Zeitschrift:	IABSE reports = Rapports AIPC = IVBH Berichte
Band:	52 (1986)
Artikel:	Method for serviceable assessment of working life of exterior reinforced concrete components
Autor:	Specht, Manfred / Kallin, Eckhard
DOI:	https://doi.org/10.5169/seals-40342

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 20.06.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Method for Serviceable Assessment of Working Life of Exterior Reinforced Concrete Components

Manfred SPECHT

Prof. Dr.-Ing. Technische Universität Berlin Berlin **Eckhard KALLIN** Dipl.-Ing. Technische Universität Berlin Berlin

Method of weighted coefficients of carbonation

As the surface has to be maintained, the number of drilling-samples can not be sufficient to get statistically safe values.

Therefore, the measurement data are weighted to obtain a usable prediction as help for decision. The basic idea is a reflection of probability and of followup damages.

mean value of peaks Inner-man = [(Inner+Vanner+...+Vanner)

maximum value Krmax - Krmax 2.

combination	remarks	weighting
c _{mean} with x _{Kmean}	this combination is unreliable because it is afflicted with a large error. Damages are too severe for a promising restoration.	1/7
c _{mean} ^{with x} Kmean-peak	Most damages arise when the front line of carbonation with its peaks meet the reinforcing steel. This com- bination is rather probable.	5/7
c _{min} with x _{Kmax}	This case certainly leads to the first damage but is not likely. Its appea- rance brings only locally restricted damage.	1/7

These factors produce four numbers of years for the likely appearance of the first systematic damages:

- 1) earliest date without tolerance (safe value)
- 2) standard date without tolerance
- 3) earliest date with tolerance (date of prevention)
- 4) standard date with tolerance

The earliest dates consider total reduction of error; the standard dates are calculated without reduction of error. The expression "systematic damages" means that in case unfavourable circumstances meet, little damages may show up locally restricted at single places. This remaining uncertainty can be accepted. Is the <u>earliest date without tolerance</u> far in future, for example about 100 years after construction the facade may supposed to be durable. Otherwise surface treatment should be considered not later than the <u>earliest date with tolerance</u>.

Today a facade coating ought to be renewed every 10 years. Lowest costs are achieved by coating at the possible latest date before the appearance of systematic damages (earliest date with tolerance).

Method to determine a latest date for surface coating (prognosis-equation)

Within the derivation of the prognosis equation we proceeded from a desired service life without damages of 100 years.

The function between depth of carbonation and coated concrete is approximated by a straight line with the gradient: $\frac{dx}{dt}$ (straight line) = $\frac{1}{10} \frac{dx}{dt}$

For uncoated concrete the gradient at time t_A can be obtained with the function $x = \sqrt{2 \cdot D \cdot t}$

$$\frac{dx}{dt} = \sqrt{\frac{2D}{t_A}} \cdot \frac{1}{2} ; \quad t_A \neq 0 \quad \land \quad \frac{dx}{dt} = \frac{1}{20} \cdot \sqrt{\frac{2D}{t_A}}$$

statement: $c = x_A + \frac{dx}{dt} (t_N - t_A)$ with $x_A = \sqrt{2 \cdot D \cdot t_A}$ and $t_N = 100$ years

$$\mathbf{c} = \sqrt{2 \cdot \mathbf{D} \cdot \mathbf{t}_{A}} + \frac{1}{20} \cdot \sqrt{\frac{2 \cdot \mathbf{D}}{\mathbf{t}_{A}}} \quad (100 - \mathbf{t}_{A})$$

After some transformations this leads to the following equation:

$$t_{A} = \frac{c^{2}}{3,6 \cdot D} - 5,3 + 1,7 \frac{c}{\sqrt{D}} \sqrt{\frac{c^{2}}{39D}} - 1$$

With the results measured in Berlin the statistic interpretation of the term $\sqrt{\frac{C^2}{39D} - 1}$ of equation (5) in consideration of c_{mean} with D_{mean-peak} as also with D_{max} leads to the factor 0,9 at an average. Therefore the last term of equation (5) comes to:

$$1,7 \frac{c}{\sqrt{D}} \cdot 0,9 \approx 1,5 \cdot \frac{c}{\sqrt{D}}$$

Including these simplifications and specialities of the previous listed results, the approximation ends in:

$$t_{A} = 0.3 \frac{c^{2}}{D} + 1.5 \cdot \frac{c}{D} - 5$$