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SUMMARY

Analytical formulation of a constitutive equation for a single crack is made and modelling of four basic coef-
ficients are discussed. Numerical simulation and comparisons with test results indicate that the proposed
model can represent essential characteristics such as nonlinear shear transfer, aggregate interlock and
crack dilatancy, and satisfactorily predicts experimentally observed results. Finally, the constitutive matrix
is presented for concrete containing regularly distributed cracks.

RESUME

La formulation analytique d’une équation constitutive pour une fissure simple est proposée et un modeéle
basé sur quatre coefficients est présenté. Une simulation numérique et des comparaisons avec des résultats
d’essais montre que le modele proposé peut représenter les caractéristiques essentielles telles que le
transfert d’efforts tranchants non-linéaires, I'influence des agrégats et I’évolution des fissures. Il prédit de
facon satisfaisante les résultats expérimentaux observés. Finalement la matrice constitutive est présentée
pour un béton contenant des fissures distribuées de facon réguliére.

ZUSAMMENFASSUNG

Ein Vierparameter-Werkstoffgesetz fiir den Einzelriss wird analytisch formuliert. Mittels numerischer Be-
rechnungen und Vergleichs mit Versuchsergebnissen wird gezeigt, dass das Werkstoffgesetz die wichtigsten
Merkmale wiedergibt, wie nichtlineare Schublbertragung, Rissdilatanz und Kornverzahnung. Zum Schluss
wird das Werkstoffgesetz fir Beton mit regelmdassig verteilten Rissen gegeben.
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1. INTRODUCTION

It has been long recognized that cracks in concrete have a significant effect on
the mechanical response of reinforced concrete. This requires construction of
an analytical model representing a single crack for nonlinear analysis of
reinforced concrete members, The authors develop a constitutive equation that
relates relative discontinuous displacements (shear slip and crack opening) and
applied shear and normal stresses on crack surfaces of concrete in a state of
plane stress.

In this paper, the formulation of a basic constitutive equation and modeling of
the four coefficients contained in the constitutive matrix are described.
Numerical examinations demonstrate that the shear stress-shear displacement
relation exhibits highly nonlinear behavior and is quite sensitive to vertical
constraint such as the normal displacement {crack width) and extensional
stiffness of reinforcement across a crack. Numerical comparisons indicate
satisfactory agreement with available test data.

The authors propose a constitutive model that can reflect such typical
characteristics as shear transfer due to aggregate interlock, coupling effect
(erack dilatancy and frictional contact slip) and path~dependence. Moreover,
this model can easily be incorporated into conventional finite element codes
without a great deal of revision by means of damage mechanics as well as crack
strain method, which have been developed by Tanabe and his coworkers ([1]-[4],

[171-T19D.

2. BASIC EQUATIONS FOR STRESS-DISPLACEMENT RELATIONS

When expressing the mechanical behavior on the crack surface in a state of plane
stress (Fig. 1), the relation between the shear stress‘rntc, the normal stress
on®, the relative shear displacement (slip) 6t and the relative normal
displacement (crack opening) §, may be generally assumed in the form:

c
dint By Bn||ddy
i = LBids (1)
{do‘i } [Bnt Bnn dén ; {d(jc} [ _}{d }

in which B and B, are the crack stiffness, and B 0 and Bn function as
off-diagonal terms ({51, [6]). 1Identifying all the terms in the matrix of [B]
is a major objective of this paper, although no fully established formulation
for Eq.l has been attained yet.
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t Fig. 1 Stresses and Discontinuous Displacements
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Examining experimental observations offered by many researchers, the following
relations may be deduced. The shear displacement (shear slip) is affected by
not only the applied shear stress but also the normal displacement (crack
opening). The normal stress (always compressive) is of course determined by the
normal displacement and also induced by the application of the shear stress
especially when the crack opening is restrained. Consequently, the relations
among these four variables can be expressed as follows:

e
(St = 6t(Tnt’ 61’1)
¢ = oS(s <) (2)
Op = 9nitns tug
Differentiating each of Eq. 2 by making use of the chain rule, then,
38, 38 clest 30y,
o e n n_4t€

dst = —4— drﬁt + ds do, = ——ds&, +—59Tu (3)

9T, 38, 7 | 96n Bl

is obtained. Here, we introduce the four coefficients defined by the
differential derivatives appeared in Eq. 3 such that:

s e &
361; 1 Aoy ~-g0, —1 aat -1

K, = ( Y, kpy E . n g'y = (2°L Ao = 98n  (4)
t aT;‘t mT 38, o HfF S (8—'{%;) » Bg (adn » BT 55,
in which kr = the shear stiffness, kp = the normal stiffness, Bg, B'q = the
dilatancy ratio and uf = the frictional coefficient, respectively, all of which

are defined in the tangential (incremental) form. Then, substituting the four
coefficients into Eq. 3 leads to the following constitutive relation in the
matrix form.

11 dr%
& 1
da, - ﬁ? Ky, ds,

Note that in both vectors in Eq. 5 stress components and their corresponding
displacement components are mixed, which may stem from the coupling effect
between opposite crack surfaces. This dimportant but cumbersome mechanical
behavior c¢an be represented by the above derived equations, which seems quite
different from conventional types of stressn strain relations for continuum
solid mechanics.

By modifying the form of Eq. 5 into the usual form as Egq. 1, the following
equation is obtained.

1

s, L - = &g || déy s, po[r o] fag,
aF ki i 1 . (6) - Eky e 7
do® " Y dsy, L By  ufld doy,

where £ is a nondimensional parameter calculated from the four coefficients such
that:

k
£ = pfﬁdk—z- (8)

Egs. 6 and 7 appear to be asymmetric and the matrix [F] becomes singular when
£=0 and is guaranteed positive definite under the condition that 0.

It should be noted that the proposed model, Eq. 7, includes Heuze and Barbour's
formula [8 ] (called "uncoupled approach") as a special case wheng =1 and that
ASCE's comment (made in Chapter 5 of Ref. [5]) that the term Fyp in the matrix
[F] is very unlikely, corresponds to Eq. 7 assumingf =1. Eq. 7 when £=0 is
reduced to slip-dilatancy model by Ba¥ant and Tsubaki [7 ] if solid concrete
between cracks is assumed rigid.
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3. MODELING OF THE FOUR COEFFICIENTS

It is expected that the four coefficients introduced in the previous section are
not constant quantities but vary depending on applied stresses and displacements
as well as concrete strength, size of aggregate and roughness of crack. Thus,
sophisticated modeling for kr, kn, B4 and Uf is required, being represented as
nonlinear functions of state-variables and concrete properties, This is
described subsequently, making use of experimental data presently available from
existing literature.

Shear Stiffness kt: According to experimental observations, in the initial
shear load, rather free slippage occurs on the cracked plane which is not in
close contact, and further application of the shear stress makes the cracks
stiffer due to firm contact (aggregate interlock). Finally, the shear stress
levels off approaching the ultimate shear strength. This behavior can be
represented by a hyperbolic curve such that:

X0 -
& tanh {TM (8¢ = 8£1)} + q 9)
nt U 1l +q
X
ky =K « sech® {22 (6, - 8,90} (10)
t = Krsp T, Ot 7 %1
where, K, = Krgr (1 + @), q = tanh (]—.Eﬁ 8¢1) (112

in which K 15T denotes the maximum shear stiffness (expressed in MPa/mm) in the
shear displacement 6¢] (in mm) and T, is the maximum shear strength (in MPa),
which are illustrated in Fig. 2. The values of Kg and q can be calculated from
Kigrs &t1and Tu by Eq. 11. Thus, the shape of a curve for shear slippage is
characterized by means of these three values, which are considered to be
significantly influenced by the normal displacement ¢, and material property.
The following expressions are identified by regression analysis from
experimental data ([9]-[13]).

KIST = 3.74 (_éf_g"_)ﬂ.GO 672—0.96 (12)
_ Doy —1.20 1.31
§¢1 = 1.42 (ﬁ) 8n (13)
0.01
T Ty T, = (0.2 ~ 0.3)
0.01 + (%@2 @ % Te (14)

a
(fp:MPa, Dy:mm, &, :mm)

where fc is the compressive strength of concrete (in MPa), D; is the maximum
aggregate size (in mm) and 7o is the shear strength of uncracked concrete {(in
MPa) interpreted as limiting value of asymptote for T, when 8§54 > 0. Empirical
formula for t,, is taken from Ref.[6].

Normal Stiffness kp: The relation between the normal stress and the normal
displacement exhibits the simpler behavior as indicated in Fig. 3. Thus, the
- 0,%, &4 relation and the normal stiffness kp can be represented in the form:

A9 o = by(s, - 848,00 (15

)‘(bz + 1)

(16)  k, = b1by (5, - Bysy 165
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in which by and b, are material constants. Although these constants are
supposed to be dependent on concrete strength and aggregate size, this is not
clarified due to the scarcity of test data. According to the authors'
experiment, b1=0.0082 and by=0.878 were obtained [147.
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6‘!1 =0.18 ml'll, K|ST=27 MPﬂ/mm, Ty
=7.5 MPa)
Dilatancy Ratio B4 and Frictional Coefficient ug: Even though crack dilatancy

and frictional slip have been experimentally recognized and pointed out as
important characteristic acompanying discontinuities, no fully successful model
seems to have been attained in the past. The dilatancy ratio is defined as the
ratio of §;, and &t at constant op® (<0), the following expression is obtained
using experimental data (Yoshikawa [14]), as shown in Fig. 4.

Hp = 1.16 exp (0.61 6,) (17)

The frictional coefficient ug is, on the other hand, described as the ratio of
¢ and TptCat constant &y , which is found to be:

.—On
e
Bg = 1.64 exp(-6.42 |ZZ|) (18)
fe
from test results ([9], [14], [15]) as shown in Fig. 5.

Figs. 4 and 5 indicate that experimentally obtained results display large
fluctuations of up to +50%. Hence, constants of ¢, foruf and c3 for g4, both
of which vary 0.5 to 1.5, are introduced for the present to compensate for the
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uncertainty of these two coefficients. This implies a mneed for further
refinement of proposed expressions, Eqs. 17 and 18, as well as for carrying out
more extensive experimental works.

-

s

* F series
Yoshik
OH series} ashiltwit (1384)

O A series  Yoshikawa (1985)

w
T

Fig. 4 Experimental Data for Dilatancy
Ratio 4 and Obtained
Regression Curve
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All of the expressions for the four coefficients by the authors are summarized
in Table-1. The shear stiffness ki among others reveal the most complicated
expressions requiring twelve material constants, ajn 31y, Wwhich seem to be
inevitable because of the complexity of shear transfer mechanism.

Table 1  Proposed Expressions for the Four Basic Coefficients and Experimentally Obtained

Constants
SHEAR STIFFNESS : k, [MPa/mm| CONSTANTS NORMAL STIFFNESS : k, [MPa/mm] CONSTANTS
K O 1 =1
ke=Kist sechz{ ?:(81_&:) JL kn=b;b2(8n— Bab,) "D 2,:2.2222
e f2) (55 2374, 2=080 FRICTIONAL RATIO : g, CONSTANTS
1sT—4az 25 16 n 2= 0, 2,=0.96 e
fo\2e/D),\ "0 _ _ I‘l:cl‘uoexp(czan) c,:ﬂ.:‘)~1A5
3“:a5( ,g) (J) 8. a =142, a¢=0 i
25/ \16 3:=1.20, ag=131 o=
aq I DILATANCY RATIO : A, CONSTANTS
Tu= ruéﬁma)iﬂ‘ H f.):anfc ag=2 Gnc Bo=184
B¢=Caﬁoexp(“‘cn~’ﬁ" ) G =05~15
Ko=Ksr{ 1 +a) =tan h(K-'ﬁﬂ) 21z=02~03 c=6.42
o="1xIsT » 9 Tu (0.245)
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4., NUMERICAL SIMULATION AND COMPARISCNS WITH TEST RESULTS

Fig. 6 depicts schematic descriptions of shear stress and normal stress, being
represented as functions of displacements, Oy and 6, » which are computed from
the authors' proposed model. Shown in Fig. 7 are variations of the shear stress
under the condition that D3=25mm and f.=25MPa or 40MPa. It may be concluded
that these figures reveal the realistic nonlinear relations among the four
state-variables, T+, -0,% 6t and ¢, , and that obtained numerical results well
conform to actually observed behavior.

< S N c . " &
DQ (a) Opn~0t~Tnht relation (b) 0t~0n ~—anc relation

Fig. 6 Schematic Descriptions of Shear and Normal Stresses being Represented as Functions of
Shear and Normal Displacements

Da=25mm. fc=20Mpa Da=25mm, fc=40Mpa

Fig. 7 Relationship between Shear Stress 7, and Displacements 6, and &,
(Effect of Concrete Strength on Shear Behavior)
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Fig. 8 shows relations of two variables amongT,(®, =-0p% §; and &, , in which
fixed normal displacements (crack width) §,, are chosen as a parameter in Fig. 8
a), b) and fixed normal stress -o,,® is a parameter in Fig. 8 c).

(a) m=00 (§,=const.) (b} rn=10MPa/mm (€) ra=0 {0O.°=const)
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Analytical Condition:
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Da=16mm & == £=0.5 (fixed) for (c)
48:=0.01mm

Fig. 8 Numerical Demonstration for Relations of Two Variables hetween 7.,
—o,¢, 8, and §,,
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In calculations, linear elastic spring is arranged in the directiom normal to
the crack surface, whose extensional stiffness is r, (expressed in MPa/mm). The
magnitude of the spring stiffness r, determines the constraint condition such
that &, remains to be constant when r,= «(Fig. 8 a)) and that -o,© is a constant
value when rpn= 0 (Fig. 8 c)), and r, assumed in Fig. 8 b) exists in-between
(where 1,=10 MPa/mm is assumed). A series of drawings in Fig. 8 indicates that

Direct Shear Tests by Millard, Johnson (1985)
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Fig. 9 Comparison of Calculated Values With Experimental Data (Millard and
Johnson [16])



84 ANALYTICAL MODEL FOR FRICTIONAL SHEAR SLIP m

transmission of the shear stress along the crack surface is very sensitive to
the constraint condition perpendicular to the crack surface. It is demonstrated
that the shear stress is always accompanied by an increase of the crack opening
(d8,> 0), otherwise compressive normal stress is induced (dog < p) if the crack
opening is restrained by the elastic spring.

Numerical comparison with observed data from Millard and Johanson's work [ 16] is
shown in Fig. 9, where 9 specimens were tested with different initial crack
width 6y, and different stiffness of reinforcement crossing a crack. Fig. 9
indicates that numerical values calculated from the proposed model are in
relatively good agreement with experimental results.

5. CONCRETE WITH REGULARLY DISTRIBUTED CRACKS

We consider now a reinforced concrete panel (or wall, shell) that is carrying
in-plane stresses, where regulaly distributed cracks are gradually generated due
to excessive tensile stress. The proposed constitutive equation prepared for a
single crack can be applied to such a cracked reinforced panel, utilizing the
crack strain concept.

Letting Lc be crack spacing (a distance between two adjacent cracks), the
expression for a crack strain vector in a state of plane stress can be made as
follows:

(degp)' = {degh de§® dv§E) = 2= {dén o dby) (19)
&

assuming crack strains due to shear slip and crack opening are distributed
evenly over the control area. Yoshikawa and Tanabe [ 4] mathematically derived
the above equation using Dirac's delta function and its derivative.

The discontinuous displacements (shear slip and crack opening) given by Eq. 7
are substituted into Eq. 19, then, one has:

e
“de o B4 doy
(degp} = T o o o |{dd§ k= [Flldo,} (20)
cr Ekth
(l - g)uf o 1 d'f%t

in which {doc} means applied stress vector having its three components, dg,©,
dop€© and dT,.¢, and the matrix [F] denotes such that:

BrBg o Bd
o o 0

(I -8ur o 1

[F] 1 (21)

N ékth

Here, it is assumed that the total strain {de} is expressed by the sum of the
crack strain,{dgcr} , and the elastic/plastic strain between cracks,{dgsc} "
namely:

{de} = {deg,) + {degp) (22)

Letting [De ] be the stiffness matrix of the uncracked part of concrete (solid
concrete), then the constitutive equation of uncracked concrete is expressed by
the following usual form:
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{dog} = [Dp]) {deget = [Dp] ({de} - {degp)) (23)

Then, the relation of applied stress and total strain is obtained by eliminating
crack strain from Eqs. 20 and 23. This is:

=1
(do,) = (L1] + [D,JLFD) [D,]{de) (24)
in which [I] is a unit matrix.

Finally, the constitutive matrix [ D* ] expressing overall stiffness of cracked
concrete is written as follows:

[p%] = [v][D,] (25)
wvhere, [v] = ([1] + [DI[F]™

In the above equation, the nondimensional matrix [y14is considered to express
the magnitude of degradation of cracked concrete due to discontinuous
displacements (shear slip and crack opening) in addition to plasticity of solid
concrete, This implies that mnoniinear behavior of cracked concrete can be
represented by means of a single constitutive matrix so-obtained, which may
readily be applied to finite element analyses only if difficulty in treating
unsymmetric matrix is overcome.

6. CONCLUDING REMARKS

The proposed model successfully reflects such typical characteristics of a crack
in concrete as aggregate interlocking, crack dilatancy and frictional slip.
Numerical simulation suggests that off-diagonal terms in the constitutive matrix
characterized by dilatancy ratio and frictional coefficient play an important
role in the shear transfer mechanism according to constraint conditions normal
to the crack direction. Although this behavior has been recognized as coupling
effect or cross effect by experimental works, very few analytical models were
proposed.

One advantage of the authors' model is that the derived stiffness matrix of
cracked concrete can readily be incorporated into existing finite element codes,
requiring no additiomnal 1isolated interelements. This decreases computational
costs especially when large-scale reinforced concrete structures like nuclear
facilities are dealt with.

The study of the tension stiffening effect is beyond the scope of the present
paper, because this effect is observed in the completely different crack mode.
A mathematical model for the tension stiffening based on analytical formulation
taking bond-slip mechanism into consideration has been proposed in the authors'
recent works ([17]1-[191).

We call the crack mechanism discussed in this paper the F-mode (frictional
contact slip mode), while the tensile cracking mode where the tension stiffening
effect must be taken into consideration is referred to as the S-mode
(nonfrictional separation mode). In actual reinforced concrete structures, both
of these crack modes are mixed. Hence, A further study is needed to combine
both crack modes.
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