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SUMMARY

The paper firstly discusses the fundamental behaviour of RC-shells in the ultimate load range which is cha-
racterized by a strong interaction of buckling and strength. It reviews current design procedures, few reported
structural failures as well as RC model tests and finite element formulations for geometrically and ma-
terially nonlinear finite element analyses of RC-shells. Finally a brief description of one specific numerical
model is given. It is applied to the ultimate load and stability analyses of conically shaped cooling towers.

RESUME

Le rapport traite du comportement fondamental des coques en béton armé dans le domaine de la charge de
rupture qui est caractérisé par l'interaction de la résistance moindre du matériau et du voilement. Il pré-
sente la pratique de projet actuelle, quelques cas de dommage et des expériences a I'aide de modéles en
microbéton. Des calculs de coques en béton armé sur la base de la méthode des éléments finis sont pré-
sentés, en tenant compte de la non-linéarité géométrique et matérielle. Finalement un modéle numeérique
est décrit brievement et appliqué aux calculs de charge de rupture et de stabilité des tours de réfrigération
de forme conique.

ZUSAMMENFASSUNG

Der Beitrag diskutiert zunachst das prinzipielle Verhalten von Stahlbetonschalen im Grenzlastbereich, der
durch kombiniertes Beul- und Materialversagen charakterisiert ist. Es wird ein Uberblick gegeben iiber die
gegenwdrtige Entwurfspraxis, einige Schadenfélle, Modellversuche aus Mikrobeton und finite Elementfor-
mulierungen flir geometrisch und materiell nichtlineare Berechnungen von Stahlbetonschalen. SchlieB-
lich wird ein numerisches Modell kurz beschrieben und auf Traglast- und Stabilititsberechnungen von ke-
gelférmigen Kuhlturmschalen angewandt.
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1. INTRODUCTION: BUCKLING OR STRENGTH?

RC - shells are extremely thin structures with radius to thickness ratios from
300 to 800, in particular if they are compared to classical domes or even natyral
egg shells with ratios up to 50 and 100, respectively. Therefore, it is obvious
that each designer immediately is concerned that buckling may be a dominant
phenomenon. However, most engineers have in mind the classical elastic stability
problems when they think of buckling where the failure is usually caused by ex-
treme symmetry in geometry, load, boundary conditions, stress state (uniform
membrane) etc. Typical examples are the diamond shaped buckling of axially loaded
cylinders or the snap - through behaviour of spherical shells under external
pressure. It is natural that problems associated with buckling like imperfection
sensitivity then have to be considered. This is the reason that for many RC -
shell structures elastic model tests have been carried out in order to investi-
gate the safety against buckiing.

The question has to be raised whether this kind of buckling phenomenon can be
met with RC - shells. It is well-known that the material behaviour may have a
severe influence on stability, f.e. in the range of plastic buckling. The strong
interaction can already be seen in the simple formula for classical linear
buckling of shells with double curvature under external pressure:

2
Per,ideal c-E-tY/R -R

2

The buckling load depends on the material stiffness (Young's modulus E), the
thickness t and the Gaussian curvature 1/R1 - R2. The factor ¢ varies from one
shell to the other, it is 1.15 for spheres. Quality and nonlinear behaviour of
the concrete, creep and shrinkage, yielding of the reinforcement enter the
formula via the material property E. The effective thickness is influenced by
cracking, the percentage of the reinforcement and the number of layers (singie
or double). Moreover, creep may drastically change the original shape (flatten-
ing). A1l together these material effects may contribute more to the failure of
the structure than the purely geometrical phenomenon of buckling.

Even if most people call a collapse of a shell structure in analysis, test or
reality a buckling problem it is better to distinguish between the influence of
material and geometrical nonlinearities. Therefore, let us call the collapse of
a shell a buckling phenomenon when it is a finite deformation problem with 1ittle
influence of the material failure and a strength problem when it is just the
other way around (Fig. 1).

p linear 100% PpA
material
m.NL nonlinearity nT.NLNL
+J.
B geometncal S g
—~ nonlinearity
- U u
buckting strength
Figure 1:  Contribution to Collapse

Unfortunately it is often not known in advance in what range the real structure
has to be classified. However, certain parameters exist which qualitatively
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indicate the tendency to the one or the other kind of failure (Fig. 2). Many
practical cases are located in the intermediate range where both effects in-
fluence each other.

symmetry in geometry asymmetric geometry

symmetry in load asymmetric load

global loading localized loading

perfect structure imperfections

smooth boundary cond. nonuniform boundary cond.

no bending bending

pure membrane state tension/compression

compression tension/tension

no cracks cracks (temperature/shrinkage)
Wm 2
/// Pl - 9 2 - =

Figure 2: Buckling versus strength

The purpose of this paper is to review the 1iterature with respect to this topic,
to give some remarks to existing finite element models and first of all to call
attention to this problem.

2.  BASIC NONLINEAR STRUCTURAL BEHKAVIOUR OF RC - SHELLS
An excellent compilation of the current state of understanding of concrete shell

buckling is the ACI publication [1]. But the report also makes clear that be-
yond the classical type of buckling a considerable lack of information exists.

2.1 Current Design Procedures

Most codes on concrete structures only briefly stress the importance of shell
buckling, enumerate several buckling load reducing effects and specify high
safety factor, e.g. 5, in order to indicate the uncertainty of parameters and
analysis (DIN 1045, ACI Standard 318). No details are given how the check
against buckling has to be made. An exception are the IASS Recommendations [Z2]
which are mostly based on the work of Dulacska [3]. The procedure contains five
steps reducing the linear elastic buckling Joad of the homogeneous uncracked
shell to the design load p (Fig. 3).

P .
A ght reduction due to
pgptcreep) creep
deflection
" and geometrical
Per imperfections
AV u . :
Per, reint. reinforcement and cracking
7 pplost . L.
e cr inelasticity of concrete
“““““““““ - p safety factor
’ u

Figure 3: Buckling load according to IASS Recommendation [2]
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The calculation which is essentially based on a local failure criterion does not
cover the realistic situation because it accumulates all effects neglecting their
different interactions. Despite the fact that it leads to a conservative design
the scatter of results may be very large depending on the size of imperfections
assumed. Reduction factors of less than 0.01 are possible. The Recommendations
also address the possibility of one middle layer of reinforcement, a case which
should not be used in practise due to unexpected local bending effects 1ike con-
centrated loading (wind gusts), temperature change etc.

The situation with concrete cooling towers - even though more extensively in-
vestigated - is nearly the same [1], [4), [5]: independent design procedures
against buckling on one side and yielding on the other side determining the wall
thickness and the amount of reinforcement, respectively. The buckling analysis
is mostly based on linear stability analyses or elastic model tests using re-
duction factors to account for imperfecticons, nonlinear behaviour, creep, crack-
ing etc. In addition, high safety factors, e.g. 5, compared to the regular values
of 1.75 for the yielding or the reinforcement, are introduced. In [6] it has
been demonstrated through nonlinear finite element analyses that this discrep-
ancy in safety factors is unrealistic since both effects strongly interact. A
factor of safety 2.8 against buckling is proposed.

Although the more empirical approach is not satisfactory from the scientific
point of view it has nearly always Ted to safe designs. A perfect example is the
Swiss engineer Isier who has built more than 1400 concrete shells without any
failure [7], [8].

2.2 Structural Failures

Very few failures of RC - shells have been reported (Table 1). Non of them can
be attributed to buckling in the real sense. In most cases poor design and/or

Hungary 1954 | EP 19 x 18 m near collapse after 2 years,
[91, [10] shell weakened by small
glass skylights

Ferrybridge, {1965 | cooling towers poor design (membrane theory,
GB working load design, one layer,
no ring reinforcement)

Virginia 1970 | HP-gable shell collapse after 7 years due to

[11] 3T x 31 m creep

Ardeer, 1973 | cooling towers Tow circumference reinforcement,

GB vertical cracking due to thermal
gradients

Latin 1975 | EP 27 x 27 m collapse after 4 days, poor

America concrete quality, significant

[121] geometrical imperfections,

earthquake excitation

Port Gibson, |[1978 | cooling towers damaged by toppling tower

USA crane due to tornado

Berlin 1980 | HP not a shell design, partly

[13] collapsed due to corrosion of
tendons

Table 1: Failures of RC - shells
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manufacturing can be made responsible, so that finally material failure caused
the damage. On the other side there are several examples where well designed
RC - shell structures withstood unexpected loadings, f.e. tornado (Port Gibson,
1978) or earthquake (Mexico, 1985).

2.3 Model Tests

The 1iterature on smail scale buckling tests of shells made of elastic material
or metal is immense. In contrast to this very little information exists on model
tests of RC - shells using microconcrete or mortar with and without reinforce-
ment. In Table 2 some documented experiments are classified with respect to their
kind of failure. This underlines the statements given in Fig. 2. If the structure
is thick the crushing strength is decisive. If certain cracking is possible, for
example due to boundary conditions, a combined buckling/material failure takes
place. The more cracking is excluded and the thin structure is in a uniform com-
pression state buckling becomes dominant. In this case the tangent modulus ap-
proach for buckling can be applied [18]. In [20] the important influence of creep

on instability is stressed,

)
Schubiger ellipsoid (R),| 628 * combined
[14] lateral load buckling/strength
Bouma et al. |cylindrical 100 material failure (bending),
[15] roof (R), small influence of geo-
lateral load metrical nonlinearity
Distefano HP (R}, a) shallow a) buckling with
et al. lateral load material cracking
[16] b) deep b) pure buckling
Haas et al. cylinders (U),| 50 - 120 material failure
[17] axial (crushing)
compression
Griggs cylindrical 238 combined
[18] roof (R), buckling/strength
lateral load
spheres (R), 340 )
ext. pressure
buckling with some
cylindrical 200 ¢ material influence
panel (R),
biaxial
compression y
Miiller et al. | spheres (R), a) 218 - 370 a) material failure
[19] lateral load (bending)
b) 303 perfect | b) material failure
(comp. strength)
Vandepitte spheres (U), | ~ 350 a) combined
et al. external buckling/strength
[20] pressure b) creep buckling
Table 2: RC - model tests (U = unreinforced, R = reinforced, * = r/t)
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2.4  Nonlinear Analyses

Very few existing RC - shells have been investigated by a fully nonlinear analy-
sis taking into account geometrical as well as material nonlinearties. The reason
is that numerical models which are to some extend reliable came up only recent-
1y (see Chapter 3.1). Here few selected examples are mentioned. In the work of
Scordelis and Chan [11], [21] an HP - gable shell is investigated which is
patterned from a real structure. The collapse analysis indicates a strong inter-
action between both nonlinearities; it also points out the severe influence of
creep on the ultimate load.

Significant work on the analysis of cooling towers under dead and wind load has
been reported [4] but, as already mentioned in Chapter 2.1, most is based on
elastic bifurcation and geometrical nonlinear analyses. For example a buckling
criterion, the so-called buckling stress state (BSS), in conjunction with an
equivalent axisymmetric stress approach is proposed in {227. It has already been
pointed out by Mang [23] that this assumption leads to the wrong conclusion that
the structure would fail by buckling due to biaxial compression. Through elabo-
rate materially and geometrically nonlinear analyses of two built cooling towers
the authors in [24], [25] demonstrated that the loss of structural integrity is
caused by cracking of the concrete on the windward side with some subsequent re-
distributions of stresses in the postcracking range. It is rather a material
failure with Tittle influence of large deformation effects than a buckling prob-
tem. This has been confirmed for the same cooling tower in [26] where in addi-
tion the noticeable influence of tension stiffening has been investigated.

For conical type of cooling towers see Chapter 3.2.

3. FINITE ELEMENT MODELS FOR RC - SHELLS
3.1 Review

The brief review is restricted to Targe deformation finite element models of
general RC - shells., It is not considered to be complete. Either flat, curved
shell or degenerated solid elements are applied. Due to the size and complexity
of the problem neither a microscopic nor a macroscopic modelling is used. It is
rather an intermediate type of idealization. That means that neither discrete
cracks, strain localization or individual rebars on one side nor material Taws
defined in stress resultants Tike moment curvature relationships on the other
side are introduced. To the author's knowledge all models use a smeared crack,
layered approach. In each individual concrete layer a 2D stress state is assumed,
in most cases referring to Kupfer's 2D failure envelope. The majority (Table 3)
applies a nonlinear elastic, orthotropic material model introducing the equi-
valent uniaxial strain concept by Darwin and Pecknold. The fact that this semi-
empirical formulation violates invariance requirements seems to be of little
consequence since the principal stress direction does not rotate very much.
Nearly all models assume a tension stiffening effect, either referred to the
concrete or to the steel and use a fixed or variable shear retention factor after
cracking. The steel layers always have uniaxial properties based on a bi- or
multilinear stress - strain curve with hardening and elastic unloading. Large
deformation effects are covered in the conventional way as in elastic analysis.

The assumption of a 2D stress state is certainly justified for most shell prob-
lems in which the load is mainly carried by membrane action. But it has to be
noted that certain limitations exist: A1l stress states which deviate from the
2D situation like concentrated loading or Tocalized support conditions cannot be
properly analysed. For such local problems the design anyway requires special
care, f.e. stirup reinforcement. In this case it is necessary to increase locally
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the strength reflecting the existence of confined concrete. Otherwise premature
failure occurs. Another possiblity is to resort to a 3D concrete model.

ref. material | tension extras
model stiffening
Ghoneim/Ghali [33] NE C prestress, creep,
shrinkage
Arnesen/Bergan {28] EC = combined tensile

strain/stress, cri-
terion f. cracking

Floegi/Mang [24],[29] | NE 5 influence of stress
{bond slip) | gradient

Chan/Scordelis [21]1,[11] | NE S creep, shrinkage

Kompfner/Ramm [3071,[31] | NE C -

Figueiras/Owen [32] P c w. & w/0 hardening
(Kupfer)

Milford/ [26], [27] | NE S rotated crack model

Schnobrich

Cervera/Abdel [34] p C rotated crack model

Rahman/Hinton (v.Mises)

Table 3: Large deformation RC - shell models
(NE: nonlinear elastic model, EC: endochronic model,
P: plasticity model, C/S: concrete/steel referred)

3.2 Present Model

The present model is described in detail in {30], see also [31]. The main char-
acteristics of the formulation and the concrete model which is essentially an
extended Darwin/Pecknold model are summarized in Tables 4 and 5.

formulation arbitrarily large deformation, material mode (T.L.),
incremental/iterative

iteration scheme | standard, modified, quasi Newton,
load-, displacement-, arc-length-control, line search

shell element isoparametric displacement model, degenerated solid,
linear, quadratic or cubic interpolation (serendipity,
Lagrange), full or reduced integration (Gauss),
Tayered model (Simpson's integration)

material model concrete: short time, nonlinear elastic, orthotropic,
equivalent uniaxial strain concept (Darwin/
Pecknold), tension stiffening

steel: smeared layers with uniaxial properties,
multilinear, elasto-plastic, isotropic
hardening

Table 4: RC - shell element formulation [30], [31]
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The failure envelope renders the 1imit stresses ojc for each stress ratio a. To-
gether with the 1imit strain ej. taken from test results it defines the cor-
responding stress - equivalent uniaxial strain curve, from which the material
stiffness Ei is taken. In the finite element formulation nonproportional Toading
in each individual point cannot be avoided. In this case the stress - strain
curve for that point varies. Ej is found according to the actual stress instead
of the actual uniaxial strain; in the descending portion E; is set to zero.

si“‘ﬂEo Saenz - curve
stress~equivalent Oic )
uniaxial strain E; linear strain softening
curve in A ;
compression —0.2-f¢
-
Eic Le. "
0y
Ifed
s 5 5 P
biaxial failure - A
envelope T2 Ao ds -0 0 o2 ] [0z o

(Kupfer/Gerstie)

Tensile
.. failure

a=-017

~Compressian
-12 failure
Gh

nd

cracking 1%' crack 2" crack
S
max C; = f, open | 6l B s B .=
fixed crack Eiz 0 }4?0 15E =0
approach !
3 ' — max Gj = fi
\;l,r" closed ‘i,{'" } Ej= 0)

tension stiffening ;ouding unioading reloading
i
fj&_ T&_
E.
Eo 1
constitutive
matrix for @ 6330 ;i €5,=0
shell element N/ :
Ciranevarse = ® anplane

Table 5: Concrete material model

Cracking follows the usual maximum principal stress criterion. Tension stiffen-
ing is included in a straightforward way. In the locally defined constitutive
matrix the zero stress/strain condition is enforced. The inplane and transverse
shear moduli are automatically adjusted according to the incremental orthotropic
material tensor.
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4. NUMERICAL EXAMPLES

In [30] ultimate load analyses of cylindrical roof shell and an HP-gable shell
are described applying this model.

Recently in two power plants near Stuttgart two so-called hybrid (dry/wet) cool-
ing towers have been built (Figures 5 and 7). Both towers with different size
consist of a conventional (frame/ring wall) base structure with many openings and
a shell shaped as a conical frustum, the Tatter being investigated in the fol-
lowing study, for details see [35]. The shell thickness is 16 c¢cm (30 cm) for
tower I (II); only in the lower part 3.06 m (4.50 m) it is increased to 30 cm
(50 cm). In each production cycle one quarter section with a height of 1.45 m
is poured. The extreme loading is dead load, wind - taken constant along the
meridian - and concentrated loads at the free edge due to scaffolding on 90° with
added Tife load and fresh concrete. Preliminary studies have shown:

*  The structural response is completely different from that of conventional
hyperbolic cooling towers,

*  The critical period is the phase before the upper ring is built, leading to
a free edge boundary condition at the critical height hgy.

*  The concentrated loading at the top could be localized at the free edge in
order to simplify the input data.

* Llinear elastic buckling analyses restricted to axisymmetric modes lead to
unrealistic high buckling loads.

*  The results are almost not influenced by the boundary conditions of the lower
edge (clamped or hinged).

The material properties of both towers are given in Figure 4.

61,
3 ft - 3000 fy=[o20000 1
7\- - E=3.108
€.t = 0.002
+ f +|€|
0.002 0.005
steel
- fe = 25000
7
=31 10 mm 14 mm
=0 _:(3320 ho.c’p"_—‘f ,'4‘¢ 3 j'{
v =L remf.l-/- -J
concrete g —> = et
20 20cm s s tm
tower 1 tower I1

Figure 4: Material properties [kN/m?]

4,1 Cooling Tower 1 (Altbach)

The base structure of the small tower (Fig. 5} could be considered as very stiff.
Therefore, clamped boundary conditions at the lower edge are introduced. As a
conservative approach uniform thickness and axisymmetric loading is assumed.
Linear elastic buckling analyses lead to a critical load factor A = 15.7 with
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40.5m
e
" 7 E
= n
16cm L: =
~66° ™ L
1 ¥ <
i ]
: ! E
t-
T S
: o~
+
- €0m —— scaffolding loading [kN;m]

Figure 5: Cooling tower I (Altbach)

a buckling mode of 8 waves in hoop direction concentrated near the free edge.
The corresponding stresses are far beyond the compressive strength of the con-
crete. A geometrically and materially nonlinear axisymmetric analysis of the
perfect shell resulted in a failure load ¢ + 5.4 {(w + ¢). The load factor is re-
duced to 5.0 if tensile strength and ultimate strain are reduced (fy = 10 kN/m2;
eut = Tt/ Eo). Next nonsymmetric geometrical imperfections corresponding to
the buckling wave pattern (n = 8) with a maximum amplitude of = 5 c¢m are intro-
duced. One half wave sector is modelled, assuming a reduced Young's modulus
Eo= 2.8 - 107 kN/m? for the upper 1.4 m and tension cut-off (fo=10 kN/m2; eyt =0).
These extreme conditions lower the load factor to 4.3 (Fig. 6). Cracking is con-

centrated to the upper ring portion.

e 54 fy = 3000; €, = 0002
' 2 o 50
L Vi '4 3 ] ft =10
5= 401 i V— ) gy= 0
So e
F ~
=2 Ad — axisymmetric, perfect
o< 2071 i —= nonsymmetric,imperfect
o4& B
max. displacement at free edge

10 2.0 3.0 [cm)

Figure 6: Load displacement diagram

4.2 Cooling Tower II (Neckarwestheim)

In contrast to tower I the base structure of cooling tower II (Fig. 7) is very
flexible. Despite its size and dimensions it is a relatively slender contruction
in which many precast elements are incorporated. Therefore, the shell itself has
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Figure 7: Cooling tower II (Neckarwestheim)

a lower ring beam (4.00 x 0.75 m; Ag = 482 cm?), but already under dead Toad the
beam is partly cracked (state I1) so that a reduced membrane and bending stiffness
is introduced for the linear buckling analyses (EIT/EIIT = 4.4; EAL/EAIL = 8.5).
Assuming that the ring/shell structure is hinged and radially as well as tangen-
tially unrestrained - i.e. neglecting the stiffness of the base structure - a
linear buckling analysis with axisymmetric loading leads to bifurcation loads

6.17. (g +w + c) or g + 13.50 (w + c) with five buckling waves in hoop direction.
In this case a nonlinear study of a half wave sector of the imperfect shell - as
for tower I - did not reflect the real situation since unsymmetric loading of wind
and scaffolding causes considerable inextensional deformations (ovalization) due
to the flexible base. Therefore, one half of the shell was modelled by a non-
uniform mesh 15 x 32 eight-node shell elements and 32 quadratic beam elements
for the edge beam which are compatible to the shell elements. Again the bending
stiffness of the edge beam is reduced to that of state II; the membrane stiff-
ness is restricted to the steel reinforcement alone. Regarding the different age
of concrete the Young's modulus of the upper portion (2.9 m) of the shell is
Towered by 20 percent. Now the base structure is simulated by radial and tangen-
tial springs at each node. The spring stiffnesses of ky = 25675 kN/m and k¢ =
8190 kN/m taken from a preliminary linear study of the entire structure under
unfavourable conditions have been found essential for the safety of the struc-
ture. The concentrated load ¢ of the scaffolding over a 90°-sector was located
at the free edge on the windward side. Wind load and suction in hoop direction
are defined in the following way:

w o= (cp-1.01 + 0.53) kN/m?
1 - 2.1 «[sin (0-90/71)]" . 0 < 19| £ 71°
with cp = 1 -1.1+ 0.6 [sin (90 - 71) - 90/22] 71° < 10| £ 90,4°
-0.5 90,4° < 10| < 180°
n =2.395

The wind load is assumed constant along the meridian. Geometrical imperfections
correspoding to the first buckling mode with a maximum horizontal amplitude of
* 10 cm were superimposed. For this a linear buckling analysis of the structure
under nonsymmetric loading assuming a fixed lower boundary has been performed.
Few circumferential waves are concentrated at the windward compression zone. In
Figure 8 two materially nonlinear analyses with and without large deformation
effects are compared indicating the considerable influence of the geometrical
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Figure 8: Load displacement diagram/ failure mode

nonlinearity. The ultimate load is g + 2.70 (w + ¢c). The ovalization of the
entire shell can be seen in the failure mode (Fig. 8). A supplementary study with
imperfections of + 15 cm and a different loading sequence rendered an ultimate

load of 1.45 g + 1.45 w + 2.51 c.

According to Figures 1 and 2 tower I could be classified as a primary strength
problem whereas due to the flexible base structure tower II is located in the
combined buckling/strength range.

5. CONCLUSION
The present study has shown:

* The knowledge of the fundamental response of RC-shells in the ultimate
load range is still limited. Therefore, the question of reliable safety
factors against failure is not yet answered.

* The current design procedures with a more or less empirical coupling of
buckling with material failure is unsatisfactory.

* Elastic buckling analyses or tests are of limited value for RC-shells.
They are necessary but not sufficient.

* The current development of numerical oriented RC material models including
large deformation effects are a promising alternative to the current pro-
cedure.

* High quality of analysis based on conservative assumptions in loading, im-

perfections, boundary conditions, material properties allows to reduce
safety factors against failure, e.g. to 2.5. However, these analyses are
still expensive and need a lot of experience.

Further research is needed

* to gain further information on the basic nonlinear structural behaviour
of RC - shells and

* to further improve existing or to develop new nonlinear material formula-
tions.
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SUMMARY

Recent advances in smeared crack modeling and computational techniques for concrete structures are re-
viewed. Special attention is given to the issue of stability and uniqueness in numerical computations of
strain-softening concrete. Techniques for overcoming bifurcation and limit points are discussed whereby spe-
cial attention is given to cases with highly localized failure modes. The techniques are applied to some rein-
forced and unreinforced concrete structures.

RESUME

Les progrés récents dans la modélisation des fissures homogénéisées et les techniques de calcul a 'ordi-
nateur pour les structures en béton sont passés en revue. Une attention particuliére est portée au cas de la
stabilite et de I'unicité, dans de nombreux calculs, du béton se plastifiant sous contrainte. Des techniques
pour résoudre les problemes de bifurcation et de points limites sont discutées et une attention particuliére
est portée aux cas de modes de rupture hautement localisés. Les techniques sont appliquées a certaines
structures en béton armé et non-armé.

ZUSAMMENFASSUNG .

In diesem Beitrag wird eine Ubersicht iber neue Entwicklungen der ausgeglichenen Rissbildung und Re-
chenverfahren fiir Betonkonstruktionen gegeben. Hauptaugenmerk wird gerichtet auf Stabilitat und Eindeu-
tigkeit in numerischen Berechnungen von entfestigendem Beton. Ldsungsmethoden zur Vermeidung von Bi-
furkation und Grenzwerte werden diskutiert fiir hochstbelastete Bereiche. Die Methoden werden auf einige
bewehrte und unbewehrte Betonkonstruktionen angewandt.



162 STABILITY AND UNIQUENESS IN NUMERICAL MODELLING A

1. INTRODUCTION

Concrete is a very complicated material because of its heterogeneity, the presence of rein-
forcement, the low tensile strength, the change in properties when it matures, and so on. It is
therefore not surprising that predictions of the mechanical behavior of concrete structures
still suffer from a lack of reliability. Nevertheless, the discrepancy between analytical results
and the real behavior is often greater than necessary when considering the current level of
sophistication of testing procedures, constitutive models and computational technigues.
Significant, and in some areas seemingly insurmountable difficulties persist, but progress has
definitely been made in analyzing concrete structures with aid of finite elements.

It is the purpose of the present paper to give an overview of some recent achievements of the
DIANA-group in constitutive modeling and the application of computational techniques to con-
crete structures. The review is by no means intended to be exhaustive, and important issues
like for instance time-dependent behavior [11,13] or bond-slip behavior [27] will not be treated.
The main topics which will be considered, are smeared crack modeling and issues regarding
stability and uniqueness of computations for concrete structures. 1t is recognized that the
crack model, which we will henceforth refer to as the DIANA-crack model, has been treated
extensively in previous publications [7,8,10,13,26,29], but because crack formation plays such a
pivotal role in the behavior of concrete structures, there may be some justification in briefly
reviewing the main concepts of it before discussing issues regarding stability and uniqueness.

2. MODELING OF SMFARED CRACKING

The fundamental feature of the employed smeared crack model is a decomposition of the total
strain rate into a concrete strain rate £° and into a crack strain rate £ (e.g., also [4,22]):

é:i;co +écr (1)
The concrete strain rate itself may also be composed of several contributions e.g., an elastic

part and a viscous part. Similarly, the crack strain rate &’ may be decomposed into several
contributions:

ETSESTHESTH .. (@)

where £]7 is the strain rate of a primary crack, &5 is the strain rate of a secondary crack and
so on. Combining eqgs. (1) and (2), we obtain

= HETHES H e, (3)

The relation between the strain rate of a particular crack {either primary or secondary) and
the stress rate is most conveniently defined in the coordinate system which is aligned with the
crack. This necessitates a transformation between the crack strain rate €5 of crack n in the
global z,y,2-coordinates and a crack strain rate €, which is expressed in local coordinates.
Restricting the trealment to a two-dimensional configuration (which is not essential), we
observe that a crack only has a normal strain rate €,; and a shear strain rate 75, so that

e=(es" w7 (4)
where the superscript T denotes a transpose. The relation between &5 and €5 reads
En =Npe; (5)
with
cos®9, —sin,, cosv,,
N, = sin®y,, sin?d,, cosd, (6)

: 2 )
2sind,, cosv, cos“d, —sin“d,

where ¥, is the inclination angle of the normal of crack 7 with the x-axis. Substitution of eq.
(5) in eq. (2) gives for multiple cracks
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E"=N,e{"+Ne5"+......... .. (7)

For the derivation of the stress-strain law of the system of cracks and concrete, it is con-
venient to assemble all the crack strain rates which are expressed in their own local coordinate
system in a vector €7,

eT=(e5 YT 65" Y. i (8)
When we also introduce the matrix N,

N=[N Ny oo (9
we observe that we can rewrite eq. (7) as

£ =Ne®" (10)
In a similar way, we can define a vector s,

$n=(s; £)7 (11)

with §, the normal and f,, the shear stress rate in crack 1o of the integration point. The vector
S which assembles all stress rates with respect to their own local coordinate system then
reads:

$=($; £y Sp o b (12)
and the relation between the stress rate in the global coordinate system ¢ and the stress vec-
tor & can be derived to be

S'ZNT'O' (13)

To complete the system of equations, we need a constitutive model! for the intact concrete and
a stress-strain relation for the smeared cracks. For the concrete between the cracks we
assume a relationship which has the following structure

=D £°° (14)

where the matrix D contains the instantaneous moduli of the concrete. The formalism of eq.
(14) can be extended to deal with phenomena like thermal dilatation, shrinkage and creep
[11,13], but this will not be pursued in the present paper. In a similar way, we can define a
relation between the crack strain rate e, of crack n and the stress rate S, in that crack. In
this paper, we will assume a relation which formally reads:

S,=Drles’ (15)

with D§7 a 2*2 matrix. For the derivation of the stress-strain relation of the cracked concrete,
it is again convenient to assemble all the matrices Df’ in a matrix D7,

ps o ...
pr=lo DY ... (16)

r

so that the relation between § and €7 reads

s=DTe®" (17)

Using eqgs. (1), (10), (13), (14) and (17) we can obtain the compliance relation for the cracked
concrete:

é:{cw +NC°’NT}6 (18)

with €°=(D)"! and C" =(D°")~! the compliance matrices of the concrete and the cracks
respectively. With aid of the Sherman-Morrison-Woodbury formula we can also obtain the
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stiffness relation
t'r___[Dco —eo N[Dcr +NTDCON]—]NTDCO & (19)

The success of this multiple crack model is contingent upon a proper formulation of the consti-
tutive matrix
[
iy o
= 20

"o\DE D
for the smeared-out cracks. Fortunately, in many concrete structures the crack strains are so
small that coupling effects between the normal crack strain and the shear stress, or between
the shear crack strain and the normal stress can be disregarded, so that we may set the ofi-
diagonal terms in eq. {20} equal to zero (D§3=0 and D35]=0). If, such as in crack-dilatancy
models [4,32] or in jointed rock masses [2], D% and D§] can not be assumed to vanish, we face
significant additional difficulties, since the values for {5 and D5] generally differ consider-
ably. This implies that I} becomes nonsymmetric, which also destroys the major symmetry of
eq. (19). Apart from the fact, that this leads to significantly larger CPU-times, it also has conse-
quences for the stability of the model, as will be briefly discussed in the sequel of this paper.

The tangent modulus D§] represents the relation between the normal crack strain rate and the
normal stress rate. In practice, DY} is negative as we normally have a descending relation
between §,, and €,. However, the evaluation of D} from test data entails a complication, as
recent research [5,21] indicates that a straightforward translation from experimental data in a
value for Dj] leads to results which are not objective with regard to mesh refinement. To over-
come this problem, it has been proposed to consider the fracture energy Gf [5,21] as the fun-
damental parameter which governs crack propagation. It is beginning to emerge gradually that
this so-called '"tension-softening’ model is not free from deficiencies. This is particularly so
when we allow for the possibility of multiple cracks. Suppose that a primary crack has been
created with a Df] determined from the fracture energy Gy. If upon formation of a secondary
crack the same crack stress-strain relation is adopted for the second crack, the fracture
energy will be consumed twice. If both cracks are orthogonal to each other, this is not unrealis-
tic, but for any other inclination angle it seems incorrect. Hence, the concept of a fracture
energy as outlined above does not seem to suffice for multiple crack formation. Indeed, a solu-
tion in which the fracture energy is distributed over both cracks is not correct as the fracture
energy Gf is not a scalar, but a vector although this does not seem to have been recognized
widely.

The shear modulus D§5 of the crack is usually assigned a constant value. This leads to the ano-
maly that for very large crack strains we continue to compute an increase of the shear
stresses transferred across a crack, which may result in shear stresses of more than 15
N/mmz. A shear-softening model, quite similar to the tension-softening model, has recently
been proposed to remedy this anomaly [29]. Deployment of this model resulted in a major
improvement for some unreinforced shear beams, especially in the post-peak regime.

It is finally noted that the structure of eq. (19) is quite similar to the structure of an elastoplas-
tic stiffness tensor at a yield vertex. Indeed, any constitutive law in which a decomposition in
the sense of eq. (1) is assumed, will lead to an equation with a similar structure. This holds true
for a yield vertex in which two yield surfaces are active, but for instance also for the intersec-
tion of a yield surface and a fracture surface [13,14].

3. STABILITY AND UNIQUENESS OF DISCRETE MECHANICAL SYSTEMS

A body is said to be in a state of stable equilibrium if the response on a vanishingly small dis-
turbance also remains vanishingly small [20]. This condition is usually replaced by the condi-
tion that
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U=[eTaav (21)
v

is positive for all kinematically admissible strain rate fields &, while the equilibrium is unstable
under dead loading if U becomes negative for at least one kinematically admissible strain rate
field. Although it has not been proved rigorously for all classes of constitutive models that the
criterion that the second-order work (eq. 21) is positive, is indeed equivalent to the abovemen-
tioned definition, it seems to be a reasonable hypothesis.

For an incrementally-linear constitutive model,

o=De& (22)
with D the matrix which contains the stiffness moduli, eq. {21) can be replaced by
U= [¢TDe av (23)
4

Since we have, for the skew-symmetric part of I}, i:T[D - T]é=0, we can write eq. {23) also as
U=L[eT[D+DT)¢ aV (24)
v

Consequently, stability under dead loading is no lenger assured if

SeT[D+DT)é dv=0 (25)
14

for at least one kinematically admissible &.

To investigate the implications of the stability reguirement U>0 for discrete mechanical sys-
tems such as arise in finite element applications, we divide the continuum in an arbitrary
number of finite elements, and we interpolate the continuous velocity field » as follows:

v=Ha (26)

in which the matrix H contains the interpolation polynomials and & is a vector which contains
the nodal displacements (e.g., [3]). The relation between the velocity field ¥ and the strain rate
& can formally be written as

e=Lwv (R7)

with L a matrix which contains differential operators. The relation between the nodal veloci-
ties and the strain rate then becomes

e=Ba (28)
where the notation B=L H has been introduced.

With the notations and the definitions of the preceding, we can rewrite the stability condition
(23) as

[a"BTD Badv>0 (29)
14
for all kinematically admissible velocity fields @. With the notation

K=[BTDBdV (30)
14

for the tangent stiffness matrix of the underlying system, we obtain that the stability of the
equilibrium of a discrete mechanical system becomes critical if

a’Ka=0 (31)
for at least one kinematically admissible vector @. This condition is satisfied if
det(K)=0 (32)

which according to Vieta's rule,
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n
det(K)=11 A, (33)
with A; the eigenvalues of K, implies that at least one eigenvalue vanishes. For symmetric sys-
tems, eq. (32) is not only a sufficient, but also a necessary condition for eq. {31) to hold. How-
ever, for nonsymmetric matrices K eq. {(31) may also be satisfied when @ is orthogonal to Ka.
Hence, the vanishing of det(K) or alternatively, the vanishing of at least one eigenvalue of K
implies that the equilibrium is in a critical state, but for nonsymmetric systems this critical
state can also be attained when all eigenvalues of the tangent stiffness matrix of the underlying
solid are non-zero. Put differently, the positiveness of the eigenvalues of K is a necessary, but
not a sufficient condition for stability of a mechonical system which is gaverned by a nonsym-
metric matrixz K.

Let us next consider eq. (25). i.e., the case that we have removed the skew-symmetric part
from the functional of eq. (23). Then, we obtain that the equilibrium of a discrete mechanical
system becomes neutrally stable if

dT[K+KT a=0 (34)
for at least one kinematically admissible velocity field. Since K+KTis symmetric, this condi-
tion is satisfied if and only if

det(K+KT)=0 (35)

or equivalently, U vanishes if and only if an eigenvalue of K+K T vanishes. Consequently, the
positiveness of the eigenvalues of the matriz K+ K Tisa sufficient and necessary condition
for the stability of a discrete mechanical systemn which is governed by o nonsymmetric tangent
stiffness mafrizr K. For the limiting case of a symmetric stiffness matrix we recover the classi-
cal notion that we have stability when all eigenvalues of the tangent stifiness matrix K of the
underlying solid are positive.

With regard to uniqueness of solution, we observe that incremental equilibrium must be com-
plied with at each instant in the loading process

[BTadv=iq" (36)
1 4

In it, [t is the loading rate, and q ’ is a normalized load vector. Suppose that there would be
another stress rate distribution, which would result from the loading rate f& and which would
also satisfy incremental equilibrium. The difference A& of both stress rate distributions would
then satisfy the condition that

[BTAsdv=0 (37)
14

With egs. (22), (28) and (30), we can rewrite eq. {37) as

KAa=0 (38)
with Aa the difference between both velocity fields. A non-trivial solution may then exists if
and only if

det(K)=0 (39)

or equivalently, if at least one eigenvalue of K vanishes. If a non-trivial solution indeed exists,
such a point is commonly named a bifurcation point. Several equilibriurn branches ernanate
from such a point. There is yet another possibility that det(K) vanishes. If the load reaches a
maximum, j4 vanishes, and eq. {36) reduces to

Ka=0 (40)

so that for a non-zero vector & we also find that eq. (39) must be fulfilled. The latter possibility
is called a limit point.
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In passing from eq. {37) to eq. {(38) it has been tacitly assumed that both strain rates are
related to stress rales by the same matrix of (tangential) moduli £). For elastic-plastic or
elastic-fracturing solids, where we have different behavior in loading and unloading, this is not
necessary. Strictly speaking, we have to investigate all possible combinations of loading and
unloading for such a multi-valued constitutive law in order to determine whether eq. (37) holds
true for some Aa.

For nonsymmetric stress-strain laws, the situation is even more complicated, since
det(K+KT) may vanish prior to the vanishing of det(K). Hence, loss of stability may precede
loss of uniqueness of solution for solids with a nonsymmetric stress-strain relation.

Although there seems no convenient procedure available to determine whether a solution is
unique or not, the presence of negative eigenvalues of the tangent stiffness matrix K con-
versely clearly indicates the existence of alternative equilibrium branches or the fact that we
have passed a limit point. In the case that we have passed a limit point, which implies that the
load is descending, we find one negative eigenvalue which is associated with the descending
branch. The other possibility is that the negative eigenvalues belong to alternative equilibrium
states so that we have passed a bifurcation point. Again, two possibilities arise, since the basic
path after bifurcation may be ascending or descending. If it is still ascending, all the, say m
negative eigenvalues can be associated with ™ alternative equilibrium states which can in prin-
ciple be reached via a suitable combination of the incremental displacement vector of the
basic path and the corresponding eigenvector, as detailed in the next section. If the basic path
is descending after passing a bifurcation point, one negative eigenvalue is associated with the
descending basic path, while the remaining negative eigenvalues correspond to m -1 alternative
equilibrium states.

A final remark addresses the question whether the alternative equilibrium states are indeed
accessible. If a mechanical system is undergoing a continuous process, such an alternative
equilibrium state can only be reached via an equilibrium path. If a bifurcation point has been
passed and the system is on a path of unstable equilibrium thereafter, it will continue on this
unstable path because other equilibrium states cannot be reached under dead loading condi-
tions. If a temporal discretization of the loading process is employed, i.e. if the loading pro-
gram is subdivided into a number of finite intervals, alternative equilibrium states can also be
reached via non-equilibrium paths, because we then essentially deal with equilibrium states
and not with equilibrium paths. In fact, we obtain a sequence of non-equilibrium states when
iterating to a converged solution. An example of reaching a new equilibrium state via a number
of non-converged states will be given at the end of this paper.

4. NUMERICAL APPROACH FOR POST-BIFURCATION AND POSTFAILURE BEHAVIOR

In numerical applications, the lowest eigenvalue will never become exactly zero because of
round-off errors. Rather, we monitor the sign of the eigenvalues of the tangent stifiness matrix
and when we encounter a negative eigenvalue while the load is rising, or when we compute
more than one negative eigenvalue while the load is descending, we conclude that we have
passed a bifurcation point.

Continuation on an alternative equilibrium branch can then be forced by adding a part of the
eigenmode %4, which belongs to the vanishing eigenvalue, to the incremental displacement
field of the fundamental path Aa” [8,12,24]

Az =Aa " +fBv, (41)

with B a scalar. The magnitude of § is fixed by second-order terms or by switch conditions for
elastoplasticity or for plastic-fracturing materials. The most simple way to determine 8 numer-
ically is to construct a trial displacement increment Aa such that it is orthogonal to the basic
path:

AaTAa =0 (42)
Substituting eq. (41) in this expression yields for Aa
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(Ax’)TAa’
v, {43)
(Aa*)Tw,
Eq. (43) fails when (Am*)Tw;=0, i.e., when the eigenmode is orthogonal to the basic path. A
simple remedy is to normalize Am such that [8,12],

An=Aa’-

(Auv)TmtzAuTM (44)
or to put
Aa’=VAaTAawv, (45)

in such cases.

In general, the bifurcation path will not be orthogonal to the fundamental path, but when we
add equilibrium iterations, the orthogonality condition (42) will maximize the possibility that
we converge to a bifurcation branch and not to the basic path, although this is not necessarily
the lowest bifurcation path when there emanate several equilibrium branches from the bifurca-
tion point. When we do not converge on the lowest bifurcation path, this will be revealed by
negative eigenvalues of the stiffness matrix of the bifurcated solution. The above described pro-
cedure can then be repeated until we ultimately arrive at the lowest bifurcation path.

The procedure described in the preceding is well suited for assessing post-bifurcation behavior.
Bifurcations however are rather rare in normal structures owing to imperfections, and even if a
bifurcation point exists, numerical round-off errors and spatial discretization usually transfer
the bifurcation point into a limit point unless we have a horogeneous stress field.This observa-
tion does not render the approach to bifurcation problems worthless as it provides a thorough
insight which is of importance for the associated limit problems, but it is obvious that numeri-
cal procedures must also be capable of locating limit points and tracing post-limit behavior.

In a nonlinear finite element analysis, the load is applied in a number of small increments (e.g.,
[3]). Within each load increment, equilibrium iterations are applied and the iterative improve-
ment 8a&; in iteration number i to the displacement increment A&, _, is given by

sa. =K.\ [pi s +0ug’

K, _, is the possibly updated stiffness matrix, Ay; is the value of the load increment which may
change from iteration to iteration and p,_, is defined by

(46)

Pior=hoq "~ f BT o;-dV (47)
In (47), the symbols g and 0;_; have been introduced for the value of the scalar load parame-
ter at the beginning of the current increment and the stress vector at iteration number i -1.

The essence of controlling the iterative solution procedure indirectly by displacements, is that
da,; is conceived to be composed of two contributions

Sa, =da/+Au; Sl (48)
with

da;=K | p,_, (49)
and

ba/'=K\ q" (50)

After calculating the displacement vectors 60.,—1 and Ja.,-”, Ae; is determined from some con-
straint equation on the displacement increments and Am,; is subsequently calculated from

Aa;=An, ,+da; (51)

Crisfield [15] for instance uses the norm of the incremental displacements as constraint
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equation

AalAa; —ALR (52)
where Al is the arc-length of the equilibrium path in the 7 -dimensional displacement space.
The drawback of this so-called spherical arc-length method is that it yields a quadratic equa-
tion for the load increment. To circumvent this problem, we may linearize eq. (52). yielding
[23]):

AalAa; =M7 (53)
This method, known as the updated normal path method, results in a linear equation for the
load increment. With the additional approximation [8,12]

6a;~2(Ax; —Az; o) (542
we obtain for Au;:
Aa/, daf
A= — W (55)

Both egs. (52) and (53) have been employed successfully within the realm of geometrically non-
linear problems, where snapping and buckling of thin shells can be traced quite elegantly.
Nevertheless, for materially nonlinear problems the method scmetimes fails, which may be
explained by considering that for materially nonlinear problems, failure or bifurcation modes
are often highly localized. Hence, only o few nodes confribute to the norm of displacement
increments, and failure is not sensed accurately by such a global norm. As straightforward
application of egs. {52) or (53) is not always successful, we may amend these constraint equa-
tions by applying weights to the different degrees of freedomn or omitting some of them from
the constraint equation. The constraint equation (53) then changes into

Auhu, =Al2 (56)
where Au,; contains only a limited number of the degrees of freedom of those of Aa;, and eq.
(55) changes in a similar fashion. The term "arc-length" control now no longer seems very
appropriate, and the term "indirect displacement control” is probably more suitable. The
disadvantage of modifying the constraint equation is that the constraint equation becomes
problem dependent. As a consequence, the method loses some of its generality and elegance.

5. EXAMPLES

We will now illustrate some of the procedures discussed in the preceding by a few examples and
we will begin with the simple case of an unreinforced bar loaded in pure tension. This example
has been used before by other researchers [18], but so much insight can be gained from it,
both in a theoretical and in a numerical sense, that we will again resort to it. The bar is
modeled with m elements and is composed of an elastic-softening material with an ultimate
strain &, at which the tensile strength has vanished completely. £, is assumed to be equal to
T times the strain at the tensile strength. A perfect bar would deform uniformly throughout
the loading process and the load-deflection curve is simply a copy of the imposed stress-strain
law. However, if one element has a slight imperfection, only this element will show loading while
the other elements will show unloading. Then, the imposed stress-strain law at a local level is
not reproduced. Instead, an average strain is calculated in the post-peak regime which is
smaller than the strain of the stress-strain law since the element which shows loading, will fol-
low the path A-B in Fig. 1, while the other elements will follow the path A-C. This implies that
when all elements have the same dimensions, we have for the average strain increment Af

Ao
& (57

Consequently, when we increase the number of elements while keeping the length of the bar
fixed, the average strain in the post-peak regime gradually becomes smaller and for m >7n the

AE=[-7-"—-1
m
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average strain in the post-peak regime even becomes smaller than the strain at peak load. This
implies that for m >n, the load-deflection curve shows a snap-back [8,12,17,29,30]. Obviously,
"snap-back"” behavior cannot be anolyzed under direct displacement control, but only with
indirect displacement control. Yet, the possibility of this phenomenon has been ignored fre-
quently in the past, and many analyses have been terminated at such a point because of diver-
gence of the iterative procedure. A further parallel can be drawn with experiments which can
net be carried out properly under displacemeni control, e.g., with shear or other brittle
failures. The observed explosive failure is then simply the result of an attempt to traverse an
equilibrium path under improper static loading conditions.

A numerical simulation of this problem is shown in Figs. 2 and 3 for the case that the bar is
divided in two elements and that the length of the softening branch is equal to ten times the
strain at the tensile strength (m =2 and n.=10). In this case a perfect bar is loaded just beyond
the limit load, using indirect displacement control {eq. 56). If the solution is continued the solid
post-peak line of Fig. 1 is obtained. However, when we carry out an eigenvalue analysis of the
tangent stiffness matrix just beyond peak strength (Fig. 2) and perturb the fundamental solu-
tion using eq. (41), we obtain the localization of Fig. 3. Continuing the solution then results in
an ultimate average strain €=% ¢,,.

From the preceding discussion it will be clear that the response of an imperfect bar in the
post-failure regime will depend upon the number of elements and the degree of interpolation
within the elements. It has been attempted to control this mesh-dependence in the softening
regime using energy approaches [5,25,26,28,33]. Such approaches can only be partially suc-
cessful since the spread of the softening region is not known in advance. Consequently, the
observation that use of a local softening law may involve snap-back behavior on structural level
and to a strongly mesh-dependent and a non-unique post-peak response may hold even when
such an energy approach is adopted. This is exemplified by the beam of Figs. 4 and 5, which
exhibits a violent snap-back behavior in spite of the fact that the length of the softening branch
had been adapted to some structural size. Also, the mesh-dependence of the calculated failure
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Fig. 8. Incremental displacements for a biaxial test on a sand sample. The failure state shows a
strong mesh-dependence.

mode persists. This is demonstrated by the example of Fig. 8, which is a bifurcation analysis for
a (plane-strain) biaxal test on sand. We observe that the width of the shear band which
develops, is highly dependent on the fineness of the grid [8,9]. A possible solution to these basic
deficiencies might be the use of non-local constitutive laws in the softening regime [6,31].
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Addition of reinforcement not always improves the behavior described in the preceding. When
the reinforcement is densely distributed, we mostly obtain a rather ductiie response and we
seldom encounter numerical difficulties, but when we have a dorminant, concentrated reinforc-
ing bar, the presence of reinforcement only adds to the possibility that spurious alternative
equilibrium states and snap-back behavior occur [12,17]. We will demonstrate this by the sim-
ple tension-pull specimen of Fig. 7 [ 19]. The reinforcing bar is given by the line AB and a linear
bond-slip law is assumed between the concrete and the reinforcement. For the concrete, steel
and interface properties the reader is referred to Rots [27].

The loading is applied to point A (Fig. 7) in the form of a concentrated load and the ensuing
load-displacement diagram is given in Fig. 8. The present problem is well suited for demon-
strating that straightforward application of a norm of incremental displacements to control the
solution process often does not work effectively for localized failures. To this end we consider
the incremental displacement fields just prior to and just beyond the limit point (Figs. 9 and
10). Prior to the limit point, the elastic deformations of the bar are relatively so great, that
they dominate the norm of incremental displacements. Just beyond the peak, when the crack
near the center-line has localized, the incremental deformations of the reinforcing bar nearly
vanish {they even change sign, so that we again have a snap-back) and the concrete is the
prime contributor to the total norm of incremental displacements. However, because of the
relatively great magnitudes of the steel deformations just prior to the limit point, the arc-
length in the displacement space is not influenced significantly. In this case, the degrees of
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freedom belonging to the steel have therefore been omitted from the nerm of incremental dis-
placements for overcoming the limit point. For traversing the valley in the load-displacement
curve of Fig. B on the other hand, the solution process has been controlled by the displace-
ments of the steel, as then these displacements increase monotonically.

The present example is also well suited for assessing the gquestion whether an equilibrium state
can be reached via a non-equilibrium path. It is the Author’'s experience that this is often pos-
sible when we adopt direct displacement control and if there exists another equilibrium state
which is located '"not too far away" from the current state. Indeed, when we attempted to
analyze the present problem by prescribing the displacement of point A, we obtained a number
of non-converged states just after the limit point. This non-equilibrium path is indicated by the
dotted line in Fig. 8. However, after the crack had localized, we again obtained converged
equilibrium states (dashed line in Fig. 8), which indicated that we had arrived on a new equili-
brium path. This illustrates that reaching another part of the equilibrium path via a number of
non-equilibriurn states is sometimes possible, provided that there exists a new equilibrium
state which is "sufficiently close” to the previous equilibrium state. Here, the tension-pull
specimen contrasts with the example of Figs. 4 and 5, as in the latter case equilibrium could
not be restored using direct displacement control.

6. STRAIN-SOFTENING AND SPURIOUS ZERO-ENERGY MODES

A major problem which presently hampers finite element calculations of material models in
which use is made of strain-softening (like for instance crack models), is the fact that strain-
softening triggers spurious zero-energy modes. This has been recognized by Dodds et al. [18],
de Borst and Nauta {7] and Crisfield [17] for the case of underintegrated elernents, but Rots
and de Borst [29] have recently demonstrated that it may also happen for e.g., eight-noded ele-
ments with nine-point integration or four-noded elements with four-peint integration. In fact,
the analysis of the beam of Fig. 4 had to be terminated because of the occurrence of such a
zero-energy mode which was triggered by strain-softening. A converged solution could no
longer be obtained at the point where the load-displacement curve of Fig. 5 is terminated. An
eigenvalue analysis of the tangent stiffness matrix revealed two negative eigenvalues. The
eigenmode of Fig. 11 has a clear physical meaning, since it represents the localization which
has by then progressed through the depth of the beam. The eigenmode of Fig. 12 is due to
pathological behavior of one element at the top of the beam. It is emphasized that this behavior
occurred in spite of the fact that nine-point Gaussian quadrature had been used. Later
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Fig. 11. First eigenmode at residual load of the unreinforced beam of Fig. 4.

‘ 0.13F

Fig. 12. Second eigenmode at residual load of the unreinforced beam of Fig. 4.

investigations also revealed that groups of four elements displayed spurious zero-energy modes
when four-noded elements with four-point integration were employed [29].

7. CONCLUDING REMARKS

The essential features of the DIANA-crack model have been described. By dividing the total
strain rate rigorously into a concrete and a crack strain rate, and by subdividing these strain
rates again into a number of distinct contributions each of which is associated with a clearly
defined physical phenomenon, it is possible to simultaneously analyze non-crthogonal cracks,
creep, shrinkage, thermal dilatation and plasticity within a smeared context.

The incorporation of strain-softening models on integration point level may lead to unexpected
behavior on structural level. An example is snap-back behavior. This phenomenon cannot be
analyzed under direct displacement control, but only using indirect displacement control.
Another consequence of deployment of strain-softening models is the possibility that bifurca-
tions occur even under the assumption of small displacement gradients. Techniques have been
discussed which permit tracing snap-back and post-bifurcation behavior. Some examples have
been included to demonstrate that such techniques broaden the class of concrete structures
which can be analyzed numerically.

On the other hand, it is not justified to state that any concrete structure can now easily be
analyzed. A major problem which still hampers finite element analyses is the fact that strain-
softening triggers the formation of spurious zero-energy modes. Techniques to control such
modes in strain-softening materials must be developed before the limits of the class of prob-
lems which can be solved properly can be pushed further away.

Considering nonsymmetric stress-strain laws, we observe that little numerical work has been
done. This is partly due to the fact that only a few finite element codes have been adapted for
ncnsymmetric solvers. But even if a finite element code with a nonsymmetric solver is avail-
able to the analyst, he faces the problem that the issues of stability and uniqueness of solution
are much less clear-cut than for symmetric problems. This is particularly relevant when an
analysis diverges, since in such a case it is much more difficult to trace whether the divergence
is caused by failure or bifurcation phenomena in the model of the structure, or is simply
caused by e.g., a trivial programming error. Yet, as soon as frictional processes take place,
which is the case for concrete, stress-strain laws necessarily become nonsymmetric, which
calls for an enhanced research effort to develop numerical procedures for such models.
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SUMMARY

The paper applies different concrete models to the finite element analysis of simple reinforced-concrete
panels subject to monotonically increasing states of uniform stress. The panels involve: a) a hypothetical
model designed to test the limit-loads when idealised material properties are assumed and b) Vecchio and
Collins’ experimental panels. The different ‘concrete models’ involve: 1) fixed orthogonal-cracks, 2)
‘swinging cracks’ in which the directions of principal stress and principal strain are assumed to coincide, 3) a
modification to the previous model whereby the stress in one swinging direction is influenced by the strain in
the swinging direction, 4) simple plasticity-models involving both flow and deformation theory which as-
sume no-tension and a ‘square yield-criterion’.

RESUME

La contribution applique différents modéles de béton pour I'analyse par éléments finis de panneaux
simples en béton armé soumis a des contraintes uniformes croissant de facon monotonique. Les panneaux
sont definis dans un cas par un modéle théorique analysant les charges limites pour des matériaux idéaux;
dans I'autre cas, il s’agit des panneaux expérimentaux de Vecchio et Collins. Les différents modéles de bé-
ton prennent en considération les fissures fixes orthogonales; les fissures mouvantes dans lesquelles la
direction des contraintes principales et des déformations principales sont les mémes par hypothése; une
modification du modele précédent dans lequel la contrainte dans une direction mouvante est influencée
par la deformation dans une autre direction; enfin les modéles plastiques simple basés sur la théorie
d’écoulement et de déformation, en considérant qu’il n’y a pas de tension et qu’il y a un critére d’écoule-
ment.

ZUSAMMENFASSUNG

Der Beitrag verwendet verschiedene Werkstoffmodelle fiir Beton bei der Anwendung auf statisch belastete
Scheiben. Die Scheiben betreffen einen hypothetischen Fall und die Experimente von Vecchio/Collins. Die
Werkstoffmodelle sind: festgelegte orthonogale Risse, Risse in der Richtung der Hauptspannungen bzw. -
Dehnungen, Interaktion zwischen Spannung und Dehnung in Rissrichtung und schliesslich ein einfaches
Plastizitdtsmodell.
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1. INTRODUCTION

Most current finite element programs adopt the fixed-orthogonal crack model [1]
to treat the cracking of concrete. In this approach, the direction of cracking
is governed by the direction of the first principal tensile stress that exceeds
the cracking stress. The major drawback of this model involves the development
of principal tensile stresses greater than the cracking stress at angles that
differ from those of the original two fixed—-orthogonal directions. This
deficiency arises when the straining is "non-proportional”™. Even for monotonic,
proportional loading, such non—-proportional straining is often experienced at
the local, Gauss-point level as the adjacent stresses and stiffnesses change.
Consequently, the fixed-crack model can give solutions that are far too stiff
and collapse loads that are significantly too high [2-4].

Various attempts have been made to allow for non-orthogonal cracks [5-6]. (They
are surprisingly few. Non-orthogonal cracks are hardly mentioned in the ASCE
review [1])}. Of these formulations, the authors considered de Borst’s model
[6].in which the effect of cracking and plasticity are superimposed, to be most
hopeful. However, in attempting to implement this model, the authors
encountered significant numerical difficulties when "state changes™ occurred
within an increment. Difficulties are also associated with discontinuities
involving the "threshold angle” [5] beyond which the second non-orthogonal crack
is activated.

For these reasons, the authors have, for the time-being, reverted to a simple
swinging-crack model [2,4] in which the directions of principal stress and
principal strain are assumed to coincide. These models can be criticised [7]
for being "un-physical"” in that the properties originally relating to a crack,
or series of cracks, in one direction are assumed to rotate and relate to a new
direction. However, the direction of the principal strain can be considered as
relating to the currently-most-active crack for which the properties are
influenced by previous adjacent cracks.

Much previous work on reinforced concrete has employed limit-analysis and
plasticity with the square yield-criterion [8,9]. The authors have therefore
introduced such a yield-criterion into a finite element computer program and
have established a close relationship with the simple swinging-crack model.
Finally, the basic swinging~crack model has been improved by incorporating the
ideas of Vecchio and Collins [10] to degrade the compressive strength as a
function of the tensile strain in the orthogonal direction.

2. THE FIXED-CRACK MODEL

Once cracking has occurred, the fixed-crack model is based on the incremental
stiffness relationship:

Ao c2 52 -2sc Ao
X 2 2 k T
Aaky = Aay = |s” ¢ gsc2 A02 = T(8) A012 ......... (1)
AT sC —SC ¢ -§ AT
Xy ! 12
[E., 0 O
RS T
or: Aa'xy = T(8) |O Et2 0 Aelz = T(8) Et12 T(6) Aeky .- (2)
0 0 BG
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where ¢ = cos0 and s = sin(8) and 6 (Fig. 1) is fixed as the direction of the

principal stress (al) at first cracking. The terms Etl and Et2 in the matrix

Et12 of (2) are the slopes of the uniaxial stress—-strain curves. Immediately

after cracking, Etl will be negative to allow for the softening {(or
tension-stiffening) in tension (Fig. 2). When an incremental step moves from an
uncracked to a cracked state, the strain ratio r is computed whereby the old

stresses, o,. are augmented by rEAe such that the resulting stresses:
o = o_ + rEAe
r o

have a principal tensile stress that just reaches the cracking strength.
Assuming no plasticity prior to cracking, the matrix E in (4) is the elastic

isotropic modular matrix. The remaining strain step {l-r)Ae is applied using
equation (2).

3. THE SWINGING—CRACK MODEL

The simplest swinging—crack model assumes that the principal stresses and
strains coincide and that:

2 o1(,(8) . )

o, =5, |= T(6)" |og(es(8)) | = T'(G)T[a;] = T'(0) 0}y -(4)
T 0
Xy

where T'(B)T contains the first two columns of the matrix T(6) given in (1} with
B relating to the direction of the continuously varying principal strain.
Equation (4) can be differentiated to give:
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do do
L 1 1 -1 -~w
T 3&1 6&2 0.57 sin29(al—02)
So. = |T'(0) a a T (6) + 5 5 -1 1 w ||6e .(5)
Xy i ¥y (e € )"+~ 21 @
de,  Oe, ® N e Sl
1 2
601 do
where @ = cot20. The 5——-and 3c_ terms in (5) are zero if.as here, (4) is
2 1

adopted for the total stress—strain relationships. They are included in (5) in
order to allow for extensions in the next section. The special form of (5)
invelving a no-tension material with zero Poisson’s ratio and an elastic
compressive response was derived by Guptal et al [4]. The tangent modular
matrix in (5) follows directly from equation (4) and does not involve the
shear-retention factor, B, that is used in (2) for the fixed-crack model.

4. A SIMPLE PLASTICITY MODEL

The square yield criterion of Fig. 3(a) has often been used for "limit-load
plasticity computations” [8,9] involving reinforced concrete. In its basic
form, no tension 1is allowed and a perfectly plastic response is assumed in
compression (Fig. 3(b)) once the compressive strength (say the cylinder
strength, fé) is reached. Limit-load calculations also consider the elastic

strains to be negligible in comparison to the plastic strains but this
assumption will not be adopted here. From Fig. 3(a), the yield functions are
given by:

£ = 0,(0)05(0) = (7,(8) - £)(05(8) - £1) =0 ........... (6)

The principal stresses 61(9) and 02(9) can be related to a&y using standard

transformations and equations (6) become:

2 3 ; 2
f = 0'xay Txy = (ax fc)(ay fc) Tr = o ... (7)
A Os o
_fé
c: €
-f¢ - -l
(a} Square yield criterion (b) Idealised stress-strain curve

Fig. 3 Yield criterion and stress-strain relationship for plasticity model
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If we consider a deformation theory with Poisson’s ratio as zero, application of
normality to (7) leads to:

o, E[ex - 7\(cry - {fé})]

g = E ey~ A(UX - {fé})] .............. (8)

E
Vo = —2-(1xy % 27\‘rxy)

where A 1is a "plastic—strain multiplier"”. Depending on the particular part of
the yield surface on which the stresses lie, the {fé} term may or may not be
included. Equations (8) can be used to show that:

¥ 2T
tan20 = — ¥ — = X (9)

X y X y

and hence, as with the previous swinging-crack model, the principal stresses and
principal strains coincide. Following this observation, it can be shown that,
if both formulations adopt the stress/strain curves of Fig. 3(b), solutions
obtained with the swinging-crack equations (4) will coincide with those obtained
from the plasticity equations (6)-(8). The authors’ computer program adopts an
incremental flow-rule so that the o Uy‘ Txy terms on the left-hand-side of (8)

and the € ey, ny terms on the right-hand-side of {8) are replaced by Aak.
and A&x. ... respectively. In these circumstances, the directions of the

principal stresses and principal strains will only coincide when "proportional
straining” has been applied. Consequently, there is no longer a direct
relationship with the swinging-crack model. Solutions using deformation rather
than flow theory can be obtained numerically by applying the complete load in a
single step.

5.0 THE MODIFIED SWINGING-CRACK MODEL

Numerical results have shown that the basic swinging-crack formulation (Section
3.0) leads to overestimates of the strength of panels failing by

shear/compression. This finding is consistent with the relationship that has
been demonstrated between the  basic swinging—-crack model and simple
plasticity—-theory. For, it is well established that an "effectiveness factor”

[9] is required to reduce the compressive strengths when applying the latter
theory to the limit-analysis of beams failing in shear [9].

The previous swinging-crack model involves no Poisson or biaxial effects.
Milford and Schnobrich [3] have introduced these effects into a swinging-crack
formulation by adopting the orthotropic stress—strain relationships of Liu et al
[11] and a "failure criterion” relating closely to the experimental results of
Kupfer et al [12]. For the present we will ignore any enhanced strength in
biaxial compression but are concerned to allow for the reduced compressive
strength under tension/compression. To this end, we could have followed Milford
and Schnobrick and used failure criteria, involving stresses, that are related
to the experimental results of Kupfer et al. However, as the concrete softens,
the tensile strain will reach & e in Fig. 2 and the orthogonal tensile stress

will be zero. Hence no strength degradation will be introduced. Consequently,
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we have followed Vecchio and Collins [10] in adopting a degradation involving
the orthogonal tensile strain rather than the orthogonal tensile stress.

The strength degradations have been incorporated into the swinging-crack model
by modifying the simple relationship of (4) to:

_ T,(G)T[al(el(e).ez(e))]

= a,(e1(8).€,(6))

Xy

Following from their experimental results on a series of reinforced concrete
panels [10], Vecchio and Collins modified the standard compressive parabola to
take the form:

« D
€ _ = 2 f’ (E. - €, )‘. ’
a, = fc[2E—2J - u[;z-] ] or g, = u—c[l - —= 2p )2] ..{11)

o o (2eo - e2p
depending on whether the compressive strain €o is 1less or greater than the
strain e2p = eolu at which the peak stress f’c/u occurs. The term €, in {11) is

the strain corresponding under uniaxial conditions to fé. The "reduction

factor” 1/p caused by the-orthogonal'tensile strains, €1» is given by:

u=0.85 +O.27elle2 .............................. (12)
These formulae have been incorporated into a modified swinging-crack model and
do do.
the derivatives a—l, il have been used in the tangent stiffness of (5).
€y 662
do 602
However, the terms 3 Fo have been neglected since they introduce
€q 6&1
non—-symmetry. In order to make valid comparisons with the fixed and simple

swinging-crack models, the first part of egn. (11) with p = 1 has been adopted
in these models for the stress/strain relationship in compression.

6.0 IDEALISED PANELS

Gupta and Akbar [4] analysed a set of panels of unit dimensions, subject to
uniform stress states involving various combinations of Nx‘Ny and ny (Fig.

4(a)). The latter were proportionally increased until failure occurred by
yielding of both sets of reinforcement. The computations assumed that the
concrete had no tensile strength and behaved elastically in compression while
the steel was assumed to act in an elastic/ perfectly-plastic manner.

The non-linear finite element program has been used to analyse one of Gupta and
Akbar’s panels (Case 4 of [4]). The adopted properties and loadings were:

Percentage of steel, Py = 4.232, py = 0.768:

v =0, E_ = 20,000 N/mmZ, E_ = 200,000 N/mn2, 0,y = 500 N/ :

s
N =N_ = 2.5A Nom, N_ = 5.0A N/mm.
X y Xy



A M.A. CRISFIELD — J. WILLS 183
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(a) Panel of unit dimensions {b} Finite element configuration

Fig. 4 Idealised panel
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Fig. 5 Load/Deflection relationship Fig. 6 Influence of shear retention
for idealised model factor, B

where A is the loading parameter that is unity for the "exact collapse load™ [4]
obtained from equilibrium and the assumption of no-tension in the concrete.
This no-tension condition was approximated by providing a very small tensile
strength. In order to produce the simplest possible idealisation and yet use a
standard non-linear finite element program, the panel was analysed using a
single element with a single Gauss point. The two "mechanisms"” were removed via
constraint equations.

Fig. 5 plots the loading parameter, A against the x displacement at node 4 (Fig.
4(b)). It can be seen that both the swinging-crack and plasticity models give
the correct collapse load and very similar load/deflection relationships. When
the plasticity solutions were obtained in single steps, thus simulating
deformation theory, the resulting solutions coincided with the swinging-crack
results. For these models, the angle 6 (Fig. 1) of the principal tensile stress

was 750 when the limit-load was reached. The solutions that were obtained with
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the fixed-crack model depended heavily on the initial step-sizes (Fig. 5). For
example, when a very small first step was applied, the finite element model
provided a crack orthogonal to the principal tensile stress at 8 (Fig. 1) =

46.7°. This angle is very close to the angle of the maximum principal stress
before cracking. In total contrast, when one single-step was applied almost to
the limit—load (using the arc-length method [13])}, the fixed-crack model gave a

crack orthogonal to 8 = 75% and a solution that lay on the load/deflection curve
given by the swinging-crack model. This occurred because, in the limit as the
ratio, r, to give first cracking (eqn. (3)) tends to zero, the fixed-crack model
{see Section 2} gives:

0
Ys = T(G)T[EEQ(B) e (13)
[BG712(9)

But 6 1is given by the principal tensile stress direction of rEexy or,

equivalently, of Eg Hence, v,, = 0 and (13) coincides with (4) which governs

12
the swinging—crack model.

All the fixed—-crack solutions obtained in Fig. 5 involved a shear-retention
factor, B, of 0.25. Fig. 6. illustrates the effect of varying this factor. It
can be seen that, although this parameter affects the load/deflection response,
the final collapse load does not depend on 5.

7.0 THE PANELS OF VECCHIO AND OOLLINS

Numerical analyses have been carried out on five of the thirty panels tested by

Vecchio and Collins [10]. These five were chosen with a view to producing a
range of failure modes. The adopted compressive stress/strain laws have already
been discussed (Section b5). In tension, we normally introduce a simple

sof tening relationship of the form illustrated in Fig. 2. For the current
problems, this softening relates to the "tension stiffening” [1,14] which
compensates for the inadequacy of the mesh and modelling to capture the shear
transfer from the steel to the concrete. Vecchio and Collins have plotted the
experimental relationship between the principal tensile stresses and principal
tensile strains. From these plots, we have derived a simple relationship of the
form of Fig. 2 with € = 0.004. This strain is approximately twice the yield

strain of the reinforcement.

For the {finite element analyses, the panels were idealised using a similar
procedure to that described in Section 6 for the "idealised panel”. The
following models were adopted:

F-CT: the fixed crack model (Section 2) with tensile strength and
tension—-stiffening and the parabolic compressive stress—strain
relationship given by the first part of {11) with p = 1. The
shear-retention factor, B, of (2) is set to 0.25

F~CNT: The fixed-crack model (Section 2) with no tensile strength and a
stress/strain relationship as in Fig. 3{(b) with an E value of
O.75fé/eo and a maximum stress of 0.975f’c.

S—-CT: As F-CT but using the swinging-crack model of Section 3
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S-CNT: As F-CNT but using the swinging-crack model of Section 3

MS-CT As 8~CT but using the modified swinging-crack model of Section 5 with
compressive stress—strain relationsips as in (11)

MS-CNT As MS—CT but with no tensile strength

PNT: The plasticity model of Section 4 with no-tension and the idealised
compressive stress—-strain relationship of model F-CNT

For each analysis, the recorded collapse "loads” are specified (see Table) by

means of the maximum shear stress (N/mmz) applied to the panel. The ratio of
Nx:Ny:ny is given in the Table.

Table: Computed and experimental collapse 'loads"” (N/mmzlffor the panels of
Vecchio and Collins

PV11 PV19 PV22 PV25 PV27
N :N :N 0:0:1 0:0:1 0:0:1 0.69:0.69:1 0:0:1
xy xy
po J/po 1.37 3.83 1.28 1.0 1.0
X ysX 'y ysy
angles 45°-49 5° 45°-63° 45°-48.5° 45%-45° 45°-45°

Experimental 3.56(Y2) 3.95(S/C+Y1) 6.07(S/C)  9.12(S/C)  6.35(S/C)

3.84(Y1)
F-CT before 5.12(Y2) 7.29(S/C+Y2) 9.72(S/C)  7.89(Y2)
3.63(Y2)
F~CNT 3.61(Y2) 4.67(Y2) 7.27(Y2) 9.28(S/C)  7.89(Y2)
3.78(Y1)
S-CT before 4.18(Y2) 7.24(Y2) 9.72(S/C)  7.89(Y2)
3.59(Y2)
S—-CNT 3.59(Y2) 4.18(Y2) 7.24(Y2) 9.28(S/C)  7.89(Y2)
3.69(Y1)
MS—CT before  3.40(S/C+Y1) 5.71(S/C)  7.65(S/C)  5.96(S/C)
3.59(Y2)
MS—CNT 3.59(Y2) 3.39(S/C+Yl) 5.69(S/C)  7.15(S/C)  5.95(S/C)
PNT 3.59(Y2) 4.18(Y2) 7.24(Y2) 9.28(S/C)  7.89(Y2)

S/C = shear/compression failure in concrete

S/C + Y1 = shear/compression failure in concrete + yielding of one set of steel
Y1 failure by yielding of one set of steel

Y2 = failure by yielding of both sets of steel

In producing these results, an arc-length solution procedure [13] was adopted
and hence the limit-loads could be well established without any failure in the
iterative solution technique. Also, local limit-loads could be overcome. This
is apparent from the numerical results given in the Table for panel PV11l which
was the only one to fail exclusively by steel yielding. These local
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limit—points could have been removed by reducing the tension-stiffening.

Of all the methods tested, only the modified S-C models (MSCI and MS-CNT)
consistently gave the same collapse modes as those observed in the experiments.
These models also gave good or conservative predictions for the collapse
strength. The more basic swinging-crack models (S-CT and S-CNT) overestimated
the collapse load by about twenty per cent for two of the panels (PV22 and
PV27). The fixed-crack models were equally bad in these instances and
additionally gave an overestimate of thirty per cent for panel PV19 in which,

because the ratio p o /p o was high, there was a significant change in the
x ysx 'y ysy

angle of the principal strains.

For every panel, the simple plasticity-model, PNT, gave collapse loads that, as
anticipated, coincided with those given by the simple S-C model with no-tension
(S-CNT) although, for PV1S, imn which a significant “swing” occurred, there was
some difference in the computed load/deflection” response. However, as
predicted, these differences were eliminated when single large-steps were used
for the model PNT.

Milford and Schnobrich [3] rejected the use of Vecchio and Collin’s
strain-related compressive strength degradations because "predicting compression
related failures is very sensitive to the tension-stiffening”. However, the
present results indicate that even the use of a no-tension model in conjunction
with the "degraded compression curves” gives reasonable, safe solutions.

8. CONCLUSIONS

The following tentative conclusions have been derived from the numerical
tests that have been described. More tests will be required to substantiate
these findings.

1. When the straining is non—proportional, the fixed-crack model may give
excessively high collapse loads because the crack directions are totally
governed by the early straining. However, in some circumstances, the

introduction of large step-sizes will reduce the stiffness so that the
solutions tend towards those of the swinging-crack model.

2 For steel-dominated ductile failures, the computed load/def lection
response, but not the final collapse load, will depend on the
shear-retention factor, B, if the fixed-crack model is adopted.

3. If deformation-theory is combined with plastic approach involving the

square Yyield-criterion, the results will coincide with those obtained from
an equivalent swinging-crack model. If flow-theory is adopted, the results
will often be very similar.

4. A tangent stiffness matrix that is consistent with the swinging-crack model
does not require the provision of a shear-retention factor, .
5. The simple swinging-crack model may overestimate the strength and

incorrectly assesses the failure modes of panels failing due to
shear/compression.

6. This deficiency can be overcome by providing a compressive stress-strain
relationsip, similar to that proposed by Vecchio and Collins [10], whereby
the compressive strength is reduced by the presence of orthogonal tensile
strains (not stresses). Unfortunately this leads to a non-symmetric
tangent stiffness matrix that must be symmetrically approximated if
efficient solutions are to be obtained. It is probable that an equivalent
plasticity—-model would involve a non-associative flow-rule.

6. Depending on the choice of tension-stiffening, local limit-points may well
be encountered and it is essential to use a numerical solution procedure
that will handle these phenomena.
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In the absence of a simple, but effective fixed-crack model that allows for
multiple and non-orthogonal cracks, the modified swinging-crack model

appears to offer many advantages. Much further theoretical and
experimental work is required on the development of effective stress/strain
relationships in both tension and compression. These will need to be

functions of both the mesh size and the vicinity and nature of the
reinforcement,
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SUMMARY

This paper discusses the uniaxial tensile test on a concrete specimen. Two phenomena, i.e. non-symmetric
crack opening and irregular descending branch as sometimes observed in this fracture test, were inves-
tigated by a numerical analysis. ‘Structural behaviour’ as already inferred from experimental results was
confirmed by this analysis. It also showed how this behaviour influences the measured stress-deformation
diagram. The paper demonstrates how experimental and numerical research can support each other when
they encounter similar problems.

RESUME

Cet article décrit I'essai de traction uni-axiale d’'une éprouvette en béton. Deux phénoménes ont été ex-
aminés a l'aide d’une analyse numérique, notamment: I'ouverture de fissures non-symétriques et une
courbe descendante irréguliére, telle gqu’observée parfois dans de tels essais. Un ‘comportement
structural’, expliqué par les résultats expérimentaux, a été confirmé par cette analyse. |l a également mon-
tré comment ce comportement influence le diagramme tension-déformation mesurée. L’article montre com-
ment des recherches expérimentales et numériques peuvent se compléter lorsqu’elles rencontrent les
mémes problémes.

ZUSAMMENFASSUNG

In diesem Beitrag wird der zentrische Zugversuch an Beton kritisch beleuchtet. Zwei Erscheinungen, nam-
lich die unsymmetrische Risséffnung und ein unregelméssig fallender Ast der Spannungs-Rissoffnungs-
Linie, wie sie manchmal in diesem Versuch wahrgenommen werden, wurden in einer FE-Rechnung unter-
sucht. Das ‘Struktur-Verhalten’, das schon frilher aus Versuchsresultaten abgeleitet wurde, konnte durch
diese Berechnung bestétigt werden. Es wurde auch deutlich, wie dieses Verhalten die Spannungs-Rissoff-
nungs-Linie beeinflusst. Der Beitrag zeigt, wie sich experimentelle und numerische Forschung erganzen,
wenn ahnliche Probleme angetroffen werden.
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1. INTRODUCTION

Due to developments in finite element techniques, research activities in
laboratories for concrete structures are being more and more devoted to
determining the material properties. Since the results of FE computations
strongly depend on the correct input parameters it 1is very important to
ascertain the actual material properties. One of these properties is the
behaviour of concrete under tensile loading. The fact that concrete is a
tension-softening material, which means that the stress beyond the peak load
decreases with increasing deformation, makes investigation of concrete fracture
rather difficult. Nevertheless, new achievements 1in the electro-hydraulic
control of testing machines now enable complete stress-deformation curves to be
determined. In addition, computational techniques have evolved so far that
tracing the post-peak softening behaviour is no longer a problem.

The uniaxial tensile test is probably the most fundamental fracture test. It
has been supposed that this test yields a stress-deformation diagram that
includes all the fracture mechanics parameters, i.e. the tensile strength ft,
Young's modulus Eo' the fracture energy Gf, the shape of the descending branch
and the maximum crack opening §_ at which stress can no longer be transferred
{1]. Therefore, sometimes the game "direct' tension test is used. Recently,
however, some doubts have been raised about this assumption [2,3]. Due to a
particular 'structural behaviour' as will be discussed in the next chapter, the
crack opening in a uniaxial tensile test is non-symmetrically distributed over
the specimen cross-section in some part of the loading path. As a result, the
shape of the descending branch will be affected.

In this paper it is investigated whether this 'structural behaviour' can also
be determined by means of a numerical analysis. Details of this analysis have
been given before by Rots, Hordijk and de Borst [4]. The purpose of this paper
is to discuss these numerical results in c¢lose relation to the experimental
results. Therefore, the underlying computational and constitutive aspects will
not be discussed in detail here. For more information on these aspects the
reader is referred to de Borst [5] and Rots et al. [6] respectively.

2. THE BEHAVIOUR OF CONCRETE IN A UNIAXIAL TENSILE TEST
2.1 General

Concrete is an elastic-softening material (Fig. 1a). Straining concrete in
uniaxial tension displays a linear stress~strain relation almost up to the
peak. Then, beyond the peak a steep decay occurs which gradually evolves into a
long tail. This decay is due to the development of one single crack in the
specimen, The intention of a uniaxial tensile test is to create a crack, while
the crack surfaces remain parallel to each other from the instant at which the
first micro cracks are initiated until a crack cpening § is reached at which
no more stress can be transferred. In that case we assume the ¢-§ relation
. : tot

to be a material property. It c

should be noted, however, that
a visible crack starts as a

cluster of micro cracks which fy 1 £
coalesce during further
deformation. The deformation | B

measurement is taken over a

specimen slice which contains Gt %
the softening zone. Conse- g y
sy 60 5t ot 60 6
quently the measured o 6t a b
relation is linked up with gﬁe
applied measuring length of Fig. 1a a) Stress-deformation diagram.

the gauges. Subtracting the b) Stress-crack opening diagram.
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elastic deformation over the gauge length yields the stress-crack opening
displacement (Fig. 1b) which may serve as a basis for a crack model.

2.2 Non-symmetric crack openings and 'bump' in the descending branch

Two peculiar aspects have sometimes been observed In uniaxial tensile tests.
First, a non-symmetric crack opening may occur in some part of the loading
path. Fig. 2b shows a typical test result obtained on a lightweight concrete
[2]. In this test a prismatic specimen 250 mm long, 60 mm wide and 50 mm thick
was used. Two saw cuts 5 mm x 5 mm reduced the critical cross-segtional area to
50 mm x 50 mm.

B ]
A 'y lelg I
i | utir ]
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Lyor | . '
. I —
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) [ 1 W0 Stress G{N/mm?)
50 mm
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20k
1
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00 4 - 5
0 10 20 30 40 50 80 70

& Deformation (107°m)

Fig. 2 Experimental result; a) specimen, b) deformation distribution
and ¢} stress-deformation diagram.

For the deformation distribution eight deformation gauges with a gauge length
of 35 mm were used, four on the front and four on the rear side of the
specimen. It can be seen in Fig. 2b that in some part of the loading history
the deformation distribution is non-symmetric even though rotation of the
loading platens was prevented by a stiff guiding system. Such non-symmetric
tensile fracture modes have also been reported by other investigators
[3,7,8,9]. Gopalaratnam and Shah {10], however, reported symmetric modes.

The second peculiar aspect is that sometimes a 'bump' ¢an be observed in the
descending branch. As an example Fig. 2¢ displays two of these bumps. Similar
results of bumps in the descending branch of stress-deformation diagrams have
been reported by, for example, van Mier {3], Willam et al. [11] and Budnik
[12].

2.3 Explanation of the observed phenomena

In [2] a qualitative model has been given that can possibly explain the pheno-
mena described above. The basic idea of that model will be briefly summarized.
Suppose that the stress-deformation relation for a small slice of concrete

comprising the critical cross-section is as shown in Fig. 3a. In Fig. 3b it can
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be c¢bserved that, for an average G
deformation §é , the applied force
e ;

must be largé% in case of a symmetric 5 4]
deformation distribution {solid line) -

than in case of a non-symmetric one fe |-
(dashed 1line). Nevertheless a non-
symmetric deformation as indicated by
an angle ¢ 1s limited by the rota-
tional stiffness of the remaining part
of the specimen in combination with
the rotational stiffness of the
locading platens.

SOmm

In an experimental programme this
model was verified by varying the peak 50 Gyt
specimen length [2]. It was concluded a.

that there 1is a direct relation Fig. 3 a) Assumed o-§ relation.
between the non-symmetric crack b) Deformation and stress
opening and the bump in the descending distributions.

branch, on the one hand, and between

the degree of non-symmetric crack opening and the rotational stiffness of the
suhrounding of the softening 2zone, on the other hand. Furthermore it became
clear that the deformations must be studied three-dimensionally as appears also
from Fig. 2b, in which deformation distributions projected on two perpendicular
planes were plotted. By using very short specimens symmetric crack openings
and a smooth descending branch were obtained.

o - — T

The said phenomena were also observed by van Mier [3]. He explains them by the
growth of a crack from one side of the specimen to the other. In his opinion
the crack-arresting effect of large inclusions may cause a pronounced plateau
(bump) in the descending branch. In addition, he suggests that the boundary
condition is responsible for it because non-rotatable end-platens compel the
crack, starting from one side, to jump to the other side.

3. FINITE ELEMENT ANALYSIS OF A UNIAXIAL TENSILE TEST
3.1 General

A numerical analysis of a uniaxial tensile test may shed some new light on the
response of concrete in such a test. Therefore a test performed in the Stevin
Laboratory was simulated by Rots, Hordijk and de Borst [4]. Some typical
results of their study will be discussed here in relation to the experimental
observations. It was inténded to investigate the observed phenomena rather than
to fit an experimental result exactly. This would not even have been possible,
since a two-dimensional analysis was performed, while the specimen in an
experiment reacted three-dimensionally.

3.2 Constitutive modelling G

A smeared crack model as proposed by Rots
et al. [6] has been used with a linearly
elastic model for the concrete and a
softening model for the crack. For the
tensile softening a bilinear diagram was j
adopted as shown in Fig. 4. The fracture 3ft

energy Gy was assumed to be a fixed mate- ,,;25'

rial constant. As a smeared crack model €, /12 = P
was employed this energy is related to a

certain crack band width, which in turn is Fig. 4 Bilinear softening

related to the element configuration. The diagram.
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necessary provisions were included to correctly release the fracture energy
over the crack band width [13]. For the unloading and reloading a secant
approach was used (Fig. U).

3.3 Finite element idealization and material properties

The finite element mesh of -the specimen as shown
in Fig. 2a is given in Fig. 5. Four noded bilinear
elements were used which were integrated using
four-point Gauss quadrature. For the centre ¥
elements, where the fracture was expected to
occur, a reduced centre-point integration scheme
was used [6]. The lower boundary was assumed to be
fixed, whereas the upper boundary was provided
with a translational sprigﬁ (kt=1u8000 N/mm) and a
rotational spring (kr=!0 Nmm/rad) in order to AtoE
simulate the experimental conditions. Dependence 1= -
relations were used to prevent distortion of the
upper boundary which is in agreement with a rigid
loading platen in an experiment.

250mm
35mm

In the experiment the load was applied at the AtoE
upper boundary and was servo-controlled by a feed-
back signal from twe LVDTs mounted on the sides of
the specimen (measuring Ilength 50 mm). In the
analysis this control mechanism was simulated by
using the averaged crack opening displacement as a
control parameter. This procedure of 'indirect
displacement control' has recently been proposed

by de Borst [5]. Further, a full Newton Raphson PO 11, S
iterative procedure was employed with the tangent

matrix being updated before each iteration. Fig. 5 Finite element mesh.
The elastic concrete properties were assumed to be: Young's modulus

E=18000 N/mm? and Pcisson's ratio v=0.2, corresponding to a lightweight concre-
te. The softening properties were taken as: tensile strength ft=3.4 N/mm? ,
fracture energy Gf=59.3 N/m and crack band width h=2.5 mm. One element in front
of the righthand notch was given a material imperfection by means of 1 percent
reduction of Gf. The importance of this will become clear from the sequel of
this paper.

3.4 Computational results

In conformity with the experiments, stress is given as the applied force
divided by the central cross-sectional area, whereas deformation is the mean of
five values measured between points A to E (Fig. 5). In previous experiments
five instead of four deformation gauges were used on each side of the specimen.
In Fig. 6 the incremental deformations are shown which refer to key events in
the fracture localization process. Pre-peak deformations appeared to be
symmetric (Fig. 6a). At an average stress ¢=2.856 N/mm? a limit point was
encountered. For this point a negative eigenvalue was calculated for the
tangent stiffness matrix. In the corresponding eigenmode (Fig. 6b), which is
identical to the incremental deformation field, a non-symmetric behaviour can
be observed. Obviously, the side with the small imperfection opens, while the
other side unloads. Upon further increase of the control parameter the load was
decremented and a genuine equilibrium path was obtained. The fracture localiza-
tion was propagated to the other side of the specimen (Fig. 6c) till the left
side of the specimen tended to open suddenly, which resulted in a temporarily
unloading of the right side (Fig. 6d). Subsequently, after a slight increase

the load could decrease to zero while further the deformations were symmetric
(Fig. 6e).
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Fig. 6 Eigenmodes for different loading points.
a) pre-peak , 0¢=2.837 N/mm? b) at peak , 0=2.856 N/mm?
¢) post-peak, ¢=1.865 N/mm? d) post-~peak, ¢=1.101 N/mm?
e) post-peak, 0=1.026 N/mm?

A stress~deformation diagram of two analyses has been plotted in Fig. 7. The
first refers to the analysis with the imperfect material, the second belongs to
an analysis with symmetric deformations. In the 1latter case the material
imperfection was omitted. It appears that as a result of the non-symmetric
deformations the peak 1load is reduced. More interesting, however, 1is the
consequence for the shape of the descending branch which seems to Dbe
drastically affected. The resemblance with the experiment 1is evident. The
*bump' in the descending branch is now proven to be merely the result of the
non-symmetric deformations.

In Fig. 7 an interesting phenomenon can
be observed 1in the stress-deformation
diagram for the non-symmetric solution.
Beyond point A the deformation as well 3 Stress G (Nmm?)
as the stress decreased. This phenomenon '
is called 'snap-back'. The importance of

symmetric

deformations

snap-back behaviour in elastic-softe- 23 R
ning materials was recognized before by, 2.0 cetermations
for example, Carpinteri [14] and de

Borst [5]. It should be noted that the L5

snap-back in the descending branch was
found because the pure crack opening
displacement was controlled. 1In the 0.5
experiments the deformation was

controlled by the average signal of the T T T %
LVDTs (1, as. 50 mm). Therefore a sudden Deformation Dot (10 5m)
drop as indicated by the dashed line A-B

is mostly observed in the experiments Fig. 7 Stress-deformation diagrams.

(see Fig. 2). From the results of a
post-peak cyclic test a snap-back as in
Fig. 7 was already inferred [2].
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L. DISCUSSION

In the numerical analysis for the non-symmetric solution a small imperfection
was given to one of the elements. Of course concrete 1is a heterogeneous
material containing a lot of imperfections and it is therefore concluded that
the response of concrete in a tension test will always be associated with a
non-symmetric state of deformations, The numerical analysis clearly
demonstrates that the stress-~deformation relation from a uniaxial tensile test
can strongly be influenced by these non-symmetric deformations. The tensile
strength and the shape of the descending branch no longer necessarily represent
the actual material behaviour. In the event of sudden jumps, due to snap-back
behaviour, also the area under the stress-deformation relation may be measured
incorrectly. If this is so, the fracture energy Gf is incorrect.

In the numerical analysis with the imperfection non-symmetric deformations

could be observed between § & = 5um and 8 5 = 14pm. For other values
of § the deformation dis%rlbution as well as the stress was equal to that
in theé sSymmetric solution (Fig. 7). Therefore we still assume that for ecrack

openings in which these openings are symmetric the ¢-§ & relation can be
regarded as a material property. In this respect it can be méntioned that it is
known from experiments [2] that the non-symmetric crack openings can be
restricted to a small part of the loading history by means of a high rotational
stiffness of the boundary of the softening zone. With very short specimens it
was even possible to obtain symmetric crack openings in every loading stage.
Further research activities should clarify whether the o¢-§ relation obtained
on such short specimens can be regarded as a material property.

It has been shown that the observed ‘bump' 1is caused by the boundary
conditions, as suggested by van Mier [3]. In the case of hinges instead of non-
rotatable end-platens the crack will probably continue to open from one side,
resulting in a smooth descending branch, as has been discussed by van Mier [3].
It should not be difficult to check this numerically.

5. CONCLUSIONS

- In a uniaxial tensile test on an elastic-softening material like concrete
the crack opening will be non-symmetric in some part of the loading history.

- The phenomenon of non-symmetri¢ crack openings can be regarded as
'structural behaviour'.

- Due to the structural behaviour in a uniaxial tensile test the measured
stress-deformation relation cannot directly be regarded as a material
property.

- A numerical analysis simulate the behaviour of concrete in a wuniaxial
tensile test, including the structural behaviour. Such an analysis can be
used to investigate the influence of this structural behaviour on the
material models derived from such a fracture test. Furthermore it can be
used to improve the fracture test.

- In order to obtain post-peak stable softening behaviour in a displacement
controlled uniaxial tensile test, very short gauge lengths have to be used.

- In numerical and experimental research the same types of problem can be
encountered. Therefore the co-operation of these research fields should be
stimulated.
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SUMMARY

After a description of four triaxial constitutive models for concrete, based on different mechanical concepts,
a comparative evaluation is carried out. One of the models is a new hypoplastic model. Shortcomings of
some models, occurring in case of non-monotonic load histories, are eliminated by adequate modifications.
Generally, there is a good agreement between model predictions and test results.

RESUME

Une présentation de quatre modeéles triaxiaux de comportement du béton sur la base des différentes
théories mécaniques est suivie d'une évaluation comparative. Un des modéles est une nouvelle formula-
tion hypoplastique. Quelques modéles présentent des défauts — lors de cas de charges non-monotones -
lesquels sont éliminés par des modifications appropriées. Généralement, les résultats du modéle corres-
pondent bien avec des résultats expérimentaux.

ZUSAMMENFASSUNG

Vier auf verschiedenen mechanischen Konzepten beruhenden dreiachsiale konstitutive Modelle fiir Beton
werden beschrieben und einer vergleichenden Wertung unterzogen. Eines dieser Modelle ist ein neues hy-
poplastisches Modell. Médngel einzelner Modelle, die bei nichtmonotonen Lastgeschichten auftreten,
werden durch geeignete Modifikationen beseitigt. Im allgemeinen liegt eine gute Ubereinstimmung
zwischen Modellvoraussagen und Versuchsergebnissen vor.
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1. INTRODUCTION

Knowledge of suitable constitutive equations is a necessary prerequisite for fin-
ite element ultimate load analysis of thick-walled structures made of reinforced
concrete. During the last years a number of triaxial constitutive models, based
on different mechanical concepts, have been proposed. So far, a comparative
evaluation of their potential for modelling the behavior of concrete under
multi-axial states of stress does not seem to exist in the open literature. This

was the motivation for a comprehensive comparative study of a relatively large
number of material laws proposed by several investigators to describe the mechan-—

ical behavior of concrete subjected to triaxial non-monotonic loading up to
material failure [1].

The present paper is based on the mentioned investigation. It consists of a
report on four constitutive models, selected from [1] , representing four dif-
ferent mechanical concepts. The purpose of the paper is to provide information
about the capability of typical representatives of different classes of constitu-—
tive models for description of the material behavior of multiaxially loaded con-

crete.

The chosen models are the Cauchy (nonlinear elastic) model by Kotsovos and Newman
[2], the hypoelastic material law by Stankowski and Gerstle [3], an elasto-plastic
constitutive model by Han and Chen [4] and a bounding surface model developed by
the second author, reported in [1]. After description of these models a compara-
tive evaluation is carried out. It is based on a comparison of results from
selected load paths with corresponding test results.

2. CONSTITUTIVE MODELS
2.1 Cauchy (Nonlinear Elastic) Model by Kotsovos and Newman

This constitutive model is characterized by a total (secant) formulation. Intro-
ducing the octahedral strains, g = 1}/3 and y  =v2J,/3, and stresses, o, = I,/3
and Ty ™ ¢2J2/3, where I, is the first invariant of the stress tensor, I, is the
first invariant of the strain tensor, J, is the second invariant of the stress
deviation tensor and J! is the second invariant of the strain deviation tensor,
the constitutive equations are given as [2]:

€ = (O 0/ (3Kg) , ¥y =T /(26 - (1)

The two secant matefial moduli, Kg (bulk modulus) and G, (shear modulus), depend
on the uniaxial compressive strength of concrete, f ur f%ey are obtained by means
of curve fitting, using experimental results. An essential feature of this con-
stitutive model is the quantity [2]

0l = £ag.t,) = {atr /£, )P {1+eo /e, 0% (2)

where a,b,c and d are regression coefficients. The purpose of adding ¢' to 00 in
the expression for ¢ is consideration of the fact that deviatoric loading yields
deviatoric as well as volumetric deformations.

Recomputations of several experiments have shown that for the case of nonpropor-
tional loading the constitutive model by Kotsovos and Newman is deficient. The
shortcomings are caused by (a) the lack of a parameter considering the load his-
tory (introduction of such a quantity, however, would be beyond the scope of a
classical Cauchy model) and (b) the loading criterion based on the octahedral
stresses. The second deficiency was eliminated by introducing a loading criterion
proposed by Stankowski and Gerstle [3], which is based on the principal normal
stresses. According to this criterion, loading in the direction of a principal
normal stress o4 is characterized by exceeding the previously reached maximum
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value of the respective principal normal stress.

Fig.l illustrates the difference between the two criteria. For the considered
stress path the first criterion indicates triaxial loading up to point 0 followed
by hydrostatic unloading and deviatoric loading (Fig.1(a)). According to the
second criterion, unloading in the directions of 0, and g., begins already at
point P (Fig.1l(b)). This criterion agrees very well with test results.

S, | ) leading S,k - __loading
! />\7 surface ! ~ ] ~ surface
P\\\ So \ %
N
e A N %5 P‘i
' %o,max St
! ’ ]
Z stress path 2 ! “stress path
- 6)=0, A %23

62,m0x = c53,mcx

(a) octahedral stress criterion (b) principal normal stress criterion
Fig.l! Loading Surfaces in the Stress Space for Two Different Loading Criteria

Determination of deformations resulting from nonmonotonic loading requires formu-
lation of an incremental relationship Ae = D,Ag, where D, is a tangent material
matrix relating increments of principal normal stresses to increments of princi-
pal normal strains. For a situation characterized by loading in the direction of
gy and unloading in the directions of O, and 035 this relationship is given as

Aey a; B B Ao,
Aez = B a' B! A02 s (3>
t 1]
deq B B o Aoy
where
a' = 1/(9K.)+1/(3G.) , a, = 1/(9K_)+1/(3G_)Y+Ao '/ (3K cl) 4
B' = 1/(9KO)—1/(6G0) s 81 = 1/(9KT)—1/(6GT> ° ? )
0 0 T T
The tangent material moduli and G_ are obtained through differentiation of K

and G,. The material behavior described by the Egs.3 and & is calleg
"transvVersely isotropic” [5] . It is characterized by material properties in the
direction of ¢, which are different from the ones In a plane normal to this
direction, representing a plane of isotropy.

2.2 Hypoelastic Model by Stankowski and Gerstle

This nonlinear material model is characterized by an incremental (tangent) formu-—
lation. The respective constitutive equations are given as [3

re | - [ 1/(3ky)  L/H ] Ao
ol = ) , (5
{Ayo} [ /Y, 1/(3GT) At
where KT = f(co) and GT = f(o ,‘ro) are obtained through curve fitting, using
experimental results. The couplfng tangent material moduli HT and Y. permit con-
sideration of the influence of AT_ on Aeo and of Ao on Ay , respecgively. With
regards to constitutive modelling of these interac?ions, Stankowski and Gerstle

were influenced by results obtained by Scavuzzo et al. [6] from comprehensive
test series.

For the current state 1of stress, characterized by poinf P on the stress path
shown in Fig.2(a), Aeg /A'yz = 1//2 where Asg and AYg are increments of the
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plastic octahedral strains. Using the following relationships for a purely devia-
toric load increment:

he, = AEEI + Aegl =0+ Aegl = At /Hp and (6)
Ay, = &S+ Aygl = At /(26 + ayPh = At /(26) (7)

where Ae, (Ae ) and Ay (AY ) are jincrements of the (elastic) octahedral

strains, in ofder to expresstie /AY in terms of , G,, and GO’ where G, is
the initial value of G, and setting this expression equal to 1//2, yields

H, = Z/EGT/(l—GT/GO). (8)

Considering a purely volumetric load increment, by analogy to determination of

Hoy Y, is obtained as

Yo = 3K/ {VZ(1-Kp/K )} (9
where KO is the initial value of XK.

Y volume dilatation {F<0) Fi
/F failure envelope

. _pl _volume con- !
~8€g_[ traction (F>0)

. 1o/,
pl qgfp %.E0 0 ! i
(o] A\

. &
Lo P\ i<current loading dToy
surface do,
V2 #~——stress path
17
= - 07=05
£27€3
(a) increments of plastic strains (b) corrective factor F = f(To/Tou)

Fig.2 Rotation of Vector Aepl for Consideration of Volume Dilatation

According to the loading criterion based on the principal normal stresses, for
purely deyiatoric loading the loading surfaces are normal to the direction of g
Thus, Aep >0 (Fig.2(a)), indicating volume contraction irrespective of the magni-
tude of Tg- By contrast to this analytical result, it is known from experiments
that a change from volume contraction to dilatation occurs when T _ exceeds a
value of approximately 0.9t where T is the octahedral shear strength. In
ordfr tﬁ_COHSIdﬁr this fact uStankowsf? and Gerstle have redefined the ratio

/Ay as Aeg /A = F/,/~ 2 where F is a corrective factor depending on, T, /T
as shown in Fig. 2(b) This factor results in a rotation of the vector As sucﬁ
thai for T = it is normal to the failure envelope. For negative values of F,
Ae < 0, i%dlcaggng volume dilatation.

For axisymmetric states of stress, the two quantities A¢_ and Ay, are sufficient
for determination of Ag, and Ae, = Ag,. For general triaxial sfates of stress,
however, an additional condition™ is neCessary to determine Agl, Ae, and Ag., from
Ae, and Ay . It is assumed that the directions of the increments of the stress
deviation 6Ector coincide with the directions of the corresponding increments of
the strain deviation vector. In general, however, this assumption dces not agree
with reality.
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2.3 Elasto—Plastic Model by Han and Chen

The hardening characteristics of this constitutive model account for the ductil-
ity of concrete under compression and for its brittleness under tension. The
loading surface expands from the (initial) yield surface to the failure surface
(Fig.3(a)). It is described by the relationship [4]

f=71-kry (o ,0) =0 (10)

where r = V2J2/f - is the deviatori? lsn th normalized with respect to f w’ " =
oo/fc , 0 = (1/33arccos[(3/3/2)(J3J2y2 )ﬁ is the Lode angle with J, as the third
18vafiant of the stress deviation ténsor, k is a form factor depending on O_ and
on the hardening parameter k_characterized by kK, £ k £ 1, with k_ = k_and k_=
1 referring to the yield surface and to the faillire sirface r = r ? resgectiveiy.
Results presented in this paper, which are based on the constitutive model by Han

and Chen, were obtained by means of the failure surface by Willam and Warnke [7].

\compression-iension /triaxiql compression

failure surface

failure surface

-
L
-

.~ "S—base surface
loading surface

triaxial -
tension \_

\

e N

e P o

m

(a) expansion of the yield surface (b) construction of a loading surface

Fig.3 Expansion of the Yield Surface and Construction of a Loading Surface

The starting point for the construction of a loading surface is the base surface
(Fig.3(b)), representing an affine contraction of the failure surface. It is
described by the relationship

fb =r - korf = 0. (11)
The shape function k = k(Um,k ), defining the corresponding loading surface, is
determined such that for triaxial tension (Um 2 p,) there is no hardening zone
(Fig.3). Additional aspects for determination of k are the increase of the har-
dening zone with increasing hydrostatic compression and the close up of the load-
ing surface at the hydrostatic axis in the region of triaxial compression, indi-
cating a large hardening zone.

The hardening parameter ko is determined with the help of a U—epl diagram where O
and €P" are the stress and the plastic strain, respectively, obtained from a
uniaxial compression test, and of the condition

awPl = o gePl = ggeP! (12)
ij o dij

where dwpl is a differential of the specific plastic work and deg% is a differen-~
tial of the plastic strains eP-, Th&s, each loafing surface is associated with a
so-called base plastic modulds HP® = do /deP , resulting from the uniaxial

compression test [4] . b

In order to consider the ductile material behavior of concrete under triaxial
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compression, le was replaced by a modified plastic modulus le = M(Um,e).Hg1
where M is a modification factor. For large compressive stresses the form of M
suggested by Han and Chen [4] yields a physically unrealistic restiffening of the

material.

For the purpose of an adequate description of volume contraction and dilatancy,
the direction of the vector of plastic flow is defined by a nonassociated flow
rule which can be written formally as

1
3

where d\ is a positive scalar factor of proportionality and g is the plastic
potential given as [4])

PL _
dei = dkaglaoij (13)

g=0l; +/7, - k* =0 (14)
where O represents the plastic dilatancy factor, proposed in [4] as a linear
function of ko’ and k* is a constant which does not appear in the flow rule. The
dilatancy facfor controls the description of the 1_ - ¢P relationship. It also
has an influence on the stiffness modulus h, appeaging £ the expression for the
plastic material stiffness tensor (Eq.16).

A shortcoming of the original form of @ = d(k ), which occurs when leaving the
hydrostatic axis after a significant elasto-plastic Hydrostatic preloading, is
the strong rotation of the vector of plastic flow dePl in the direction of the
T —axis, connected with a considerable decrease of (3g/90,.)0,. and, thus, of h
(Eq.l?). Thus, a modified dilatancy factor a(k,k ,k _,f 00 was used in the
numerical investigation for the present paper. Ohfs Fhctor® is based on test
results showing the dependence of the To = eg relationship on fcu’ 6, and 9, and

on the type of loading.
The incremental stress—strain equations can be written formally as

G - el 1
495 = Of 1 k17 98

where Dg%k is the elastic and Dg%kl is the (unsymmetric) plastic material stiff-
ness tengor, given as [4] J

p
+ pf (13)

pl _ _ el el

{1 " (1/h)[Dijmn(3g/30mn)(8f/acpq)qukl) (16)
with

h = (af/aomn)niipq(ag/aopq) - le(af/ac)(l/o)(ag/acij)Oij. (17)

2.4 Bounding Surface Model by Meschke

This constitutive model belongs to a special category of bounding surface models,
characterized by the vanishing of the elastic range. The mathematical formulation
of such bounding surface models was introduced first by Dafalias and Popov [8].
The constitutive model proposed by Meschke [1] is based on the concept of hypo-
plasticity. According to Dafalias [9], the main distinguishing factor of hypo-
plasticity from ordinary plasticity is the dependence of the plastic strain rate
and of the rate of the internal variables on the stress rate direction, in addi-
tion to the overall dependence on the stress state. Thus, for nonproportional
loading hypoplasticity is incrementally nonlinear.

The basic relationship of the bounding surface model by Meschke is the equation

aePl - (1/Hp1)<L>p (18)
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where ePl is the vector of plastic flow, le = le(a,k,gpl) is a generalized
plastic modulus, <L> is a loading function defined as <L> =1 = d0.n for d0.n > O
and as <L> = 0 for d0.n £ O with n representing the normal vector at the image
stress poiﬂF Gb qn thel;oading surface (Fig.4), and p is a direction vector given
as p = deP /ldep |. uP depends on the stress vector O, defining a point in the
space of principal stresses o4, on the normalized distance parameter k =
k(r,rf,g), where § is a discrete internal variable representing a jump parameter
which™ accounts for abrupt changes of the loading direction, and on the accumu-
lated effective plastic strain eP , representing an internal variable, given as

ePl = [aePl = [(aePl.qePlyl/2, (19)

With the help of Eq.(18) and of the relationship d€ = deel + depl where de and
de€ correspond to dei. and de?., respectively, the bounding surface model by
Meschke can be formulatdd mathemaﬂically as follows:

do = p°Pde = (p®! - (0®lp D®ln)/(n D®p + WPL))de (20)
where D®P = DE1 + ?pl is the elasto-plastic material stiffness matrix with Del as
the elastic and DP' as the plastic material stiffness matrix.

Fig.4 illustrates a meridional section of the bounding surface, which is identi-
cal to the failure envelope, at two different levels of deviatoric loading, indi-

cated by the stress point O. A comparison of the two illustrations shows the
rotation of the direction vector during deviatoric loading. The point designated

.. =0 i inci 1
9 st 5 max refers to the maximum value of the respective principal norma

~—bounding surface

/'{"’500

v
e

s

]

Fig.4 Rotation of the Direction Vector P in the Course of Deviatoric Loading

"— _ -
02, max =93,max ‘/702 =ﬁ°3 2 S -ﬁ03

The following 1list refers to characteristics of the proposed bounding surface
model:

(a) The loading surface degenerates to the actual stress point.

(b) Using the projection rule by Mréz [8], the gradient of the loading surface is
replaced by the gradient n of the bounding surface F(O0) = r ~ r. = 0 at the
stress image point O, (Fig.4). In the pre—failure material regime the bound-
ing surface is fixed in the stress space. At present, the post—failure
behavior of the material is not considered.

{(c) The direction vector P which controls the direction of the wvector dEpl is
determined on the basis of experimental results reported by Scavuzzo et al.
[6L For a stress point at a sufficiently large distance from the failure
envelope, the direction of the largest principal stress reached so far in the
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process of loading controls the direction of p. (With regards to Fig.4, this
is the cl—direction). As the stress point approaches the failure surface,
the direction vector p rotates towards the direction of the gradient vector
n. This rotation is controlled by the distance parameter k. Abrupt changes
of the direction of Ao, as occur, e.g., for unloading, are considered by
means of the jump parameter §. For propertional loading, £ = 0 and k = r/rf.

(d) With increasing tension the rotation of p becomes slower.

(e) The value of the generalized plastic modulus le is controlled by ¢, k, Epl
and, because of k = k(£), by the jump Birameter £E. Based on the stability
criterion by Drucker, a lower bound of H*™ is obtained as

1/2 (21)

1
B! = -(1/2)n p°%p + (1/2){(p D*'p)(n D)}
ub* depends on the amount of the rotation of depl in the course of loading up
to failure. The effectiveness of this bound depends on the stress path.

(f) The loading criterion by Stankowski and Gerstle [3] is used.

3. COMPARATIVE EVALUATION OF THE SELECTED CONSTITUTIVE MODELS

The following comparative evaluation is based on four different loading paths.
They were chosen such that the capability of the different formulations to
describe specific characteristics of concrete subjected to nonproportional and
nonmonotonic loading can be investigated.

Fig.5 shows To/f -& diagrams for purely deviatoric loading at two different
hydrostatic load Fevels. The symbol "x" in Fig.5 refers to material failure. The
test results illustrate the characteristic volumetric deformational behavior of
concrete. Fig.5 elucidates that the nonlinear elastic constitutive model by Kot-
sovos and Newman does not account for dilatancy. The results obtained by the
hypoelastic constitutive model of Stankowski and Gerstle are reasonably good.
However, for lcading path (b), this model underestimates the ultimate strength of
the material by approximately 10 7%. With regards to the elasto-plastic comstitu-
tive model by Han and Chen, for high hydrostatic load levels such as for loading
path (b), the slope of the T /f -g diagram at the beginning of deviatoric load-
ing is too small. The reason fo%utﬁis shortcoming is the acute angle enclosed by
the hydrostatic axis and the loading surface at the apex of the latter. The good
correlation of the compaction/dilatancy characteristies is the result of the pre-
viously mentioned modification of the original dilatancy factor o. The constitu-
tive model by Meschke yields results which agree reasonably well with the test
results.

Fig.6 shows ¢ _/f -~y diagrams for hydrostatic loading and unloading at different
deviatoric load Tevels. The analytical results in Fig.6 obtained by the two non-
linear elastic constitutive models and by the hypoplastic material model by
Meschke, respectively, satisfy the principal stress loading criterion. At point A
of loading path (a) at which the principal stress O, exceeds the largest previ-
ously obtained value, the begiming of virgin loaﬁing is signalled. For this
loading path and for the chosen loading surface the loading criterion of the
theory of plasticity, used by Han and Chen for their elasto-plastic constitutive
model, happens to be equally good as the principal stress loading criterion. For
loading path (b), however, the loading criterion of the theory of plasticity
results in a delayed begimming of the deviatoric plastic deformations. For this
loading path all constitutive models underestimate the octahedral shear strain
Y.. As far as the nonlinear elastic material models are concerned, disregard of
the dependence of the tangent bulk modulus on 1 _ appears to be the reason for
this underestimation. The hypoplastic formulation by Meschke is found to be cap-
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able of modelling the remarkable increase of Y5 during hydrostatic unloading.

Fig.7 shows 0O.- diagrams for a Joad history characterized by alternating
hydrostatic an% %eviatoric load steps followed by deviatoric unloading and
reloading. At points referring to changes from one of these two kinds of load
steps to the other one the curves obtained by the constitutive model by Han and
Chen are not smooth which is typical for elasto-plastic formulations. The linear
elastic unloading predicted by the constitutive model by Han and Chen does not
aiiee with fhe test results which show a considerable increase of plastic strains
€5 and ep + This shortcoming of the material model by Han and Chen is attri-
buted to %he use of the loading criterion of the theory of plasticity. This
underlines the importance of the principal normal stress criterion.

Fig.8 shows o “€; diagrams for a load history characterized by a nonproportional
deviatoric lcad path after hydrostatic preloading. The symbol "x" in Fig.8
refers to material failure. The reason for the difference between the test
results and the analytical results obtained from the formulation of Kotsovos and
Newman is disregard of the dependence of the tangent bulk modulus KT on T,_. Fﬁr
the section of fhe deviatoric load path beginning at point A (g = -2.76 %N/cm s
T = 1.38 kN/em~) on the projection s, of the g,-axis onto the deviatoric plane,
the elasto-plastic material model by Han and en yields incorrect strains g,.
The reason for this shortcoming is the assumption of a circular shape of the sec-
tion of the plastic potential surface by the considered deviatoric plane. For the
hypoplastic constitutive model by Meschke good agreement between analytic and
test results is observed.

4. CONCLUSIONS

Despite different mechanical concepts of the selected constitutive models and the
fact that not all shortcomings inherent in some of these models could be elim—
inated, generally, good agreement between the model predictions of the deforma-
tional behavior and the ultimate strength of concrete and the test results was
found. This also refers to results for the tension—compression material regime,
which were not presented in this paper. At present, these material models are
implemented in a multi-purpose finite element program,

Stress paths associated with characteristic points of thick-walled structures
made of reinforced concrete, subjected to static loading, usually are less com—
plex than the ones investigated in this paper. Therefore, for identical consti-
tutive modelling of the post—-failure behavior of concrete, it is expected that
the chosen constitutive models for triaxially loaded concrete do not have much
influence on the results of finite element ultimate load analysis of such struc-
tures.
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SUMMARY

An analytical model has been developed to simulate the crack initiation and propagation. By separating and
moving the nodes, the mesh of structure can be changed successively to follow the crack growth. In a com-
puter program the nonlinear behavior of material and bond-slip relationship is taken into account. All the
treatments are automatically executed by computer; the rationality of this model has been studied.

RESUME

Un modéle analytique simule I'origine d’une fissure et sa propagation. En séparant et déplacant les
noeuds, le réseau de la structure peut étre adapté pour suivre I'évolution de la fissure. Un programme d’or-
dinateur prend en considération le comportement non-linéaire du matériau et la relation adhérence-glisse-
ment. Tous les calculs sont exécutés a I'aide de I'ordinateur; le modéle semble rationnel.

ZUSAMMENFASSUNG

Ein numerisches Modell zur Beschreibung der Rissentstehung und deren Fortpflanzung wurde entwickelt.
Durch Trennen und Verschieben von Knoten wird das Elementennetz dem Rissfortschritt angepasst. Im
Computerprogramm wird nichtlineares Materialverhalten und Verbundverschiebung beriicksichtigt. Die Ra-
tionalitéat dieses Modells ist untersucht worden.
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i. INTRODUCTION

The crack initiation and propagation is one of the most important
characteristics of concrete. In reinforced concrete structure, the
cracks cause sudden changes in local stress levels and the local
stress will be redistributed. The difference of crack distribution
between different structures which are controlled by different
strength criteria is obvious, so we must describe the crack initia-
tion and propagation correctly.

There are three different approaches employed for crack modelling:
(1) discrete cracking model; (2) smeared cracking model; (3) single
crack within an element dealt with by fracture mechanics,

In the first approach, the difficulties are that the location and
direction of the cracks are unknown in advance, so Ngo and Scor-
delis [1] have predicted the diagonal crack in simply supported
beam. Based on the discrete cracking model, an approach for com-
puter simulation of crack formation and growth has been developed
in this paper. By separating and moving the nodes, the finite
element mesh of structure can be changed successively to follow
the crack propagation. The crack occurs and grows in accordence
with the stress state, it is not necessary to predict the crack
location and direction in advance,

2. FINITE ELEMENT SIMULATION MODEL

Consider the boundaries between neighboring element as checking
line, if the average stress of two neighboring elements achieve
the tensile strength of concrete, fé, a crack will form along
this checking line. According to the crack situation of neighbo-
ring boundaries, we can make different treatment, that include,
(1) add an extra node, renumber the nodes and equations, separate
the corresponding node as shown in Fig.1(a-e); (2) change the
direction of cracked boundary to perpendicular to direction of @, ;
(3) calculate the displacement of moved nodes by Lagrangian inter-
polation formulas

The range in which the nodes can be moved is limited to avoid dis-
torting the element shape exeessively, see Fig.1(f). For simpli-
fication, the node can only be moved along one direction, e.g. if
the checking line along X coordinate is cracked, the node of this



A D. SHENGLIN - S. QIGEN - S. BINGZI

211

(I Lot . i |

R IST e A
T T T

(A ) 66)

b

—
=5
/A
s
R
A
\

26y z(,él

R

o [ 2 ‘//7*‘?\*
"/L“_“ kv] A__ *_J LEZ;;L
/ [ I~ L P

ce) cd)

Fig. 1

border can only be moved in the direction of Y coordinate, vice
cersa.,

If some nodes are disjointed, the program |
will compute the equivelant node forces of %51/
relative elements and release them in next ‘vqh
iteration to reflect the stress redistri- 1]

bution occured in actural structures. e.g.

assuming node r will be disjointed, we add Fig. 2 (m=2)

a new node r,  and call the original node r, (Fig.2), the equive=-
lant node force of element e, respect to node ry

P8 - B]T {0} - taa 1
{ }ro he,[]ro{ }e, (1)
where, t,A= the thickness and area of element e,; [B]roznode

submatrix of strain. Summing up the contribution of all elements

m
(ple2 =2 (r)o L (7]0 = ~(pp2 (@)

is obtained, in which m=number of elements which are linked to
node rg.

According to the experimental results[E], though the bond action
at each side of crack is weakened, the range is limited, so if we
take the stiffness of linkage element as zero in such a case, a

considerable error will be caused. In this program, when the crack

crosses the reinforcement and the node is separated, we add an

extra linkage element to link the new node of concrete to the same
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node of reinforcement and then adjust the longitudinal stiffness
of these linkage element.

When all the checking lines have been examined, the computer exe-
cute a new iteration using the released equivelant node force ve-
ctor. If in an iteration, there is no new crack occured or propa-
gated and also no element feil, the loading increment of next step
will be added.

3. NONLINEAR ANALYSIS

A computer program has been set up for reinforced concrete plane
problem. Using the quadratic element for both concrete and rein-
forcement, one dimension element for stirrup, the program has
accepted the tangential stiffness increment methed.

The stress-strain relation of concrete under biaxial compression
can be expressed as
a+b€

1+cE+d€° (3)

-
=

the constant a,b,c,d can be given by

¢€=0, 0=0, % .5, ;
€
€ =€, 0= B¢ , 499 o ., (4)
1-(’1;)‘ d€

Where (Sc, Ec=stress and strain at uniaxial compressive failure;

0(] ='-0-1/0-2 ,O(az()(;] H

Eo= initial elastic modulus.
then we have

F WY
E, [1-
a0, ol (Eic) )
£y = = % s > (5)
a€y  [1+C o 222 (E)®)
1 E'B eic eic

(i=1,2)
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The concrete is considered as an orthotropic body, the modulus of
elasticity in compression is calculated from eq.(5), in tension is
Eg. The reinforcement is considered as idealized elasto-plastic
material., The failure criteria is based upon Kupfer's work[q].

4. NUMERICAL RESULTS

A simply supported beam (Fig.3a) is analysed to study the rationa-
lity of this approach., After two loading increments, the cracks
developed as shown imn Fig.3b, In the second calculation, we lcad
the same two loading increments on such a cracked beam at the same
time., Because of the same equilibrium state, the correct results
of the second computing must be the same as the first one. In fact,
the error are very small(less than 4% in general).

i

(a) ‘b,

Fig. 3

To examin the whole analytical model and program, a specimen,
shown in Fig.4, has been computed. Using 171 concrete elements, we
obtained the crack distribution by computer (Fig.5), the crack
distribution and direction agree well with the experimental re-
sults. The comparison of crack width is not satisfactory, it is

obvious that the interlock action in the crack should be included,
see Table 1,

'400|
e

- %
ad00 3

T T " ']

Fig.4 Speeimen (mm)
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We have also got a lot of

width of message 35 , such as deflection,
crack load|analysis|experiment stress and the properties of
4t 0.090 0.057 total structure. Combining
averags| g 0.170 0.080 with the experimental results,
yt 0.130 | 0.060 the analytical results can
mad mim b 0.300 0,150 help us in study of RC struc-
Table 1 Comparison of crack width tures,
P4

Phy11% |

Wi/

Flg.5 a analytical crack distribution of specimen
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Direct Iteration in Nonlinear Analysis of 3-Dimensional Concrete Structures
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SUMMARY

In this paper the direct iteration method for nonlinear analysis of three-dimensional reinforced concrete
structures is studied. The paper presents a nonlinearity index, which is in term of second invariant stresses
deviator tensor. Much computer time can be saved by using this nonlinearity index. One example is included
and numerical results are compared with the experimental results. The comparison shows that this method
may be recommended for practical use.

RESUME

La contribution traite de la méthode d’itération directe pour I'analyse non-linéaire de structures tridimen-
sionnelles en béton armé. Elle présente un index de non-linéarité, qui est un vecteur de tension de second
ordre. Un temps d’ordinateur considérable peut étre économisé en utilisant cet index de non-linéarite.
Quelques exemples sont présentés et les résultats numériques comparés avec les résultats expérimen-
taux. La comparaison montre que cette méthode peut étre recommandée dans la pratique.

ZUSAMMENFASSUNG

In diesem Beitrag wird die direkte Iterationsmethode flr nichtlineare Berechnungen von réaumlichen Stahl-
betonkonstruktionen studiert. Der Beitrag stellt einen Nichtlinearitatsindex vor, der die zweite Invariante des
Tensors der Deviatorspannungen verwendet. Mit diesem Index kann viel Rechenzeit gespart werden. Bei-
spiele numerischer Berechnungen werden mit Versuchsresultaten verglichen. Der Vergleich zeigt, dass
diese Methode der Praxis empfohlen werden kann.
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1. INTRODUCTICN

Three dimensional concrete structures are widely used in massive footing of huge
machine, offshore platform, concrete reactor vessel, etc. But its detailed
behaviour under vavious stress combination has not been full understood. Imn this
paper the nonlinear finite element techniques are used for amalysis of 3-D
reinforced concrete structure from beginning of loading to failure of structure.
In this paper the reinforcement is regarded as a steel membrance in the comncrete,
but different constitutive relationships are adopted for two different materials.
The nonlinearity and crack growth of concrete, the yield of reinforced bars are
considered in the analysis. The direct jteration method is used for solving the
nonlinear finite element equation systems, which is quite efficient for the full
range of nonlinear analysis. This method is first proposed by Ottosen [1]. Here
this method will be extended to analyse three dimensional reinforced concrete
structure. In Ottosen's model, the nonlinearity index is defined in term of
036.in which the interactive calculation is needed to get @. In this paper another
nonlinearity index.ﬁﬁ%ﬁi is proposed, which can be directly calculated from the
stress state and have evident geometrical means in stress space.

2. FINITE ELEMENT FORMULATION

Taking into consideration the effect of reinforcement. The eight-node isotropic
element with reinforcement membrance is used., 1In this case the strain in the
reinforcement is assumed to be the same as the surrounding concrete. Thus two
materials are integrated into a single element but have separate stress-strain
relations, A detail explasnation can be found in Reference [2]. Here only the
formula which are used in this paper are written as follows.

The stress-strain relation is

[o]l=[D]}[£)

where |[D] is the material matrix, which is change with the stress level. The
stiffness matrix can be calculated by using standard procedure, i.e.

(Kel= [/Iv(B]T [DcllBldv

where [B] - geometric matrix of solid elements
{Dc] - material matrix of concrete

The contribution of reinforcement membrane to stiffness matrix of element may be
calculated as follows

T T
(ksl=tff, (B} [L] [Ds][L][B]dA
where [B] - geometric matrix of solid elements
[L] - matrix of coordinate translation
[Ds) ~ material matrix of reinforced bar
t - equivalent thickness in reinforced direction.

Then the total stiffnessmatrix of element [K] can be calculated as

[K] = [Ke] + [Ks]
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3. CONSTITUTIVE RELATION FOR CONCRETE

From the test of concrete under compressive stresses shows that the nonlinear
strain is existed at beginning of loading and hasn't evident initial vyield
surface. On the other hand the stress-strain relation of concrete under triaxial
stress condition has not yet been full wunderstood. Iu this case the Ottosen's
nonlinear elastic model is available for monotonously increasing load.

In order to evaluate the modulus of elasticity of concrete at different stress
level, three things have been decided upon first, i.e.

(1) The failure criterion of concrete;
{2) The equivalent uniaxial stress-strain formulation of concrete;
(3) The nonlinearity index of concrete.

The failure criterion under triaxial stress state proposed by Ottosen is assumed
in this paper. However, some other failure surfaces, such as Mohr-coulomb,
Drucker-Prager, W.F.Chen, Willianm-Watuke have been implemented in the program.
From the expression of the stress-strain relation under wuniaxial loading, the
secant modulus of concrete, Ec, can be determined from the uniaxial expression by
using the nonlinearity index. Here the following expression proposed by Sargin
[4] is adopted:

- (Eo/Ep) (E/£p)+(D-1)(£/£, §
1-((Eo/Ep)-2) (£/g, 1+D(E/ g, f

L
fc)

in which tensile stress and strain are taken as positive. &p is the strain at
peak stress f!, Eo is the initial modulus, and Ep is the secant modulus
corresponding to £ = £ . D is a parameter which mainly affects the descending
segment of the stress-strain curve (Fig. 1). The nonlinearity indexﬁ is defined
as the ratio of O0/f! . Thus the secant modulus of concrete Ec can be evaluated
as

Ec=0.5E0-B(0.5E0-Ep)t f [0.5E0-B(0.5E0-Ep) I“ +SES [D(1-g)-1]

where the positive sign is used for the ascending part and the negative sign is
used for descening part of the curves.

ﬂ%,
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Fig. 1

Under uniaxial loading nonlinearity index g is determined by the scalar stressO
only. How can p be determined under general stress condition? Ottosen suggests
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(Fig.2):

6 = O/,

20
$ S5
x \E o
[ ﬂ\\ o
Oy G G
o G3
(a) (b)

Fig. 2

where 0z is the third principal stress
O 1is the failure value of (O; provided O; and O; are unchanged.

In order to determine the O3 , the try and error method should be used. In this
paper the 8 value is suggested to be calculated as follows:

6 =J%r [z

where Jz 1is the second invariant of stress deviator tensor
J;r is the failure value provided I, and & keep unchanged.

4. DIRECT ITERATION METHOD
The finite element equation
[K]{u]l = [p]
is a set of nonlinear equations, in which, {U] the total stiffness matrix changes
with the stress level. Here, the "direct iteration method”" is developed to solve

the nonlinear equations. The iterative steps are as follows:

(1) Evaluate the first approximate displacement [U; ] with the initial stiffness
matrix [K,].

(2) Calculate the strain of each element from the displacement [U;].
(3) Calculate the stress for each element.
(4) Calculate nonlinearity index g -

(5) Evaluate the secant modulus of concrete, and form the updated material matrix
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[De].
(6) Check the tension cut-off condition: if 0, > £' , modify {Dcj.

(7) Calculate the stress of the reinforcement and check the yielding condition:
if g3 >fy , modify the material matrix [Ds].

(8) Calculate the element stiffness matrix [Kc] and assemble the structural
stiffness [K;].

(9) Evaluate the next approximate displacement [U;] with [K,] by

0,1 = (K, 1" [p]

(10) Check the convergence condition: if||duldE , stop the iteration and output
the results, where € is the convergence tolerance; otherwise, replace [U; ]
with [U; ], go to step (2), and repeat the procedure.

5. EXAMPLE

The footing structure, Fig. 3, was tested by Nylander. The footing is loaded by a
jack, and fixed to the ground by 12 steel bars. Swedish deformed bars (kamstal)
of type Ks 60 were used as reinforcement. The actual average yield stress is
f;=621 MPa. The amount of reinforcement is 17¢ 8 and 164 8, see Fig. 3, The load-
deflection curve obtained from experiment is shown in Fig. 4. The deflection of
the centre obtained from calculation is also shown in Fig. 4 by a dashed 1line.
The strain at the centre of the reinforcement is shown in Fig. 5 in which the
solid line shows the experimental result and the dashed line shows the analytical
results by this program.

It can be concluded that the calculated load-displacement curve is in reasonable

agreement with the experimental data that the analytical stress in the centre

reinforcement can reflect the main characteristics of the experimental results.

The calculated failure locad is about il1l% higher than that experimentally obtained.
It is reasonable for the concrete structure.
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Fig. 3
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Framework Model for the Simulation of Fracture Behaviour of Concrete
Modeéle de treillis pour la simulation du comportement a la rupture du béton
Ein Fachwerkmodell zur Simulation des Bruchverhaltens von Beton
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SUMMARY

A framework model is used for the computer simulation of fracture behaviour of concrete. During the loading
process the model degenerates to total collapse due to the failure of struts. Without delineating the
geometrical correct shape of particles in material structure the model can be used for microscopical or ma-
croscopical studies. The results of the simulation of a uniaxial tension test are presented.

RESUME

Un modeéle de treillis est utilisé pour la simulation du comportement a la rupture du béton. Au cours du pro-
cessus de charge, le modéle dégénére jusqu’a ruine totale par suite de rupture des diagonales. Bien gu’il
ne décrive pas la forme géométrique correcte des particules du matériau, le modele peut étre utilisé pour
des études microscopiques et macroscopiques. Les résultats sont présentés pour la simulation d’un essai
de traction uniaxiale.

ZUSAMMENFASSUNG

Fir die Computersimulation des Bruchverhaltens von Beton wird ein Fachwerkmodell benutzt, das durch
das Versagen von Stédben wéhrend der Belastungsgeschichte bis zum Totalkollaps degeneriert. Ohne die
geometrische Gestalt der Partikel im Materialgeflige abzubilden, kann das Modell fir mikroskopische und
makroskopische Studien verwendet werden. Die Ergebnisse der Simulation eines Zugversuches mit ideal
einachsiger Lasteinleitung werden vorgestellt.
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1. INTRODUCTION

In material research a numerical method is useful not only
in supplying tests of specimens in laboratory, but also
giving realistic informations about the crack opening and
crack growth inside the specimen. In recent years several
models for describing the fracture behaviour of brittle ma-
terials have been put forward. Some authors, e.g. /1/, use a
mesh for FEM which delineates the structure of concrete ex-
actly. At Bochum another way has been chosen. The model con-
ception is based on Hrennikoff's /2/ idea of the solution of
linear elastic continuum problems by framework models. This
model allows simulations on micro- and macro levels without
altering the number of elements. Only the strut parameters

are changed due to the alteration of specimen size.

2. MODEL CONCEPTION

The strut arrangement results from the idea of modelling
stress trajectories between equidistant lattice points /3/.
The bkasis cell is a cube, see fig. 1, with edge struts, sur-
face diagonal struts and space diagonal struts. The struts
itself behave linear elastic up to given strain rates. On
exceeding the maximum tensile or compressive strain the
affected struts are removed from the system, representing

cracks. Due to the parameter quantification, large displace-

Fig. 1: Basis framework cube

—— edge strut
—-—— surface diagonal strut
-~ space diagonal strut
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ments may hardly occur. Bufﬁin heavily degenerated states
strut series may buckle or snap through. Thus, a fully geo-
metrically and physically nonlinear analysis of the system

has to be performed.

The basic program system has been developed in 1984 /4/.
Special numerical technigues have been adapted to perform
the simulation analysis on a vector computer effectivelly
and fully automatized. The following variations are possi-
ble:

- 2D/3D simulations

- uniaxial / multiaxial loading

- compression / tension tests

- load / displacement control

— rigid load induction / "weak" load induction

- influence of viscosity

Additionally, the program system allows an implementation of
any material law, e.g. the input of a stress-crack width
diagram, which results from the fictitious crack model of
Hillerborg /5/.

3. MODEL1ING CONCRETE

As mentioned before, the model conception allows to choose
any level of delineating concrete structure /6/. According
to the specimen size the strut parameters have to be al-
tered. Fig. 2 shows an example for microscopical studies. A
single strut represents the stress flow mainly through an
aggregate particle, another one mainly through the mortar
matrix, and a third one is affected by the bond between
matrix and aggregate. Fig. 3 shows an example for macrosco-
pical studies. With a given aggregate size distribution and
concentration, the three-dimensional composite structure of
concrete is simulated to specify the strut parameters. Since
exact modelling of the real structure is not required, the
strut parameters are stochastically endowed with values by a

computerized random number process.
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A

pd O PEANLAEX Fig. 2: Example for simulations

on a microlevel

Fig. 3: Example for simulations on a macrolevel

4. EXAMPLE

In this chapter the simulation of an ideal uniaxial tension
test at a sguare plane framework will be presented. The con-
crete is delineated on a macro level. The struts behave
linear elastic without any influence of viscosity. The strut
parameters are only defined by the stiffness, the tensile
strength and the compressive strength. The typical nonlinear
behaviour of the total system is determined only by degen-
eration or cracking, respectively. All guantities of the
strut parameters are normally distributed with a variance of

50 %, modelling a very inhomogenous concrete.

The simulation framework consists of 31 x 31 nodes and 3660
struts. The loading acts on the upper edge of the system in
a way, that all nodes on this edge displace equally in ver-
tical and freely in horizontal direction. The opposite edge
is supported correspondingly. To calculate the load-dis-

placement path up to the total collapse a displacement con-

trol is used here.
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tension test at a plane framework
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Fig. 4: continued

Fig. 4 shows the graphical interpretation of the tension
test simulation. Load-displacement curve and crack plots for
six selected load levels are given. According to the strut
parameters the first cracks appear randomly. At the unload-
ing branch several horizontal cracks are visible but only
one crack runs in horizontal direction and marks the failure
mechanism, while the other c¢racks close just before the

total collapse.
The result of this simulation study shows the general appli-

cability of the presented framework model for simulations of

fracture behaviour of concrete.
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Numerical Models for the Non-Linear Analysis of Prestressed Concrete Frames
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SUMMARY
After a brief overview of the models currently used for prestressed concrete structures, a model originally

developed by the authors is discussed in detail. Its main goal seems to be the simplicity in which shear de-
formations and slippage of the cables are considered.

RESUME
Apres avoir passé en revue les modeles actuellement employés pour les structures en béton précontraint,
les auteurs presentent leur propre modéle. Le résultat le plus important que I'on peut attendre de ce mo-

déle est la simplicité dans I'expression de la déformation due a I'effort tranchant et de I’écoulement des
céables.

ZUSAMMENFASSUNG

Nach einer kurzen Ubersicht (iber die Modelle, die heute fiir Spannbeton gebrauchlich sind, wird ein von
den Autoren entwickeltes Modell im einzelnen besprochen. Das wichtigste Ergebnis ist, dass Schubverfor-
mung und Kabelschlupf sehr einfach behandelt werden kénnen.
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1. FOREWORD

The design of prestressed concrete structures must satisfy the requirements
of safety and serviceability, as all other kinds of structures.

While this can be accomplished in most cases by following approximate or
empirical procedures, it is also desirable to have refined models which can
trace the structural response throughout their elastic, cracking, inelastic
and ultimate ranges.

The wuse of these models can be either providing a firmer basis for the codes
and analyzing unusual and complex structures.

The purpose of this paper is twofold: first a brief overview of the
currently used models is given, then some more details are given about a model
developed by the authors.

2. PROBLEMS IN MODELLING PRESTRESSED CONCRETE FRAMES

When dealing with prestressed members any model should be evaluated with
respect to some important and peculiar problems.

Time dependent effects, due either to lecad history, temperature history,
creep, shrinkage and aging of concrete and relaxation of the prestressing
cables, have the outmost importance because of the character of imposed
deformation of the prestressing action.

Bond between tendons, mortar and concrete is a qualifying point: refined model
should give the possibility of simulating bonded and unbonded tendons, and in
the former case should incorporate a law for the progressive deterioration and
failure of bond connections.

Shear deformations and effects of the prestressing action on shear cannot
always be neglected, particurarly when dealing with deep beams.

Planarity of the section is not guaranteed due to shear and torsions, and is
not respected at all after some slippage between cables and concrete has
occurred.

Connections between elements, mainly beam-column connections, may create
problems to some models, effective for one-dimensional structures.

The constitutive relations are sometime based on well established 1laws for
concrete and steel, sometimes on the contrary are obtained through euristic
corrections of the usual relations for concrete beams.

Finally computer time and memory may be very penalizing for too refined or
bad conditioned elements.

3, CURRENT MODELS
Models based on quite different ideas are presently implemented te simulate
the behavior of PC beams. The most commonly used ones will be briefly

presented in what  follows.

3.1 Traditional beam elements whith corrections

This 1is conceptually the simplest and most euristic approach /2/. The wusual
moment-rotation relations are used, correcting at each time step the stiffness
of the elements in order to take into account the actual non-linearity.

The prestressing action is introduced as an external force, but the reduction
in stiffness keeps it equivalent to an imposed deformation. The sections are
considered to remain plane, bond and shear are not explicity taken into
account.

Most of the job consist in getting the right correction factors for
cracking, time dependent effects, tension stiffening.
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3.2. Integration of sectional M- ¢ relations

A second approach is based on the use of sectional results, obtained normally

through programs which divide any section into layers with different stress-

stain relations. Equilibrium and planarity of the section are then imposed to

get moment-curvature relations /7/.

The prestressing action is taken into account prestressing some steel layers,

bond is supposed to be perfect, time dependent effects are usually neglected.

A number of choices is then possible to get the overall stiffness of a beam

element:

1. Each beam can be identified by one or more sections, using constant, linear
or higher order variation of the stiffness properties along the member;

2. The moment-curvature relations can be piecewise linearized, or the actual

M - ¢ can be used and the stiffness of each section computed at each step
within the F.E. analysis /1/. In this case the procedure way be very time
consuming.

3.3. Layer and filament models

A beam element is decomposed in a number of straight layers or filament each
of them with a monodimensional stress-strain law which can take into-account
also time dependent effects.

Pretensioned, bonded and unbonded postensioned cables can be simulated, shear
deformations are neglected.

The elements cross sections should have a simmetry in the case of layers
models, can be of any shape in the case of filament models.

The tendons are straight, but not necessarily horizontal within the element
J117 .

4, BIDIMENSIONAL LAYERS MODEL

This model, recently implemented by the authors, differs from the layer model
mainly because of the layers are here modeled as plane stress elements instead
of one-dimensional.

The advantages of such a model may be summarized as follows:

1. the shear deformations are considered, which is particulary important
for deep beams.

2. It 1is possible to take into account the interactions between  axial
action, shear and bending moment.

3. The sections can assume  up to a second order polynomial
shape.

4. The number of layers is much smaller than in the case of a moeno-

dimensional layer model.

4.1. Analvtical Formulation

The adopted apprcach is the Displacement Finite Element Formulation.

The displacement fields are defined over a bidimensional domain, subdivided
into strips through the height of the beam.

The strain-displacement relations for the Timoshenko beam theory may be
written as:

_ _ <35 _ 0u
'R ° TSR Y R
av 1)
gs ~ " 0+ 7

Where R and S are coordinates related to a sectional reference system, which
may vary along the beam because of the variability in the shape of the cross
section; u , v and are the generalized dislacement components, according to
a classical Lagrangian formulation, referred tc an absolute reference system.
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The commonly used Bernoulli-Navier formulation, which requires the planarity
of the sections, assumes:

g = v
drR (2)
and consequently equations (1) assumes the form:
2
d”v du
€ :—S———+—._..
RR dR2 dR
(3)
€pg = 0

This formulation requires the continuity in C! for the discrete variables in
the shape functions: they have to be at least of the third order in R for
v and of the first order for u (see table 1).

The use of the Timoshenko theory gives many advantages and one problem:

- the shape functions have to be continuous in C° , they can be the same
for u, v and © (see table 1).

- Three nodes elements can be wused, so that curved beams can be
represented, the layers can have curvilinear borders, sensible

modifications in the cross section shape do not give problems.

- The shear deformations are directly taken into account.

- The problem is that the strain tensor components are not of the same order,
so that the shear effects are overestimated when the height of the beam
becomes smaller and smaller.

This difficulty has been successfully overjumped by fictitiously reducing the

degree of Epg and setting the epg and the gggreduced at the same values at the

Gauss integration points.

For the prestressing steel layers the strain displacement relations are

modified as follows:

a0 du + . ohu

ERR =T 5§'+ 3R E:0 R
~ Y (4)
€pg = o + R

Where €, is the initial strain due to prestressing and Au is the slippage
between cable and concrete after the bond has been destroyed.

4.2. Constitutive Equations

The constitutive equations have to be biaxial for concrete and steel and
have to treat the bond between steel and concrete.

Concrete. The relations presented by Kupfer and Gerstle /8/ have been used.
They separate the hydrostatic and deviatoric behavior:

00 = 3K eo
(5)
00 = 2G Yo
finding a very good correlation between the experimental results and the
following equations:
GS/GO =1-a (1 /fcu)m
G /G = (Gs/Go)z
T'0  m - G./G ~ 1
m s/Cq (?P ) 6)

Rg/Kg = Gg/Gq @

Kp/Ky =

P
e_(CYo) 1 - p(ch)P)
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where G gand are the secant moduli,
G'T and&%? are the tangent moduli,
%), K, a, m, ¢, and p are constants given as a
function of ultimate monoaxial strength %u

The biaxial strength is then given by the expressions:

compression-compression (01/fcu + Uz/fcu)z + 61/fcu + 3.65 oz/fcu =0

3
compression-tension Gz/ftu =1+ 0.8 \/01/fcu (7

3
tension-tension o, = £ = 0.64 \/ f2
2 tu cu

The material stiffness matrix is:
1 3K - 2G 0
2(3K+G)
3K+G 3K-2G
4 3eae | 20K ! 0 (8)
3K + 4G
0 0 4(3K5G) |
setting oy = 0 the final relations for concrete are obtained:
e . e — —
o 9KG 5 . h
RR 3K+D RR
= X (9
Ozs 0 G €rs
Steel. The Von Mises plastic potential has been used, with an isotropic
hardening taken from the CEB quintic for prestressing steel:
o] £
E. = 0.823 (+—2— - 0.77)° o, > 0.7 222
S f 0.2 S ES
e (10)
o] f
__5 v0.2
ES Eg GS < 0.7 Es

By conformity and normality the following expression for the plastic velocity
of deformation is obtained:

£(B) _ 5 _ Of 3t

°P a (11)
ij aakl k1l Boij
where
ﬁ _ 1
8jEP) * %£ 8(P) aaf
3e X o€ Omn
mn mn
and
L(P) _L(P).
f(cij, Eii X(gij )) =0 (12)

by consistency.
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With some manipulation the material stiffness matrix is obtained:

~ =2 1 3= Ir
Ao, =3 s
RR A4Hopg + & % HOprOggl | Aegg
e 1 (13)
4H 2 4H 2 1
Ao 9 RRTE “RRTEG| -24 te?,
| “%rs | | "3%Re%s 9%RRTE A%@J
with -

5‘/ I
- (€ _/0.823)
H = 9.2587534 — 1
(6]
fy0.2 ep (0.7 + §/8p/0.823)

For the ordinary steel hardening has been neglected because it is not wusually
reached: the ultimate strain of the prestressing steel is normally lower than
the hardening strain of the ordinary steel.

Its constitutive equation is consequently simply elastic-perfectly plastic.

Bond. The bond between steel and concrete is presently considered as rigid-
plastic, but it could be easily transformed in a multi-linear relation.

At every step the stresses at the border of the concrete layers are checked at
the joint position: if a failure occurs the bond ties are supposed to be
broken.

As a consequence the height variable S for the steel layer is not any more
taken with reference to the N.A.of the section, but with reference to the N.A.
of the layer. In such a way the moment of inertia of the steel layer is not
any more contributing to the whole section moment of inertia.

Moreover a new unknown variable Au (eq.2) is considered, which is the
displacement of the steel layer at the joint where the failure has occumed.

Of course this means that a new row and a new column are inserted in the
stiffness matrix.

Two different strategies are possible, depending on the meaning of Au: it may
be taken as the total displacement of the cable joint or as the displacement
of the cable joint with respect to the deformed position of the section. To
clarify the ideas let's consider a two elements, three joints, two layers
example in the simpler formulation.

The stiffness matrix can be written as follows:

-~ - — =
Fa| (K10 © 0K, 0 0 0 0 o K o F%
Foq KyaKpy O Kygkpe 0 0 0 0 v,
Foq Ky 3 O %5K;g 0 0 0 0 6,
Foo Keg 0 0K, 0 0 0 u, (14)
Foa|_ KesKse 0 Bgg¥eog O vy
Foy Keg O KgagkKgg O 8,
Fu3 Sym. K."7 0 0 0 u3
Fus Kgg¥gg O vy
Fg3 Kg,9 O By
Fau K10,10 u

L d L L4

Some significant terms of the stiffness matrix are explicitly given in table
2, before and after the bond failure at joint 2.

5. CONCLUSIONS

The main points to be considered when dealing with modeling P.C. frames are
discussed, showing that a choice should be operated case by case to take into
account the most important effects and to disregard the others.

An original model is presented: it seems to be a good compromise between
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simplicity of calculation and refinement in the material modeling.

The model deals satisfactorily with the problems of bond, shear, connections
and constitutive relationships, but presently disregards the time dependent
effects.

Many simulaticns of different structure are needed in order to check the
effectiveness of the model; then further refinements might be implemented.

The most important of them seem to be to consider a multilinear law for bond
and to take into account time dependent effects.

A particular problem deals with the constitutive equations for concrete,
estensively discussed in /3/; in the present model it seems to be necessary to
take into account the effect of confinement due to steel.
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Table 2 ~ Timoshenko formulation: some terms of the stiffness matrix (I layer, 1 joint, (1) element)

9ee

SISATYNY HYANIT-NON HO4 S13a0N TvOIHINNN




	Session 2: Computational models (advances)
	Ultimate load and stability analysis of reinforced concrete shells
	Stability and uniqueness in numerical modelling of concrete structures
	Numerical comparisons involving different 'concrete-models'
	Finite element supported fracture testing of concrete
	Comparison of constitutive models for triaxially loaded concrete
	A finite element simulation model for cracks in reinforced concrete
	Direct iteration in nonlinear analysis of 3-dimensional concrete structures
	Framework model for the simulation of fracture behaviour of concrete
	Numerical models for the non-linear analysis of prestressed concrete frames


