to that proposed by Vecchio and Collins [10], whereby
the compressive strength is reduced by the presence of orthogonal tensile
strains (not stresses). Unfortunately this leads to a non-symmetric
tangent stiffness matrix that must be symmetrically approximated if
efficient solutions are to be obtained. It is probable that an equivalent
plasticity-model would involve a non-associative flow-rule.

6. Depending on the choice of tension-stiffening, local limit-points may well
be encountered and it is essential to use a numerical solution procedure
that will handle these phenomena.
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7. In the absence of a simple, but effective fixed-crack model that allows for
multiple and non-orthogonal cracks, the modified swinging-crack model
appears to offer many advantages. Much further theoretical and
experimental work is required on the development of effective stress/strain
relationships in both tension and compression. These will need to be
functions of both the mesh size and the vicinity and nature of the
reinforcement.

9. ACKNOWLEDGEMENTS

The work descibed in this paper forms part of the programme of the Transport and
Road Research Laboratory and is published by permission of the Director.

Crown copyright. Any views expressed in this paper/article are not necessarily
those of the Department of Transport. Extracts from the text may be reproduced
except for commercial purposes, provided the source is acknowledged.

10.REFERENCES

1. ASCE, Finite element analysis of renforced concrete: state-of-the-art
report, Struct. Div., Committee on Cone. & Masonry Structs. ASCE, New
York, 1982.

2. COPE, R.J. RAO, P.V., CLARK, L. A. & NORRIS, P., Modelling of reinforced
concrete behaviour for finite element analysis of bridge slabs, in:
Numerical Methods for Nonlinear Problems, ed. C. Taylor et al, Pineridge
Press, Swansea, Vol. 1, 1980, pp.457-470.

3. MILFORD, R.V., & SCHNOBRICH, Nonlinear behaviour of reinforced concrete
cooling towers, Report ISSN: 0069-4274, University of Illinois, May 1984.

4. GUPTA, A.K. & AKBAR, A. Cracking in reinforced concrete analysis, J.of
Struct. Div., ASCE, 110, 1984, pp.1735-1746

5. DE BORST, R. & NAUTA, P. Non-orthogonal cracks in a smeared finite element
model, Engineering Computations, 2, 1985, pp.35-46

6. 0NATE, E, OLIVER, J. & BUGEDA, G. Finite element analysis of the response
of concrete dams subjected to internal loads, Finite Element Methods for
Nonlinear Problems, ed. P.G. Bergan et al., Springer-Verlag, Berlin, 1985,
pp. 653-672.

7. BAZANT, Z.P., Comment on orthotropic models for concrete and geomaterials,
J. of Eng. Mech. Div., ASCE, 109, 1983, pp.849-865.

8. NEILS0N, M.P., Yield conditions for reinforced concrete shells in the
membrane state, Non-classical Shell Problems, Proc. IASS Symp.
North-Holland, Amsterdam, 1963, pp.1030-1040.

9. MARTI, P., Plastic analysis of reinforced concrete shear walls,
Introductory Report of IABSE Colloq. on Plasticity in Concrete, Zurich,
1979, pp.51-69.

10. VECCHIO, F. & COLLINS, M.P. The response of reinforced concrete to
in-plane shear and normal stresses, ISBN 0-7727-7029-8, Pub. No. 82-03,
University of Toronto, 1982.

11. LIU, T.C.Y., NILSON, A.H. & SLATE, F.O., Biaxial stress-strain relations
for concrete, J. Struct. Div., ASCE, 98, 1972, pp.1025-1034.

12. KUPFER, H. & GERSTLE, K.N., Behaviour of concrete under biaxial stresses,
J. Engng. Mech. Div., ASCE, 99, 1973, pp.852-866.

13. CRISFIELD, M.A. A fast incremental/iterative solution procedure that
handles snap-through. Comp. & Structs., 13, 1981, pp.55-62.

14. SCANL0N, A. & MURRAY, D.W. Time dependant reinforced concrete slab
deflectins, J. Struct. Div., ASCE, 100, 1974, pp.1911-1924



Leere Seite
Blank page
Page vide



#k. 189

Finite Element Supported Fracture Testing of Concrete

Essai de rupture du béton appuyé par un calcul par éléments finis

Rechnergestützte Bruchuntersuchungen an Beton

Dirk A. HORDIJK
Research Engineer
Delft Univ. of Techn.
Delft, The Netherlands

Dirk A. Hordijk, born in 1957,
received his master of science
degree at the Delft University
of Technology in 1985.
Presently he is working as a
research engineer at the Stevin
Laboratory of the Delft
University of Technology.

Jan G. ROTS
Research Engineer
Delft Univ. of Techn.
Delft, The Netherlands

Jan Rots, born 1958,
graduated from Delft University
of Technology in 1983. Since
1983 he has been involved in
a research project in the field
of concrete mechanics.

Hans W. REINHARDT
Prof.Dr.-lng.
Delft Univ. of Techn.
Delft, The Netherlands

Hans W. Reinhardt graduated
from Stuttgart University in
1964. He joined Delft University

in 1975 as head of the
concrete section of the Stevin
Laboratory. In 1986 he
accepted a position at Darmstadt
University.

SUMMARY
This paper discusses the uniaxial tensile test on a concrete specimen. Two phenomena, i.e. non-symmetric
crack opening and irregular descending branch as sometimes observed in this fracture test, were
investigated by a numerical analysis. 'Structural behaviour' as already inferred from experimental results was
confirmed by this analysis. It also showed how this behaviour influences the measured stress-deformation
diagram. The paper demonstrates how experimental and numerical research can support each other when

they encounter similar problems.

RÉSUMÉ
Cet article décrit l'essai de traction uni-axiale d'une éprouvette en béton. Deux phénomènes ont été
examinés à l'aide d'une analyse numérique, notamment: l'ouverture de fissures non-symétriques et une
courbe descendante irrégulière, telle qu'observée parfois dans de tels essais. Un 'comportement
structural', expliqué par les résultats expérimentaux, a été confirmé par cette analyse. Il a également montré

comment ce comportement influence le diagramme tension-déformation mesuré. L'article montre
comment des recherches expérimentales et numériques peuvent se compléter lorsqu'elles rencontrent les
mêmes problèmes.

ZUSAMMENFASSUNG
In diesem Beitrag wird der zentrische Zugversuch an Beton kritisch beleuchtet. Zwei Erscheinungen, nämlich

die unsymmetrische Rissöffnung und ein unregelmässig fallender Ast der Spannungs-Rissöffnungs-
Linie, wie sie manchmal in diesem Versuch wahrgenommen werden, wurden in einer FE-Rechnung
untersucht. Das 'Struktur-Verhalten', das schon früher aus Versuchsresultaten abgeleitet wurde, konnte durch
diese Berechnung bestätigt werden. Es wurde auch deutlich, wie dieses Verhalten die Spannungs-Rissöff-
nungs-Linie beeinflusst. Der Beitrag zeigt, wie sich experimentelle und numerische Forschung ergänzen,
wenn ähnliche Probleme angetroffen werden.
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1. INTRODUCTION

Due to developments in finite element techniques, research activities in
laboratories for concrete structures are being more and more devoted to
determining the material properties. Since the results of FE computations
strongly depend on the correct input parameters it is very important to
ascertain the actual material properties. One of these properties is the
behaviour of concrete under tensile loading. The fact that concrete is a
tension-softening material, which means that the stress beyond the peak load
decreases with increasing deformation, makes investigation of concrete fracture
rather difficult. Nevertheless, new achievements in the electro-hydraulic
control of testing machines now enable complete stress-deformation curves to be
determined. In addition, computational techniques have evolved so far that
tracing the post-peak softening behaviour is no longer a problem.
The uniaxial tensile test is probably the most fundamental fracture test. It
has been supposed that this test yields a stress-deformation diagram that
includes all the fracture mechanics parameters, i.e. the tensile strength ft,
Young's modulus EQ, the fracture energy Gf, the shape of the descending branch
and the maximum crack opening 6 at which stress can no longer be transferred
[1]. Therefore, sometimes the name 'direct' tension test is used. Recently,
however, some doubts have been raised about this assumption [2,3]. Due to a
particular 'structural behaviour' as will be discussed in the next chapter, the
crack opening in a uniaxial tensile test is non-symmetrically distributed over
the specimen cross-section in some part of the loading path. As a result, the
shape of the descending branch will be affected.
In this paper it is investigated whether this 'structural behaviour' can also
be determined by means of a numerical analysis. Details of this analysis have
been given before by Rots, Hordijk and de Borst [4]. The purpose of this paper
is to discuss these numerical results in close relation to the experimental
results. Therefore, the underlying computational and constitutive aspects will
not be discussed in detail here. For more information on these aspects the
reader is referred to de Borst [5] and Rots et al. [6] respectively.

2. THE BEHAVIOUR OF CONCRETE IN A UNIAXIAL TENSILE TEST

2.1 General

Concrete is an elastic-softening material (Fig. 1a). Straining concrete in
uniaxial tension displays a linear stress-strain relation almost up to the
peak. Then, beyond the peak a steep decay occurs which gradually evolves into a

long tail. This decay is due to the development of one single crack in the
specimen. The intention of a uniaxial tensile test is to create a crack, while
the crack surfaces remain parallel to each other from the instant at which the
first micro cracks are initiated until a crack opening 6 is reached at which
no more stress can be transferred. In that case we assume the relation
to be a material property. It
should be noted, however, that
a visible crack starts as a
cluster of micro cracks which
coalesce during further
deformation. The deformation
measurement is taken over a
specimen slice which contains
the softening zone.
Consequently the measured a-6
relation is linked up with tne
applied measuring length of
the gauges. Subtracting the

Fig. 1a a) Stress-deformation diagram.
b) Stress-crack opening diagram.
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elastic deformation over the gauge length yields the stress-crack opening
displacement (Fig. 1b) which may serve as a basis for a crack model.

2.2 Non-symmetric crack openings and 'bump' in the descending branch

Two peculiar aspects have sometimes been observed in uniaxial tensile tests.
First, a non-symmetric crack opening may occur in some part of the loading
path. Fig. 2b shows a typical test result obtained on a lightweight concrete
[2]. In this test a prismatic specimen 250 mm long, 60 mm wide and 50 mm thick
was used. Two saw cuts 5 mm x 5 mm reduced the critical cross-sectional area to
50 mm x 50 mm.

50 60 70
Deformation (10"6m)

Fig. 2 Experimental result; a) specimen, b) deformation distribution
and c) stress-deformation diagram.

For the deformation distribution eight deformation gauges with a gauge length
of 35 mm were used, four on the front and four on the rear side of the
specimen. It can be seen in Fig. 2b that in some part of the loading history
the deformation distribution is non-symmetric even though rotation of the
loading platens was prevented by a stiff guiding system. Such non-symmetric
tensile fracture modes have also been reported by other investigators
[3,7,8,9]. Gopalaratnam and Shah [10], however, reported symmetric modes.

The second peculiar aspect is that sometimes a 'bump' can be observed in the
descending branch. As an example Fig. 2c displays two of these bumps. Similar
results of bumps in the descending branch of stress-deformation diagrams have
been reported by, for example, van Mier [3], Willam et al. [11] and Budnik
[12].

2.3 Explanation of the observed phenomena

In [2] a qualitative model has been given that can possibly explain the phenomena

described above. The basic idea of that model will be briefly summarized.
Suppose that the stress-deformation relation for a small slice of concrete
comprising the critical cross-section is as shown in Fig. 3a. In Fig. 3b it can
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be observed that, for an average
deformation 6 the applied force
must be larger in case of a symmetric
deformation distribution (solid line)
than in case of a non-symmetric one
(dashed line). Nevertheless a non-
symmetric deformation as indicated by
an angle $ is limited by the
rotational stiffness of the remaining part
of the specimen in combination with
the rotational stiffness of the
loading platens.
In an experimental programme this
model was verified by varying the
specimen length [2]. It was concluded
that there is a direct relation Fig, 3 a) Assumed 0_5tot relation,
between the non-symmetric crack b) Deformation and stress
opening and the bump in the descending distributions,
branch, on the one hand, and between
the degree of non-symmetric crack opening and the rotational stiffness of the
surrounding of the softening zone, on the other hand. Furthermore it became
clear that the deformations must be studied three-dimensionally as appears also
from Fig. 2b, in which deformation distributions projected on two perpendicular
planes were plotted. By using very short specimens symmetric crack openings
and a smooth descending branch were obtained.
The said phenomena were also observed by van Mier [3]. He explains them by the
growth of a crack from one side of the specimen to the other. In his opinion
the crack-arresting effect of large inclusions may cause a pronounced plateau
(bump) in the descending branch. In addition, he suggests that the boundary
condition is responsible for it because non-rotatable end-platens compel the
crack, starting from one side, to jump to the other side.

3. FINITE ELEMENT ANALYSIS OF A UNIAXIAL TENSILE TEST

3.1 General
A numerical analysis of a uniaxial tensile test may shed some new light on the
response of concrete in such a test. Therefore a test performed in the Stevin
Laboratory was simulated by Rots, Hordijk and de Borst [4], Some typical
results of their study will be discussed here in relation to the experimental
observations. It was intended to investigate the observed phenomena rather than
to fit an experimental result exactly. This would not even have been possible,
since a two-dimensional analysis was performed, while the specimen in an
experiment reacted three-dimensionally.

3.2 Constitutive modelling
A smeared crack model as proposed by Rots
et al. [6] has been used with a linearly
elastic model for the concrete and a
softening model for the crack. For the
tensile softening a bilinear diagram was
adopted as shown in Fig. 4. The fracture
energy Gf was assumed to be a fixed material

constant. As a smeared crack model
was employed this energy is related to a
certain crack band width, which in turn is
related to the element configuration. The

Fig. 4 Bilinear softening
diagram.
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necessary provisions were included to correctly release the fracture energy
over the crack band width [131- For the unloading and reloading a secant
approach was used (Fig. 4).

3.3 Finite element idealization and material properties
The finite element mesh of the specimen as shown
in Fig. 2a is given in Fig. 5. Four noded bilinear
elements were used which were integrated using
four-point Gauss quadrature. For the centre
elements, where the fracture was expected to
occur, a reduced centre-point integration scheme
was used [6]. The lower boundary was assumed to be

fixed, whereas the upper boundary was provided
with a translational spring (kt=148000 N/mm) and a
rotational spring (kr=10 Nmm/rad) in order to
simulate the experimental conditions. Dependence
relations were used to prevent distortion of the
upper boundary which is in agreement with a rigid
loading platen in an experiment.
In the experiment the load was applied at the
upper boundary and was servo-controlled by a feedback

signal from two LVDTs mounted on the sides of
the specimen (measuring length 50 mm). In the
analysis this control mechanism was simulated by
using the averaged crack opening displacement as a
control parameter. This procedure of 'indirect
displacement control' has recently been proposed
by de Borst [5]. Further, a full Newton Raphson
iterative procedure was employed with the tangent
matrix being updated before each iteration. Fig. 5 Finite element mesh.

The elastic concrete properties were assumed to be: Young's modulus
E=18000 N/mm2 and Poisson's ratio v=0.2, corresponding to a lightweight concrete.

The softening properties were taken as: tensile strength ft=3-4 N/mm2,
fracture energy Gj.=59.3 N/m and crack band width h=2.5 mm. One element in front
of the righthand notch was given a material imperfection by means of 1 percent
reduction of G^.. The importance of this will become clear from the sequel of
this paper.

3.4 Computational results
In conformity with the experiments, stress is given as the applied force
divided by the central cross-sectional area, whereas deformation is the mean of
five values measured between points A to E (Fig. 5). In previous experiments
five instead of four deformation gauges were used on each side of the specimen.
In Fig. 6 the incremental deformations are shown which refer to key events in
the fracture localization process. Pre-peak deformations appeared to be
symmetric (Fig. 6a). At an average stress 0=2.856 N/mm2 a limit point was
encountered. For this point a negative eigenvalue was calculated for the
tangent stiffness matrix. In the corresponding eigenmode (Fig. 6b), which is
identical to the incremental deformation field, a non-symmetric behaviour can
be observed. Obviously, the side with the small imperfection opens, while the
other side unloads. Upon further increase of the control parameter the load was
decremented and a genuine equilibrium path was obtained. The fracture localization

was propagated to the other side of the specimen (Fig. 6c) till the left
side of the specimen tended to open suddenly, which resulted in a temporarily
unloading of the right side (Fig. 6d). Subsequently, after a slight increase
the load could decrease to zero while further the deformations were symmetric
(Fig. 6e).
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Fig. 6 Eigenmodes for different loading points.
a) pre-peak a=2.837 N/mm2 b) at peak o=2.856 N/mm2

c) post-peak, a=1.865 N/mm2 d) post-peak, <j=1.101 N/mm2

e) post-peak, o=1.026 N/mm2

A stress-deformation diagram of two analyses has been plotted in Fig. 7. The

first refers to the analysis with the imperfect material, the second belongs to
an analysis with symmetric deformations. In the latter case the material
imperfection was omitted. It appears that as a result of the non-symmetric
deformations the peak load is reduced. More interesting, however, is the
consequence for the shape of the descending branch which seems to be

drastically affected. The resemblance with the experiment is evident. The
'bump' in the descending branch is now proven to be merely the result of the
non-symmetric deformations.
In Fig. 7 an interesting phenomenon can
be observed in the stress-deformation
diagram for the non-symmetric solution.
Beyond point A the deformation as well
as the stress decreased. This phenomenon
is called 'snap-back'. The importance of
snap-back behaviour in elastic-softening

materials was recognized before by,
for example, Carpinteri [14] and de
Borst [5]. It should be noted that the
snap-back in the descending branch was
found because the pure crack opening
displacement was controlled. In the
experiments the deformation was
controlled by the average signal of the

StressG(N/mm2)

2 5"

2 0

1 5

0

0 5-1

f \ symmetric

/ \ \ /deformatro

rion- symmetric
/deformations

\A
B

LVDTs (lmeas =50 mm). Therefore a sudden
drop as indicated by the dashed line A-B
is mostly observed in the experiments
(see Fig. 2). From the results of a

post-peak cyclic test a snap-back as in
Fig. 7 was already inferred [2].

10 12 14 16

Deformation Ôt0t[KT6m)

Fig. 7 Stress-deformation diagrams.
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4. DISCUSSION

In the numerical analysis for the non-symmetric solution a small imperfection
was given to one of the elements. Of course concrete is a heterogeneous
material containing a lot of imperfections and it is therefore concluded that
the response of concrete in a tension test will always be associated with a
non-symmetric state of deformations. The numerical analysis clearly
demonstrates that the stress-deformation relation from a uniaxial tensile test
can strongly be influenced by these non-symmetric deformations. The tensile
strength and the shape of the descending branch no longer necessarily represent
the actual material behaviour. In the event of sudden jumps, due to snap-back
behaviour, also the area under the stress-deformation relation may be measured
incorrectly. If this is so, the fracture energy Gf is incorrect.
In the numerical analysis with the imperfection non-symmetric deformations
could be observed between 6 5um and ^ot l^um. For other values
of ^tot the def"ormat:i-on distribution as well as the stress was equal to that
in the symmetric solution (Fig. 7). Therefore we still assume that for crack
openings in which these openings are symmetric the o-S^Q^ relation can be
regarded as a material property. In this respect it can be mentioned that it is
known from experiments [2] that the non-symmetric crack openings can be
restricted to a small part of the loading history by means of a high rotational
stiffness of the boundary of the softening zone. With very short specimens it
was even possible to obtain symmetric crack openings in every loading stage.
Further research activities should clarify whether the 0-|5tot relation obtained
on such short specimens can be regarded as a material property.
It has been shown that the observed 'bump' is caused by the boundary
conditions, as suggested by van Mier [3]. In the case of hinges instead of non-
rotatable end-platens the crack will probably continue to open from one side,
resulting in a smooth descending branch, as has been discussed by van Mier [3].
It should not be difficult to check this numerically.

5. CONCLUSIONS

- In a uniaxial tensile test on an elastic-softening material like concrete
the crack opening will be non-symmetric in some part of the loading history.
The phenomenon of non-symmetric crack openings can be regarded as
'structural behaviour'.
Due to the structural behaviour in a uniaxial tensile test the measured
stress-deformation relation cannot directly be regarded as a material
property.
A numerical analysis simulate the behaviour of concrete in a uniaxial
tensile test, including the structural behaviour. Such an analysis can be
used to investigate the influence of this structural behaviour on the
material models derived from such a fracture test. Furthermore it can be
used to improve the fracture test.
In order to obtain post-peak stable softening behaviour in a displacement
controlled uniaxial tensile test, very short gauge lengths have to be used.

In numerical and experimental research the same types of problem can be
encountered. Therefore the co-operation of these research fields should be
stimulated.
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SUMMARY
After a description of four triaxial constitutive models for concrete, based on different mechanical concepts,
a comparative evaluation is carried out. One of the models is a new hypoplastic model. Shortcomings of
some models, occurring in case of non-monotonic load histories, are eliminated by adequate modifications.
Generally, there is a good agreement between model predictions and test results.

RÉSUMÉ
Une présentation de quatre modèles triaxiaux de comportement du béton sur la base des différentes
théories mécaniques est suivie d'une évaluation comparative. Un des modèles est une nouvelle formulation

hypoplastique. Quelques modèles présentent des défauts - lors de cas de charges non-monotones -
lesquels sont éliminés par des modifications appropriées. Généralement, les résultats du modèle
correspondent bien avec des résultats expérimentaux.

ZUSAMMENFASSUNG
Vier auf verschiedenen mechanischen Konzepten beruhenden dreiachsiale konstitutive Modelle für Beton
werden beschrieben und einer vergleichenden Wertung unterzogen. Eines dieser Modelle ist ein neues
hypoplastisches Modell. Mängel einzelner Modelle, die bei nichtmonotonen Lastgeschichten auftreten,
werden durch geeignete Modifikationen beseitigt. Im allgemeinen liegt eine gute Übereinstimmung
zwischen Modellvoraussagen und Versuchsergebnissen vor.
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1. INTRODUCTION

Knowledge of suitable constitutive equations is a necessary prerequisite for finite
element ultimate load analysis of thick-walled structures made of reinforced

concrete. During the last years a number of triaxial constitutive models, based
on different mechanical concepts, have been proposed. So far, a comparative
evaluation of their potential for modelling the behavior of concrete under
multi-axial states of stress does not seem to exist in the open literature. This
was the motivation for a comprehensive comparative study of a relatively large
number of material laws proposed by several investigators to describe the mechanical

behavior of concrete subjected to triaxial non-monotonic loading up to
material failure [l].
The present paper is based on the mentioned investigation. It consists of a

report on four constitutive models, selected from [l] representing four
different mechanical concepts. The purpose of the paper is to provide information
about the capability of typical representatives of different classes of constitutive

models for description of the material behavior of multiaxially loaded
concrete.

The chosen models are the Cauchy (nonlinear elastic) model by Kotsovos and Newman

[2], the hypoelastic material law by Stankowski and Gerstle [3], an elasto-plastic
constitutive model by Han and Chen [4] and a bounding surface model developed by
the second author, reported in [l]. After description of these models a comparative

evaluation is carried out. It is based on a comparison of results from
selected load paths with corresponding test results.

2. CONSTITUTIVE MODELS

2.1 Cauchy (Nonlinear Elastic) Model by Kotsovos and Newman

This constitutive model is characterized by a total (secant) formulation.
Introducing the octahedral strains, eo IJ/3 and yo /2JI/3, and stresses, a 1^/3
and tq /2J2/3, where 1^ is the first invariant of the stress tensor, 1^ is the
first invariant of the strain tensor, J2 is the second invariant of the stress
deviation tensor and is the second invariant of the strain deviation tensor,
the constitutive equations are given as [2]:

eo » ' Yo V(2V * (1)

The two secant material moduli, Kg (bulk modulus) and Gg (shear modulus), depend
on the uniaxial compressive strength of concrete, fcu- They are obtained by means
of curve fitting, using experimental results. An essential feature of this
constitutive model is the quantity [2]

ao - fto0'To) ia(To/fcu)bJ^1+c(ao/fcu)d} (2)

where a,b,c and d are regression coefficients. The purpose of adding q^ to a in
the expression for e is consideration of the fact that deviatoric loading yields
deviatoric as well as volumetric deformations.

Recomputations of several experiments have shown that for the case of nonproportional

loading the constitutive model by Kotsovos and Newman is deficient. The

shortcomings are caused by (a) the lack of a parameter considering the load
history (introduction of such a quantity, however, would be beyond the scope of a

classical Cauchy model) and (b) the loading criterion based on the octahedral
stresses. The second deficiency was eliminated by introducing a loading criterion
proposed by Stankowski and Gerstle [3] which is based on the principal normal
stresses. According to this criterion, loading in the direction of a principal
normal stress is characterized by exceeding the previously reached maximum
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value of the respective principal normal stress.

Fig.l illustrates the difference between the two criteria. For the considered
stress path the first criterion indicates triaxial loading up to point 0 followed
by hydrostatic unloading and deviatoric loading (Fig.1(a)). According to the
second criterion, unloading in the directions of and o. begins already at
point P (Fig.1(b)). This criterion agrees very well with test results.

(a) octahedral stress criterion (b) principal normal stress criterion

Fig.l Loading Surfaces in the Stress Space for Two Different Loading Criteria

Determination of deformations resulting from nonmonotonic loading requires formulation

of an incremental relationship Ae UtAg, where is a tangent material
matrix relating increments of principal normal stresses to increments of principal

normal strains. For a situation characterized by loading in the direction of
CFj and unloading in the directions of 0^ and 0^, this relationship is given as

f Ae,
Ae.
A et

04 ß ß Aax
ß a' ß' Aa jß ß' a' Aü3.

(3)

where

a' 1/(9K )+l/(3G
ß' 1/(9Kq)-1/(6Gq)

ax 1/(9KT)+1/(3GT)+Aa 7(3^0^
1/(9Kt)-1/(6Gt)

(4)

The tangent material moduli and GT are obtained through differentiation of K
and Gg. The material behavior described by the Eqs.3 and 4 is called
"transversely isotropic" [5] It is characterized by material properties in the
direction of 0^ which are different from the ones in a plane normal to this
direction, representing a plane of isotropy.
2.2 Hypoelastic Model by Stankowski and Gerstle
This nonlinear material model is characterized by an incremental (tangent)
formulation. The respective constitutive equations are given as [3]

:} l/OK^,)
1/Y,

i/ht
1/(2GT)J Ax,

(5)

where K^, f(0 and GT f(o ,t are obtained through curve fitting, using
experimental results. The couplfng°tangent material moduli and Y permit
consideration of the influence of At on Ae and of AG on Ay respectively. With
regards to constitutive modelling of these interactions, §tankowski and Gerstle
were influenced by results obtained by Scavuzzo et al. [6] from comprehensive
test series.

For the current state stress, characterize^ by poin£ P on the stress path
shown in Fig.2(a), AeP /AyP 1//2 where AeP and AyP are increments of the

O ' o o o
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plastic octahedral strains. Using the following relationships for a purely devia-
toric load increment:

Ae„ + Ae^1
o o

0 + - At0/Ht and

AY0 + AYo1 " AV(2V + Ay? AT0/(2GT)

(6)

(7)

where AeQ (AeQ and Ay (Ay!| .are increments of the (elastic) octahedral
strains, in order to express Ae£ /Ayf? in terms of H^,, G^, and G where GQ is
the initial value of G, and setting this expression equal to 11/2, yields

HT 2/2GT/(1-GT/G0). (8)

Considering a purely volumetric load increment, by analogy to determination of
Ht, Yt is obtained as

Yt - M^/J/ÎCI-Kj/KQ)}

where K is the initial value of K.

(9)

-volume dilatation (F<0)

-failure envelope

pi _volume con-
\A£0 f traction (F>0)

ÄE >£o

E2=E3

(a) increments of plastic strains
.Pi

(b) corrective factor F f(r /to ou

Fig.2 Rotation of Vector Ae for Consideration of Volume Dilatation

According to the loading criterion based on the principal normal stresses, for
purely deyiatoric loading the loading surfaces are normal to the direction of a-^.
Thus, Ae*5 >0 (Fig.2(a)), indicating volume contraction irrespective of the magnitude

of x • By contrast to this analytical result, it is known from experiments
that a change from volume contraction to dilatation occurs when tq exceeds a
value of approximately 0.9r where t is the octahedral shear strength. In
ordjr to^ consider thjs fact, StankowslcP and Gerstle have redefined the ratio
Ae^ /AYq as Ae^ /Ay^ F//2 where F is a corrective factor depending oniT0/T0
as shown in Fig.2(b). This factor results in a rotation of the vector Ae^ sucH

thaj for tq T it is normal to the failure envelope. For negative values of F,
Ae^ < 0, indicafïng volume dilatation.

For axisymmetric states of stress, the two quantities Ae and Ay are sufficient
for determination of Ae^ and Ae2 Ae^- For general triaxial spates of stress,
however, an additional condition is necessary to determine Ae-p AC2 an8 Ae^ from
AeQ and Ay • It is assumed that the directions of the increments of the stress
deviation lector coincide with the directions of the corresponding increments of
the strain deviation vector. In general, however, this assumption does not agree
with reality.
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2.3 Elasto-Plastic Model by Han and Chen

The hardening characteristics of this constitutive model account for the ductility
of concrete under compression and for its brittleness under tension. The

loading surface expands from the (initial) yield surface to the failure surface
(Fig.3(a)). It is described by the relationship [4]

f r - krf(am,0) 0 (10)

where r /2J„/f is the deviatoriç length normalized with respect to » O

a /f 9 (l/3t)'arccos((3/3/2)(J3J2 )J is the Lode angle with J„ as the third
invariant of the stress deviation tensor, k is a form factor depending on and
on the hardening parameter k characterized by k < kQ < 1, with kQ k and k
1 referring to the yield surface and to the failure surface r r^, respectively.
Results presented in this paper, which are based on the constitutive model by Han
and Chen, were obtained by means of the failure surface by Willam and Warnke [7j.

Fig.3 Expansion of the Yield Surface and Construction of a Loading Surface

The starting point for the construction of a loading surface is the base surface
(Fig.3(b)), representing an affine contraction of the failure surface. It is
described by the relationship

f. r - k r, 0. (11)b of
The shape function k k(0 ,k defining the corresponding loading surface, is
determined such that for triaxial tension (O^ > p^) there is no hardening zone
(Fig.3). Additional aspects for determination of k are the increase of the
hardening zone with increasing hydrostatic compression and the close up of the loading

surface at the hydrostatic axis in the region of triaxial compression,
indicating a large hardening zone.

The hardening parameter k is determined with the help of a CT-ep~^ diagram where a
and ep are the stress and the plastic strain, respectively, obtained from a
uniaxial compression test, and of the condition

dWpl 0. .de?3; üdepl (12)
iJ iJ

where dWp3 is a differential of the specific plastic work and dep3 is a differential
of the plastic strains e?.. Thijs, each loading surface is associated with a

so-called base plastic modbWis Hp da/dep resulting from the uniaxial
compression test [4]

In order to consider the ductile material behavior of concrete under triaxial
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compression, Hj^ was replaced by a modified plastic modulus Hp^

where M is a modification factor. For large compressive stresses the form of M

suggested by Han and Chen [4] yields a physically unrealistic restiffening of the
material.

For the purpose of an adequate description of volume contraction and dilatancy,
the direction of the vector of plastic flow is defined by a nonassociated flow
rule which can be written formally as

- dXdg/datj (13)

where dX is a positive scalar factor of proportionality and g is the plastic
potential given as [4]

g al1 + /jZ - k* 0 (14)

where a represents the plastic dilatancy factor, proposed in [4] as a linear
function of kQ, and k* is a constant which does not appear in the flow rule. The
dilatancy factor controls the description of the x - ep relationship. It also
has an influence on the stiffness modulus h, appearing fn the expression for the
plastic material stiffness tensor (Eq.16).

A shortcoming of the original form of a a(k which occurs when leaving the
hydrostatic axis after a significant elasto-plastic l^ydrostatic preloading, is
the strong rotation of the vector of plastic flow dep. in the direction of the
f -axis, connected with a considerable decrease of (3g/3a..)a.. and, thus, of h
(êq.17). Thus, a modified dilatancy factor a (k ,k^ ,k,r, f .y.aJV was used in the
numerical investigation for the
results showing the dependence of the
on the type of loading.

icy ractor oiik,k ,ic ,1 ,tr,a y was used m the
present payer. This factor0 is based on test
the x - ep relationship on f ,0, and a and

f» rt r /->ti » » m

The incremental stress-strain equations can be written formally as

d°ij <jki + ni5ki> deki <i5>

where is the elastic and is the (unsymmetric) plastic material stiffness
tenäor, given as [4] 1"'

Dp"L -(i/h)(D?* (3g/3cr )(3f/3a )Del,J (16)ijkl ^ ljmn 6 mn' pq' pqkl
with

h (3f/3cr )Del (3g/3a - Hpl(3f/3a)(l/a)(3g/3a. )ct (17)mn' mnpqv pq 1 j 1J

2.4 Bounding Surface Model by Meschke

This constitutive model belongs to a special category of bounding surface models,
characterized by the vanishing of the elastic range. The mathematical formulation
of such bounding surface models was introduced first by Dafalias and Popov [8]
The constitutive model proposed by Meschke [l] is based on the concept of hypo-
plasticity. According to Dafalias [9] the main distinguishing factor of hypo-
plasticity from ordinary plasticity is the dependence of the plastic strain rate
and of the rate of the internal variables on the stress rate direction, in addition

to the overall dependence on the stress state. Thus, for nonproportional
loading hypoplasticity is incrementally nonlinear.

The basic relationship of the bounding surface model by Meschke is the equation

de?1 (l/Hpl)<L>p (18)
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where £p is the vector of plastic flow, Hp is a generalized
plastic modulus, <L> is a loading function defined as <L> L dCf.n for dcr.n > 0
and as <L> 0 for da.n < 0 with n representing the normal vector at the image
stress
as p

Hpl(CT,k,Gp1)

point nn the ^loading surface (Fig.4), and p is a direction vector given
d£p /|d£P I. Hp depends on the stress vector a, defining a point in the

space of principal stresses on the normalized distance parameter k
k(r,r^,Ç), where is a discrete internal variable representing a jump parameter
which accounts for abrupt change^ of the loading direction, and on the accumulated

effective plastic strain £p representing an internal variable, given as

eP1 JdePl J(depl.depl)1/2. (19)

where de andWith the help of Eq.(18) and of the relationship de d£e + deP
d£el correspond to de^ and de?~l, respectively, the bounding surface model by
Meschke can be formulated mathematically as follows:

da Depde (Del - (Delp Deln)/(n Delp + Hpl))de (20)

where DIe P T»el + DP^" is the elasto-plastic material stiffness matrix with De^ as
I A ^ Ik kk «k 1 ^k ^k I. k A kkk ^k ^ ^k J «k 1 #k 4k k C £ M A ^~k #"• M «k ^ k" k k*the elastic and Dp as the plastic material stiffness matrix.

Fig.4 illustrates a meridional section of the bounding surface, which is identical
to the failure envelope, at two different levels of deviatoric loading, indicated

by the stress point O. A comparison of the two illustrations shows the
rotation of the direction vector during deviatoric loading. The point designated
as O

L ,maxstress.
a, refers to the maximum value of the respective principal normal3 ,max

<< ^-bounding surface —bounding surface

'2,max °3.max &C2~^°3 l/? 02 ~ 1^O3

Fig.4 Rotation of the Direction Vector p in the Course of Deviatoric Loading

The following list refers to characteristics of the proposed bounding surface
model:

(a) The loading surface degenerates to the actual stress point.

(b) Using the projection rule by Mrôz [8], the gradient of the loading surface is
replaced by the gradient n of the bounding surface F(a) r - r^ 0 at the
stress image point a^ (Fig.4). In the pre-failure material regime the bounding

surface is fixed in the stress space. At present, the post-failure
behavior of the material is not considered.

(c) The direction vector p which controls the direction of the vector d£p^ is
determined on the basis of experimental results reported by Scavuzzo et al.
[ö]. For a stress point at a sufficiently large distance from the failure
envelope, the direction of the largest principal stress reached so far in the
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process of loading controls the direction of p. (With regards to Fig.4, this
is the a^-direction). As the stress point approaches the failure surface,
the direction vector p rotates towards the direction of the gradient vector
n. This rotation is controlled by the distance parameter k. Abrupt changes
of the direction of Aa, as occur, e.g., for unloading, are considered by
means of the jump parameter Ç. For proportional loading, Ç 0 and k r/r^.

(d) With increasing tension the rotation of p becomes slower.

(e) The value of the generalized plastic modulus is controlled by a> k,
and, because of k k(Ç), by the jump parameter Ç. Based on the stability
criterion by Drucker, a lower bound of Hp is obtained as

HP1 -(l/2)n Delp + (l/2){(p Delp)(n Dn)}1/2. (21)

Hg"^ depends on the amount of the rotation of de^^ in the course of loading up
to failure. The effectiveness of this bound depends on the stress path.

(f) The loading criterion by Stankowski and Gerstle [3] is used.

3. COMPARATIVE EVALUATION OF THE SELECTED CONSTITUTIVE MODELS

The following comparative evaluation is based on four different loading paths.
They were chosen such that the capability of the different formulations to
describe specific characteristics of concrete subjected to nonproportional and
nonmonotonic loading can be investigated.

Fig.5 shows T /f -e diagrams for purely deviatoric loading at two different
hydrostatic load 'ïêvels. The symbol "x" in Fig.5 refers to material failure. The
test results illustrate the characteristic volumetric deformational behavior of
concrete. Fig.5 elucidates that the nonlinear elastic constitutive model by Kot-
sovos and Newman does not account for dilatancy. The results obtained by the
hypoelastic constitutive model of Stankowski and Gerstle are reasonably good.
However, for loading path (b), this model underestimates the ultimate strength of
the material by approximately 10 %. With regards to the elasto-plastic constitutive

model by Han and Chen, for high hydrostatic load levels such as for loading
path (b), the slope of the T0/fcu~£ diagram at the beginning of deviatoric loading

is too small. The reason for" th*îs shortcoming is the acute angle enclosed by
the hydrostatic axis and the loading surface at the apex of the latter. The good
correlation of the compaction/dilatancy characteristics is the result of the
previously mentioned modification of the original dilatancy factor a. The constitutive

model by Meschke yields results which agree reasonably well with the test
results.

Fig.6 shows cr /f -y diagrams for hydrostatic loading and unloading at different
deviatoric load ïeveîs. The analytical results in Fig.6 obtained by the two
nonlinear elastic constitutive models and by the hypoplastic material model by
Meschke, respectively, satisfy the principal stress loading criterion. At point A
of loading path (a) at which the principal stress a. exceeds the largest previously

obtained value, the beginning of virgin loading is signalled. For this
loading path and for the chosen loading surface the loading criterion of the
theory of plasticity, used by Han and Chen for their elasto-plastic constitutive
model, happens to be equally good as the principal stress loading criterion. For
loading path (b), however, the loading criterion of the theory of plasticity
results in a delayed beginning of the deviatoric plastic deformations. For this
loading path all constitutive models underestimate the octahedral shear strain
Y As far as the nonlinear elastic material models are concerned, disregard of
the dependence of the tangent bulk modulus on x appears to be the reason for
this underestimation. The hypoplastic formulation by Meschke is found to be cap-
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able of modelling the remarkable increase of yq during hydrostatic unloading.

Fig. 7 shows d.-j diagrams for a load history characterized by alternating
hydrostatic and deviatoric load steps followed by deviatoric unloading and
reloading. At points referring to changes from one of these two kinds of load
steps to the other one the curves obtained by the constitutive model by Han and
Chen are not smooth which is typical for elasto-plastic formulations. The linear
elastic unloading predicted by the constitutive model by Han and Chen does not
agjee with £he test results which show a considerable increase of plastic strains
Ej and e? This shortcoming of the material model by Han and Chen is attributed

to the use of the loading criterion of the theory of plasticity. This
underlines the importance of the principal normal stress criterion.

Fig.8 shows cr^-0^ diagrams for a load history characterized by a nonproportional
deviatoric load path after hydrostatic preloading. The symbol "x" in Fig. 8
refers to material failure. The reason for the difference between the test
results and the analytical results obtained from the formulation of Kotsovos and
Newman is disregard of the dependence of the tangent bulk modulus K^, on j Fgr
the section of £he deviatoric load path beginning at point A (q -2.76 icN/cm
T 1.38 kN/cm on the projection s^ of the (j.-axis onto the âeviatoric plane,
the elasto-plastic material model by Han and Chen yields incorrect strains
The reason for this shortcoming is the assumption of a circular shape of the section

of the plastic potential surface by the considered deviatoric plane. For the
hypoplastic constitutive model by Meschke good agreement between analytic and
test results is observed.

4. CONCLUSIONS

Despite different mechanical concepts of the selected constitutive models and the
fact that not all shortcomings inherent in some of these models could be
eliminated, generally, good agreement between the model predictions of the deforma-
tional behavior and the ultimate strength of concrete and the test results was
found. This also refers to results for the tension-compression material regime,
which were not presented in this paper. At present, these material models are
implemented in a multi-purpose finite element program.

Stress paths associated with characteristic points of thick-walled structures
made of reinforced concrete, subjected to static loading, usually are less complex

than the ones investigated in this paper. Therefore, for identical constitutive

modelling of the post-failure behavior of concrete, it is expected that
the chosen constitutive models for triaxially loaded concrete do not have much
influence on the results of finite element ultimate load analysis of such structures
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SUMMARY
An analytical model has been developed to simulate the crack initiation and propagation. By separating and
moving the nodes, the mesh of structure can be changed successively to follow the crack growth. In a
computer program the nonlinear behavior of material and bond-slip relationship is taken into account. All the
treatments are automatically executed by computer; the rationality of this model has been studied.

RÉSUMÉ
Un modèle analytique simule l'origine d'une fissure et sa propagation. En séparant et déplaçant les
noeuds, le réseau de la structure peut être adapté pour suivre l'évolution de la fissure. Un programme
d'ordinateur prend en considération le comportement non-linéaire du matériau et la relation adhérence-glissement.

Tous les calculs sont exécutés à l'aide de l'ordinateur; le modèle semble rationnel.

ZUSAMMENFASSUNG
Ein numerisches Modell zur Beschreibung der Rissentstehung und deren Fortpflanzung wurde entwickelt.
Durch Trennen und Verschieben von Knoten wird das Elementennetz dem Rissfortschritt angepasst. Im
Computerprogramm wird nichtlineares Materialverhalten und Verbundverschiebung berücksichtigt. Die
Rationalität dieses Modells ist untersucht worden.
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1. INTRODUCTION

The crack initiation and propagation is one of the most important
characteristics of concrete. In reinforced concrete structure, the
cracks cause sudden changes in local stress levels and the local
stress will be redistributed. The difference of crack distribution
between different structures which are controlled by different
strength criteria is obvious, so we must describe the crack initiation

and propagation correctly.
There are three different approaches employed for crack modelling:
(1) discrete cracking model; (2) smeared cracking model; (3) single
crack within an element dealt with by fracture mechanics.

In the first approach, the difficulties are that the location and

direction of the cracks are unknown in advance, so Ngo and Scor-
delis [1] have predicted the diagonal crack in simply supported
beam. Based on the discrete cracking model, an approach for
computer simulation of crack formation and growth has been developed
in this paper. By separating and moving the nodes, the finite
element mesh of structure can be changed successively to follow
the crack propagation. The crack occurs and grows in accordence
with the stress state, it is not necessary to predict the crack
location and direction in advance.

2. FINITE ELEMENT SIMULATION MODEL

Consider the boundaries between neighboring element as checking
line, if the average stress of two neighboring elements achieve
the tensile strength of concrete, f^, a crack will form along
this checking line. According to the crack situation of neighboring

boundaries, we can make different treatment, that include,
(1) add an extra node, renumber the nodes and equations, separate
the corresponding node as shown in Fig.l(a-e); (2) change the
direction of cracked boundary to perpendicular to direction of cf, ;

(3) calculate the displacement of moved nodes by Lagrangian
interpolation formula*

The range in which the nodes can be moved is limited to avoid
distorting the element shape exeessively, see Fig.1(f). For
simplification, the node can only be moved along one direction, e.g. if
the checking line along X coordinate is cracked, the node of this
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T * 1c-1 k
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border can only be moved In the direction of Y coordinate, vice
cersa.

If some nodes are disjointed, the program
will compute the equivelant node forces of
relative elements and release them in next
iteration to reflect the stress redistribution

occured in actural structures, e.g.
assuming node r will be disjointed, we add

a new node rn and call the original node rQ (Fig.2), the equivelant

node force of element e respect to node r

Fig. 2 (m=2)

H 6| Wlj0) e.'tdA (1)

[B1 =node1 Jro

-e, -o

where, t,A= the thickness and area of element e, ;

submatrix of strain. Summing up the contribution of all elements

(2)(pl?Gq =5 {pi?q - -(PJ eq
*0

is obtained, in which m=number of elements which are linked to
node r0.
According to the experimental results[2], though the bond action
at each side of crack is weakened, the range is limited, so if we

take the stiffness of linkage element as zero in such a case, a
considerable error will be caused. In this program, when the crack
crosses the reinforcement and the node is separated, we add an
extra linkage element to link the new node of concrete to the same
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node of reinforcement and then adjust the longitudinal stiffness
of these linkage element.

When all the checking lines have been examined, the computer
execute a new iteration using the released equivelant node force
vector. If in an iteration, there is no new crack occured or propagated

and also no element feil, the loading increment of next step
will be added.

3. NONLINEAR ANALYSIS

A computer program has been set up for reinforced concrete plane
problem. Using the quadratic element for both concrete and
reinforcement, one dimension element for stirrup, the program has
accepted the tangential stiffness increment method.

The stress-strain relation of concrete under biaxial compression
can be expressed as

a-
a+b6

^
1+cÇ+d£2 (3)

the constant a,b,c,d can be given by

=0, (T =0, _ü_ =E0 ;

d£

6 =6c» cr= Jç_ =0 U)
i-«i» de

Where ()c, 6c=stress and strain at uniaxial compressive failure;
O^i (L| / 0*2 ' ^2 '

Eq= initial elastic modulus.
then we have

OL tic

rip-*->£ *<£>*]
<5>

c

(i=1,2)



D. SHENGLIN - S. QIGEN - S. BINGZI 213

The concrete is considered as an orthotropic body, the modulus of
elasticity in compression is calculated from eq.(5), in tension is
E0. The reinforcement is considered as idealized elasto-plastic
material. The failure criteria is based upon Kupfer's work['+']•

if. NUMERICAL RESULTS

A simply supported beam (Fig.3a) is analysed to study the rationality
of this approach. After two loading increments, the cracks

developed as shown in Fig.3b, In the second calculation, we load
the same two loading increments on such a cracked beam at the same

time. Because of the same equilibrium state, the correct results
of the second computing must be the same as the first one. In fact,
the error are very small(less than if# in general).

P

-i ft
^

__ ___ «- £

-̂jfr

< £ >

Fig. 3

To examin the whole analytical model and program, a specimen,
shown in Fig.if, has been computed. Using 171 concrete elements, we

obtained the crack distribution by computer (Fig.5), the crack
distribution and direction agree well with the experimental
results. The comparison of crack width is not satisfactory, it is
obvious that the interlock action in the crack should be included,
see Table 1.

Xté
<«->

Fig.4 Speeimen (mm)
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We have also got a lot of
message 3 > such as deflection,
stress and the properties of
total structure. Combining
with the experimental results,
the analytical results can

help us in study of RC struc-
Table 1 Comparison of crack width tures.

width of
crack load analysis experiment

average
0.090 0.057

at 0.170 0.080

maximum
0.130 0.060

ßt 0.300 0.150

Fig.3 a analytical crack distribution of specimen
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SUMMARY
In this paper the direct iteration method for nonlinear analysis of three-dimensional reinforced concrete
structures is studied. The paper presents a nonlinearity index, which is in term of second invariant stresses
deviator tensor. Much computer time can be saved by using this nonlinearity index. One example is included
and numerical results are compared with the experimental results. The comparison shows that this method

may be recommended for practical use.

RÉSUMÉ
La contribution traite de la méthode d'itération directe pour l'analyse non-linéaire de structures
tridimensionnelles en béton armé. Elle présente un index de non-linéarité, qui est un vecteur de tension de second
ordre. Un temps d'ordinateur considérable peut être économisé en utilisant cet index de non-linéarité.

Quelques exemples sont présentés et les résultats numériques comparés avec les résultats expérimentaux.

La comparaison montre que cette méthode peut être recommandée dans la pratique.

ZUSAMMENFASSUNG
In diesem Beitrag wird die direkte Iterationsmethode für nichtlineare Berechnungen von räumlichen
Stahlbetonkonstruktionen studiert. Der Beitrag stellt einen Nichtlinearitätsindex vor, der die zweite Invariante des

Tensors der Deviatorspannungen verwendet. Mit diesem Index kann viel Rechenzeit gespart werden.

Beispiele numerischer Berechnungen werden mit Versuchsresultaten verglichen. Der Vergleich zeigt, dass

diese Methode der Praxis empfohlen werden kann.
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1. INTRODUCTION

Three dimensional concrete structures are widely used in massive footing of huge
machine, offshore platform, concrete reactor vessel, etc. But its detailed
behaviour under various stress combination has not been full understood. In this
paper the nonlinear finite element techniques are used for analysis of 3-D
reinforced concrete structure from beginning of loading to failure of structure.
In this paper the reinforcement is regarded as a steel membrance in the concrete,
but different constitutive relationships are adopted for two different materials.
The nonlinearity and crack growth of concrete, the yield of reinforced bars are
considered in the analysis. The direct iteration method is used for solving the
nonlinear finite element equation systems, which is quite efficient for the full
range of nonlinear analysis. This method is first proposed by Ottosen [1], Here
this method will be extended to analyse three dimensional reinforced concrete
structure. In Ottosen's model, the nonlinearity index is defined in term of

(Tj/^.in which the interactive calculation is needed to get p In this paper another
nonlinearity index is proposed, which can be directly calculated from the
stress state and have evident geometrical means in stress space.

2. FINITE ELEMENT FORMULATION

Taking into consideration the effect of reinforcement. The eight-node isotropic
element with reinforcement membrance is used. In this case the strain in the
reinforcement is assumed to be the same as the surrounding concrete. Thus two
materials are integrated into a single element but have separate stress-strain
relations. A detail expla-nation can be found in Reference [2]. Here only the
formula which are used in this paper are written as follows.

The stress-strain relation is

IcrM D][g]

where [D] is the material matrix, which is change with the stress level. The
stiffness matrix can be calculated by using standard procedure, i.e.

[Kc]=///v[B]T[Dc][B]dv

where [B] - geometric matrix of solid elements
[Dc] - material matrix of concrete

The contribution of reinforcement membrane to stiffness matrix of element may be
calculated as follows

lKs] t///)[B]r[L]T[Ds][L][B]dA

where [B] - geometric matrix of solid elements
[L] - matrix of coordinate translation
[Ds] - material matrix of reinforced bar

t - equivalent thickness in reinforced direction.

Then the total stiffness matrix of element [K] can be calculated as

[K] [Kc] + [Ks]
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3. CONSTITUTIVE RELATION FOR CONCRETE

From the test of concrete under compressive stresses shows that the nonlinear
strain is existed at beginning of loading and hasn't evident initial yield
surface. On the other hand the stress-strain relation of concrete under triaxial
stress condition has not yet been full understood. In this case the Ottosen's
nonlinear elastic model is available for monotonously increasing load.

In order to evaluate the modulus of elasticity of concrete at different stress
level, three things have been decided upon first, i.e.

(1) The failure criterion of concrete;
(2) The equivalent uniaxial stress-strain formulation of concrete;
(3) The nonlinearity index of concrete.

The failure criterion under triaxial stress state proposed by Ottosen is assumed
in this paper. However, some other failure surfaces, such as Mohr-coulomb,
Drucker-Prager, W.F.Chen, Willianm-Watnke have been implemented in the program.
From the expression of the stress-strain relation under uniaxial loading, the
secant modulus of concrete, Ec, can be determined from the uniaxial expression by
using the nonlinearity index. Here the following expression proposed by Sargin
[4] is adopted:

in which tensile stress and strain are taken as positive. £p is the strain at
peak stress f^ Eo is the initial modulus, and Ep is the secant modulus
corresponding to £ Ep • D is a parameter which mainly affects the descending
segment of the stress-strain curve (Fig. 1). The nonlinearity index ß is defined
as the ratio of 0"/fc' Thus the secant modulus of concrete Ec can be evaluated
as

CT -(Eo/EpXf/fp + CD-lKf/^f
fc l-((Eo/Ep)-2)<£/£)+D(f/^,f

Ec=0.5Eo-£(0.5Eo-Ep)± J [0.5Eo-ß(0.5Eo-Ep) ]2+/5Ep [D(l-p)-l]
where the positive sign is used for the ascending part and the negative sign is
used for desceqing part of the curves.

%

-10

-0.6

0
-4o ' Ç//£po -to -2.0 -3.0

Fig. 1

Under uniaxial loading nonlinearity index (3 is determined by the scalar stress(X
only. How can p be determined under general stress condition? Ottosen suggests
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(Fig.2):

,5=(VÖ-3

X

Osf C5 07 \ 0-

(a)
Fig. 2

(b)

where O3 is the third principal stress
(y# is the failure value of C3 provided 07 and C5 are unchanged.

In order to determine the (5yf the try and error method should be used. In this
paper the ß value is suggested to be calculated as follows:

$=ßrf //jj
where J* is the second invariant of stress deviator tensor

J2f is the failure value provided I, and & keep unchanged.

4. DIRECT ITERATION METHOD

The finite element equation

[K][U] [P]

is a set of nonlinear equations, in which, [U] the total stiffness matrix changes
with the stress level. Here, the "direct iteration method" is developed to solve
the nonlinear equations. The iterative steps are as follows:

(1) Evaluate the first approximate displacement [U, ] with the initial stiffness
matrix [K(].

(2) Calculate the strain of each element from the displacement [U, ].
(3) Calculate the stress for each element.

(4) Calculate nonlinearity index ß

(5) Evaluate the secant modulus of concrete, and form the updated material matrix
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iDc].
(6) Check, the tension cut-off condition: if 0"/ > f' modify [Dc].

(7) Calculate the stress of the reinforcement and check the yielding condition:
if (§ >fy modify the material matrix [Ds].

(8) Calculate the element stiffness matrix [Kc] and assemble the structural
s tiffness [K? ]

(9) Evaluate the next approximate displacement [U2 ] with [K2 ] by

[U2 ] [K2 ]"' [P]

(10) Check the convergence condition: if ll(fw||4£ > stop the iteration and output
the results, where £ is the convergence tolerance; otherwise, replace [U| ]

with [U2], go to step (2), and repeat the procedure.

5. EXAMPLE

The footing structure, Fig. 3, was tested by Nylander. The footing is loaded by a
jack, and fixed to the ground by 12 steel bars. Swedish deformed bars (kamstal)
of type Ks 60 were used as reinforcement. The actual average yield stress is
fy=621 MPa. The amount of reinforcement is 17^8 and 16^8, see Fig. 3, The load-
deflection curve obtained from experiment is shown in Fig. 4. The deflection of
the centre obtained from calculation is also shown in Fig. 6 by a dashed line.
The strain at the centre of the reinforcement is shown in Fig. 5 in which the
solid line shows the experimental result and the dashed line shows the analytical
results by this program.

It can be concluded that the calculated load-displacement curve is in reasonable
agreement with the experimental data that the analytical stress in the centre
reinforcement can reflect the main characteristics of the experimental results.
The calculated failure load is about 117. higher than that experimentally obtained.
It is reasonable for the concrete structure.

Fig. 3
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SUMMARY
A framework model is used for the computer simulation of fracture behaviour of concrete. During the loading
process the model degenerates to total collapse due to the failure of struts. Without delineating the
geometrical correct shape of particles in material structure the model can be used for microscopical or ma-
croscopical studies. The results of the simulation of a uniaxial tension test are presented.

RÉSUMÉ
Un modèle de treillis est utilisé pour la simulation du comportement à la rupture du béton. Au cours du
processus de charge, le modèle dégénère jusqu'à ruine totale par suite de rupture des diagonales. Bien qu'il
ne décrive pas la forme géométrique correcte des particules du matériau, le modèle peut être utilisé pour
des études microscopiques et macroscopiques. Les résultats sont présentés pour la simulation d'un essai
de traction uniaxiale.

ZUSAMMENFASSUNG
Für die Computersimulation des Bruchverhaltens von Beton wird ein Fachwerkmodell benutzt, das durch
das Versagen von Stäben während der Belastungsgeschichte bis zum Totalkollaps degeneriert. Ohne die

geometrische Gestalt der Partikel im Materialgefüge abzubilden, kann das Modell für mikroskopische und

makroskopische Studien verwendet werden. Die Ergebnisse der Simulation eines Zugversuches mit ideal

einachsiger Lasteinleitung werden vorgestellt.
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1 INTRODUCTION

In material research a numerical method is useful not only
in supplying tests of specimens in laboratory, but also
giving realistic informations about the crack opening and

crack growth inside the specimen. In recent years several
models for describing the fracture behaviour of brittle
materials have been put forward. Some authors, e.g. /1/, use a

mesh for FEM which delineates the structure of concrete
exactly. At Bochum another way has been chosen. The model

conception is based on Hrennikoff's /2/ idea of the solution of
linear elastic continuum problems by framework models. This
model allows simulations on micro- and macro levels without
altering the number of elements. Only the strut parameters
are changed due to the alteration of specimen size.

2, MODEL CONCEPTION

The strut arrangement results from the idea of modelling
stress trajectories between equidistant lattice points /3/.
The basis cell is a cube, see fig. 1, with edge struts,
surface diagonal struts and space diagonal struts. The struts
itself behave linear elastic up to given strain rates. On

exceeding the maximum tensile or compressive strain the
affected struts are removed from the system, representing
cracks. Due to the parameter quantification, large displace-

— edge strut
-- surface diagonal strut
- - space diagonal strut

Fig. 1: Basis framework cube
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ments may hardly occur. But in heavily degenerated states
strut series may buckle or snap through. Thus, a fully
geometrically and physically nonlinear analysis of the system
has to be performed.

The basic program system has been developed in 1984 /4/.
Special numerical techniques have been adapted to perform
the simulation analysis on a vector computer effectivelly
and fully automatized. The following variations are possible

:

- 2D/3D simulations
- uniaxial / multiaxial loading
- compression / tension tests
- load / displacement control
- rigid load induction / "weak" load induction
- influence of viscosity
Additionally, the program system allows an implementation of
any material law, e.g. the input of a stress-crack width
diagram, which results from the fictitious crack model of
Hillerborg /5/.

3, MODEL1ING CONCRETE

As mentioned before, the model conception allows to choose

any level of delineating concrete structure /6/. According
to the specimen size the strut parameters have to be

altered. Fig. 2 shows an example for microscopical studies. A

single strut represents the stress flow mainly through an

aggregate particle, another one mainly through the mortar
matrix, and a third one is affected by the bond between

matrix and aggregate. Fig. 3 shows an example for macrosco-
pical studies. With a given aggregate size distribution and

concentration, the three-dimensional composite structure of
concrete is simulated to specify the strut parameters. Since
exact modelling of the real structure is not required, the
strut parameters are stochastically endowed with values by a

computerized random number process.
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Fxg. 3: Example for simulations on a macrolevel

4. EXAMPLE

In this chapter the simulation of an ideal uniaxial tension
test at a square plane framework will be presented. The
concrete is delineated on a macro level. The struts behave
linear elastic without any influence of viscosity. The strut
parameters are only defined by the stiffness, the tensile
strength and the compressive strength. The typical nonlinear
behaviour of the total system is determined only by
degeneration or cracking, respectively. All quantities of the
strut parameters are normally distributed with a variance of
50 %, modelling a very inhomogenous concrete.

The simulation framework consists of 31 x 31 nodes and 3660

struts. The loading acts on the upper edge of the system in
a way, that all nodes on this edge displace equally in
vertical and freely in horizontal direction. The opposite edge
is supported correspondingly. To calculate the
load-displacement path up to the total collapse a displacement
control is used here.



Fig. 4: Results of the simulation of an uniaxial
tension test at a plane framework
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Fig. 4: continued

Fig. 4 shows the graphical interpretation of the tension
test simulation. Load-displacement curve and crack plots for
six selected load levels are given. According to the strut
parameters the first cracks appear randomly. At the unloading

branch several horizontal cracks are visible but only
one crack runs in horizontal direction and marks the failure
mechanism, while the other cracks close just before the
total collapse.

The result of this simulation study shows the general
applicability of the presented framework model for simulations of
fracture behaviour of concrete.
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SUMMARY
After a brief overview of the models currently used for prestressed concrete structures, a model originally
developed by the authors is discussed in detail. Its main goal seems to be the simplicity in which shear
deformations and slippage of the cables are considered.

RÉSUMÉ
Après avoir passé en revue les modèles actuellement employés pour les structures en béton précontraint,
les auteurs présentent leur propre modèle. Le résultat le plus important que l'on peut attendre de ce
modèle est la simplicité dans l'expression de la déformation due à l'effort tranchant et de l'écoulement des
câbles.

ZUSAMMENFASSUNG
Nach einer kurzen Übersicht über die Modelle, die heute für Spannbeton gebräuchlich sind, wird ein von
den Autoren entwickeltes Modell im einzelnen besprochen. Das wichtigste Ergebnis ist, dass Schubverformung

und Kabelschlupf sehr einfach behandelt werden können.
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1. FOREWORD

The design of prestressed concrete structures must satisfy the requirements
of safety and serviceability, as all other kinds of structures.
While this can be accomplished in most cases by following approximate or
empirical procedures, it is also desirable to have refined models which can
trace the structural response throughout their elastic, cracking, inelastic
and ultimate ranges.
The use of these models can be either providing a firmer basis for the codes
and analyzing unusual and complex structures.
The purpose of this paper is twofold: first a brief overview of the
currently used models is given, then some more details are given about a model
developed by the authors.

2. PROBLEMS IN MODELLING PRESTRESSED CONCRETE FRAMES

When dealing with prestressed members any model should be evaluated with
respect to some important and peculiar problems.

Time dependent effects, due either to load history, temperature history,
creep, shrinkage and aging of concrete and relaxation of the prestressing
cables, have the outmost importance because of the character of imposed
deformation of the prestressing action.

Bond between tendons, mortar and concrete is a qualifying point: refined model
should give the possibility of simulating bonded and unbonded tendons, and in
the former case should incorporate a law for the progressive deterioration and
failure of bond connections.

Shear deformations and effects of the prestressing action on shear cannot
always be neglected, particurarly when dealing with deep beams.

Planarity of the section is not guaranteed due to shear and torsions, and is
not respected at all after some slippage between cables and concrete has
occurred.

Connections between elements, mainly beam-column connections, may create
problems to some models, effective for one-dimensional structures.

The constitutive relations are sometime based on well established laws for
concrete and steel, sometimes on the contrary are obtained through euristic
corrections of the usual relations for concrete beams.

Finally computer time and memory may be very penalizing for too refined or
bad conditioned elements.

3. CURRENT MODELS

Models based on quite different ideas are presently implemented to simulate
the behavior of PC beams. The most commonly used ones will be briefly
presented in what follows.

J. 1 Traditional beam elements whith corrections

This is conceptually the simplest and most euristic approach /2/. The usual
moment-rotation relations are used, correcting at each time step the stiffness
of the elements in order to take into account the actual non-linearity.
The prestressing action is introduced as an external force, but the reduction
in stiffness keeps it equivalent to an imposed deformation. The sections are
considered to remain plane, bond and shear are not explicity taken into
account.
Most of the job consist in getting the right correction factors for
cracking, time dependent effects, tension stiffening.
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3.2. Integration of sectional M- (ft relations

A second approach is based on the use of sectional results, obtained normally
through programs which divide any section into layers with different stress -
stain relations. Equilibrium and planarity of the section are then imposed to
get moment-curvature relations 111.
The prestressing action is taken into account prestressing some steel layers,
bond is supposed to be perfect, time dependent effects are usually neglected.
A number of choices is then possible to get the overall stiffness of a beam
element :

1. Each beam can be identified by one or more sections, using constant, linear
or higher order variation of the stiffness properties along the member;

2. The moment-curvature relations can be piecewise linearized, or the actual
M - <j> can be used and the stiffness of each section computed at each step
within the F.E. analysis /!/. In this case the procedure way be very time
consuming.

3.3. Layer and filament models

A beam element is decomposed in a number of straight layers or filament each
of them with a monodimensional stress-strain law which can take into-account
also time dependent effects.
Pretensioned, bonded and unbonded postensioned cables can be simulated, shear
deformations are neglected.
The elements cross sections should have a simmetry in the case of layers
models, can be of any shape in the case of filament models.
The tendons are straight, but not necessarily horizontal within the element
/II/.
4. BIDIMENSIONAL LAYERS MODEL

This model, recently implemented by the authors, differs from the layer model
mainly because of the layers are here modeled as plane stress elements instead
of one-dimensional.
The advantages of such a model may be summarized as follows:
1. the shear deformations are considered, which is particulary important

for deep beams.
2. It is possible to take into account the interactions between axial

action, shear and bending moment.
3. The sections can assume up to a second order polynomial

shape.
4. The number of layers is much smaller than in the case of a mono-

dimensional layer model.

4.1. Analytical Formulation

The adopted approach is the Displacement Finite Element Formulation.
The displacement fields are defined over a bidimensional domain, subdivided
into strips through the height of the beam.
The strain-displacement relations for the Timoshenko beam theory may be
written as:

RR

"RS

^ 36 3u
3R 3R

a 3v
6 +

3R

(1)

Where R and S are coordinates related to a sectional reference system, which
may vary along the beam because of the variability in the shape of the cross
section; u v and are the generalized dislacement components, according to
a classical Lagrangian formulation, referred to an absolute reference system.
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The commonly used Bernouili-Navier formulation, which requires the planarity
of the sections, assumes:

Q dv9
dR (2)

and consequently equations (1) assumes the form:

r - S & +
dU

RR 2 dR
uK

eRS °
(3)

This formulation requires the continuity in C for the discrete variables in
the shape functions: they have to be at least of the third order in R for
v and of the first order for u (see table 1).
The use of the Timoshenko theory gives many advantages and one problem:
- the shape functions have to be continuous in C ° they can be the same

for u, v and 9 (see table 1).
- Three nodes elements can be used, so that curved beams can be

represented, the layers can have curvilinear borders, sensible
modifications in the cross section shape do not give problems.

- The shear deformations are directly taken into account.
- The problem is that the strain tensor components are not of the same order,

so that the shear effects are overestimated when the height of the beam
becomes smaller and smaller.

This difficulty has been successfully overjumped by fictitiously reducing the
degree of Egg an£* setting the Ejjg and the eRg reduced at the same values at the
Gauss integration points.
For the prestressing steel layers the strain displacement relations are
modified as follows:

F =--i§. + -5y.+ c- +
s A"

RR 8R 3R o 3R

e e +
3v ^

RS
0 +

3R

Where e is the initial strain due to prestressing and Au is the slippage
between°cable and concrete after the bond has been destroyed.

4.2. Constitutive Equations

The constitutive equations have to be biaxial for concrete and steel and
have to treat the bond between steel and concrete.
Concrete. The relations presented by Kupfer and Gerstle /8/ have been used.
They separate the hydrostatic and deviatoric behavior:

er 3K e
o o

a 2G yo o

(5)

finding a very good correlation between the experimental results and the
following equations:

G /G 1 - a (T /fcu)mSO ,0 -

-
<Gs o)

T' 0 m - Go/G0 (m.- 1)

(cY0)
S O 7p " (6)
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o (1 - p(c Y)
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where G g and 1Ç. are the secant moduli,
G~ and^j, are the tangent moduli,
G^ Kq, a, m, c, and p are constants given as a
runction of ultimate monoaxial strength feu

The biaxial strength is then given by the expressions:

2
compression-compression (a^/fcu + a^/fcu) + a^/fcu + 3.65 a^/fcu 0

compression-tension c^/ftu 1 + 0.8 yo^fcu (7)

tension-tension a„ f2 tu 0.64 \l f2
V CI

The material stiffness matrix is:
3K - 2G

4G
3K+G
3K+4G

1

3K-2G
2(3K+G)

0

2(3K+G)

1

0
3K + 4G

4(3K+G)

setting y 0 the final relations for concrete are obtained:
9KG

a
1

&PQ

l

°RS
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0

0
r

e
RR

X

eRS

—

(8)

(9)

Steel. The Von Mises plastic potential has been used, with an isotropic
hardening taken from the CEB quintic for prestressing steel:

£g 0.823 (j - 0.77)-
y0.2

£S Ec

°s > -ir2

°s < °-7 -ir2
(10)

By conformity and normality the following expression for the plastic velocity
of deformation is obtained:

H
3f

tj
where

3 a,kl
J -il-kl 3a..ij

(11)

H
1

3f 3f
3e

+ ^ -iX.
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rv^(P) 3a
d£ mn

mn
and

f(a.., £g>, X(êg))) 0

by consistency.

(12)
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With some manipulation the material stiffness matrix is obtained:
Act

RR

Act.
RS

4H 2 4H 2 1

9G RR E RR EG

45°RS+é

4
Hg^ct,,

4 HaRRaRS

4 2 1

Sîa„„ +z

with

H 9.2587534
y'ce /0.823)

3 RR RS 9 RR E

4"

Ae.
RR

Ae.
RS

(13)

f a
yO.2 RR

(0.7 + Ç/e /0.823)

For the ordinary steel hardening has been neglected because it is not usually
reached: the ultimate strain of the prestressing steel is normally lower than
the hardening strain of the ordinary steel.
Its constitutive equation is consequently simply elastic-perfectly plastic.
Bond. The bond between steel and concrete is presently considered as rigid-
plastic, but it could be easily transformed in a multi-linear relation.
At every step the stresses at the border of the concrete layers are checked at
the joint position: if a failure occurs the bond ties are supposed to be
broken.
As a consequence the height variable S for the steel layer is not any more
taken with reference to the N.A.of the section, but with reference to the N.A.
of the layer. In such a way the moment of inertia of the steel layer is not
any more contributing to the whole section moment of inertia.
Moreover a new unknown variable Au (eq.2) is considered, which is the
displacement of the steel layer at the joint where the failure has occumed.
Of course this means that a new row and a new column are inserted in the
stiffness matrix.
Two different strategies are possible, depending on the meaning of Au: it may
be taken as the total displacement of the cable joint or as the displacement
of the cable joint with respect to the deformed position of the section. To

clarify the ideas let's consider a two elements, three joints, two layers
example in the simpler formulation.
The stiffness matrix can be written as follows:

Fu1 ooi* K 0
1,4

0 0 0 0 Ki,io"
—

U1

Fv1 K2,2 K2,3 0 K2,5 K2,6 0 0 0 0 V1

Fei K3,3 0 K3,5 K3,6 0 0 0 0 e1

Fu2 K4,4 0 0 K4,7 0 0 0 u2

Fv2 K5,5 K5,6 0 K5,8 K5,9 0 v2

F02 K6,6 0 K6,8 K6,9 0 e2

Fu3 sym. K7,7 0 0 0 U3

Fv3 CO *8,9 0 V3

F63 *9,9 0 e3

FAu
L _

K10,10 Au

Some significant terms of the stiffness matrix are explicitly given in table
2, before and after the bond failure at joint 2.

5. CONCLUSIONS

The main points to be considered when dealing with modeling P.C. frames are
discussed, showing that a choice should be operated case by case to take into
account the most important effects and to disregard the others.
An original model is presented: it seems to be a good compromise between
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simplicity of calculation and refinement in the material modeling.
The model deals satisfactorily with the problems of bond, shear, connections
and constitutive relationships, but presently disregards the time dependent
effects.
Many simulations of different structure are needed in order to check the
effectiveness of the model; then further refinements might be implemented.
The most important of them seem to be to consider a multilinear law for bond
and to take into account time dependent effects.
A particular problem deals with the constitutive equations for concrete,
estensively discussed in /3/; in the present model it seems to be necessary to
take into account the effect of confinement due to steel.
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Table 2 - Timoshenko formulation: some terms of the stiffness matrix (I layer, 1 joint, (1) element)
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