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Elastically Braced Light Gauge Beams with Open Sections

Poutres a parois minces et section ouverte tenues latéralement
de facon élastique

Berechnung von diinnwandigen Pfetten mit offenen Querschnitten
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SUMMARY

Light gauge steel purlins have been studied both theoretically and experimentally. The classical
equations for bending-torsion problems have been solved numerically with the finite-difference
method regarding the bracing structure as elastic springs acting against torsion and sidesway and
taking the nonlinear effects into account. Simple design formulae have been derived taking
account of local and global buckling of the purlin. Structures that can be analyzed are both purlins
under gravity load or wind suction and purlins in compression with one or both flanges braced.
Both elastic and inelastic design are considered.

RESUME

Des pannes & parois minces en acier ont été étudiées aussi bien en théorie qu'expérimentale-
ment. Les équations classiques propres aux probléemes de déversement ont été résolues
numériqguement par la méthode des différences finies. La structure destinée a stabiliser la poutre
contre la torsion et le déversement a été représentée par des ressorts élastiques. Le comporte-
ment non-linéaire a été pris en compte. Des formules simples de dimensionnement tenant
compte du voilement local et de la stabilité globale de la poutre sont proposées. Les structures
que |'on peut analyser sont aussi bien les pannes soumises aux charges de gravite, a l'aspiration
du vent que les pannes soumises a la compression, avec une aile ou les deux tenues latérale-
ment. L'analyse peut étre élastique ou non-élastique.

ZUSAMMENFASSUNG

Dunnwandige Pfetten sind theoretisch und experimentell untersucht worden. Die klassischen
Beziehungen fir Biegung und Torsion wurden numerisch mit der Differenzenmethode gelést. Der
Effekt der stitzenden Konstruktion wurde als elastische Federkonstanten angenommen. Nicht-
lineare Effekte sind beachtet. Einfache Berechnungsregeln, die ortlichem Beulen und der
Gesamtstabilitit Rechnung tragen, werden vorgestellt. Die untersuchten Konstruktionen sind
sowohl Pfetten unter Eigengewicht oder Windsog als auch Pfetten unter Druck mit einem oder
beiden Flanschen gestiitzt. Elastische sowie nicht elastische Bemessung werden betrachtet.
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1. INTRODUCTION

A thin walled beam with an open cross section shown in fig. 1 has the shear
centre often out of the loading plane. Thus it is subjected to torsion and in the
case of nonsymmetry which is affected by Tocal buckling also to bi-axial bending.
Owing to the weak torsional stiffness the warping stresses due to torsion can be
of the same order as those due to bending if the beam is free to rotate. The Z-
and C-purlins in the roof or wall structures are often fixed to the sheeting with
mechanical fasteners which give an elastic restraint to the purlins against
rotation and sidesway. This causes a complex problem for exact solutions. The
solution is in this work obtained in accordance with classical theory of
elasticity 1], [2].

The analytical solutions have formed the base for the derivation of design
formulae. Despite of the fact that similar studies have earlier been made in the
70'ies, there has been a lack of models suitable for engineering calculations
taking into account the partial restraint of sidesway and rotation. In the
beginning of 19805some models [3, 4, 5] have been presented taking into account
the torsional effect of the bracing structure mostly applied to structures
subjected to wind uplift. In this work a model is presented where also the
partial restraint of the sidesway of the flange in compression in the case of
soft material between the purlin and the sheeting structures subjected to gravity
load, wind uplift and structures in compression are included. The calculation
model is also extended to give a tool to take into account the inelastic reserve
of the bending capacity in continuous purlin systems.

2. ANALYTICAL SOLUTION

For an unsupported beam-element we have the formulas

EIy e ulV = G (1a)
eT, - viV = g, (1b)
ET,, * olV - GI4 8" =m (1c)

where 1,, I.y are the moments of inertia for the effective area (mm“)

L is the warping constant for the effective area (mm*)
Iq is the torsion constant for the gross area (mm"™)
Qx» Gy are the components of the applied Toad q {N/mm)
m=gqg e« e is the torque (Nmm/mm )
E is the modulus of elasticity. {N/mm2)

The elastic support is according to Vlasov [1] regarded as external forces acting
in the shear centre:

Ay = -ky * uy

ay = -ky » VH (2)

M= -kg = 6y + (hy - ay) «q - (hy - ay) G,
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where ky, k, are the stiffnesses of the foundation against sidesway (N/mm/mm)
kg is” the stiffeness of the foundation against rotation (Nmm/mm/rad)
Uys VH» By are the deformations in the supporting point (mm).

In the analysis the forces causing instability have been expressed in the terms
derived by Roik et. al. [2]:

Gy = [N(u' +a, »0)']" - (M 0"

y
g = [N(v' - 2, - 0] - (M0)” (3)
Mo=a, (N ou)' -a, (Nov)' =M ou - M o

+{(r2N+28, M -28M) 0]

- [ay ley - a) + gy leg = ay)]e

I, + 1
where r2 = — aZ + ay2
Yy . = [ 43 2
By = E—T;-— ay 3 Uy = & x3 dA + i y? x dA
Ux

= e . 3 )
By S Uy t(y da + [ x%y dA
N is the normal force (N).

By substituting the formulas (2} and (3) to the right side of the equation (1) we
get three differential equations that are coupled and suitable for nonlinear
analysis with step by step solution. They are solved with the difference-method.
Calculations have been made for a number of one-bay and two-bay structures with a
computer program specially made for these studies.

3. A PROPOSAL FOR DESIGN FORMULAE

3.1 General

The design formulae are derived based on computer calculations of the combined
expressions (1), (2) and (3) for Z- and C-profiles and are based on the
assumptions that the transversal toad is acting in the direction of the web and
that the lateral support is acting perpendicular to the web.

The derivation of the formulae is done outgoing from the idea also used in other
similar calculation models [3, 4, 5] to solve the problem by calculating the
critical buckling force for a column formed by the compressed flange and a part
of the web (fig. 2). The column is on an elastic foundation. The stiffness
coefficients of the foundation k, and kg are determined experimentally.
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3.2 Purlin under bending

3.2.1 Purlin with both flanges free

%2 E 2
Oal1 = 2 « k (N/mm¢) (4)
€x
where k = <1
I ex + —
/ 1
=1/ —
A

Ay is the area of the column {mm?)

I, is the moment of inertia about the axis y - y for the section of the
column (mm“)

1 1is the length of the span (mm)

ey is the distance between the web and the loading point (mm)

m dis the distance between the web and the shear centre (mm)

3.2.2 Purlin with one flange braced

For laterally supported beams the critical buckling stress is determined as:

2 /BT
Ge12 =57 ~—— k> g (5)
A 8

where & is the lateral deformation due to the unit force in the supporting point
H.

The lateral deformation & depends on the two coefficients of the stiffness kg
and k, as follows:

pressure load:

30 . gyz
5 = (mm/N/mm) (6)
10 « ey? + ky + 3+ kg
uplift load:
a2
y
§ = for k > 0,01 {N/mm?) (7)
X
4 « k
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Expression {6) is derived on the assumption that two springs work parallel-
coupled together and in the case of uplift load that no sidesway occurs in the
tension flange (7). The numbers 4, 10 etc are determined as results from
analysis.

3.2.3 Both flanges braced

In the case of both flanges being braced the rotation stiffness of the bracing
structure to the tension f1angezis added to that of the flange in compression
reduced with the factor (e§/ey)

Having calculated the critical stress ggy(o,77 o °e12)= the design strength f.q4
is obtained from the ECCS curve ¢ for fTexura! buck1ing with A = /f /o.1. The
reduction of the bending capacity due to lateral buckling is then r'= $cd/fy.

The bending capacity Mp is calculated from:

where n = 0,9 for structures braced along one flange and 1.0 with both flanges
braced taking into account the effect of shear deformation of the profile [3]. Wg
is determined taking into account the local buckling in accordance with fia. 3.

3.3 The inelastic reserve Mp1

The inelastic reserve of the bending capacity of the profile is calculated for an
edge strain that is three times the yielding strain, that is putting f, = 3 « f

in the formulae in the fig. 3 to calculate the effective area Ag in t%e ine]as%ic
stage. This method is based on the notation (Rockey et. al.) that the formulae
for the effective area gives a good agreement using the edge strain in the post-
yielding stage for plates in compression. Though this gives an overestimating of
the inelastic reserve for both trapezoidal sheets and sections (see fig. 4), it
has been assumed in accordance with [6] that the strain in the first plastic
hinge at the support in a 2-bay beam is =3 . when the bending capacity is
reached in the field. For purlins the inelastic reserve is reduced in the same
manner as in the elastic stage with the coefficient r = fcd/fy' For a 2-span beam
the ultimate load is thus:

Mp
qu=g[(4+2-j-m)+4/'—1+-__'j-m] (9)

where My is the moment capacity in the field reduced with the factor r
J = is the inelastic reserve at the support calculated for g, = 3 - €y 3 j=
1/Mp
m iE the relation between the moment capacity at the support and in the
field
1 is the span.

3.4 Purlin in compression

For the case of structure in compression the critical stress is in a similar way
calculated for the flange with the weaker restraint by putting (10) into (5)
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The capacity for the compression force is

Ng = fed * Re

(10)

(11)

with fcd obtained from the ECCS curve c and Ag is the effective area of the whole

section.

4.
VALUES

TEST RESULTS FOR PURLINS SUBJECTED TO BENDING, COMPARISON WITH CALCULATED

In table 1 results are given for tests on one-bay purlins (Z and C profiles)

under pressure load and uplift load.

Table 1. Results from a test series at the Technical University of Helsinki in
1982 - 83.
TestiProfile |[Yield Steel |Spanjload Fasteners gracing Haterial Bending capacity {xHm)
ar (h/t strength|thick-~ direction|(screws) structure |between Plane Differ-iCalcu.[Test
ness purlfn bending |ence lation{results
f tre 1 and kg |k without |method |model
wem? ™ {rm) bracing N Wim2|1ateral
buckiing

1 2 200/2.5(341 2.37 [7200ipressure [# 6.3 cc 750 em|Trap.sheet|min.woolf 400/0,01 | 17.8 8.2 11.1 | 10.619)
45/0.7 50 sm

H T 300/3 333 2.98 |7200|pressure |§ 6.3 cc 300 Trap.sheet|min.wool | 40010.0251 52.0 20.7 30.6 | 3.2
45/0.7 50 m

3 1 200/2 JAl6 1.86 |7200|uplift $ 5.5 cc 300 Trap.sheet|no 2290(0.7% |-16.4 -14.0° [-10.1 |-11.0
45/0.7

4 7 300/2.5(353 2.39 |7200)uplift # 6.3 cc 150 Trap.sheet|min.wool| 400]0.05 (-39.1 -19.8 [-14.8 {-19.6
45/0.7 50 m

H C 100/1.2|387 1.08 |7200|pressure |2 # 5.5 cc 1200 20/0.8 [nd 2%010.77 2.44 2.49 1.667 2.81

6 € 200/2.5]353 2.33 |7200|pressure {2 # 5.5 cc 1200 20/0.8 [no 290(0.77 | 18.8 12.6 11.7 | 15.0

7 C 100/1.2}387 1.08 j7200{upliift 2 4 5.5 cc 1200 20/0.8 {no 900(0,77 1- 2.84 |- 2.44 |- 1.54}- 2.29

3 C 20072 433 1.91 |[7200|uplife 2 4 5.5 cc 1200 20/0.8 |no 900(0.77 {-17.6 -11.8 |- 7.67]- 7.41

In table 2 results are given for tests on two-bay purlins. The reduction

is determined for the section

at the middle of the span.

factor

Table 2. Results from tests on 2-bay beams. Span is 4200 + 4200 mm. Purlin Z
200/1.5. In tests nr 9 tol5 the profile was overlapped 1400 mm at the
midspan. In the test nr16 the purlin was continous without over-
lapping.

yield plate Toad stiffeness coefficients ultimate load g kN/m
test strength thickness direction

(N/mm<) (rm} 2) k, {N/om2) { ko (Nmm/mm) test result diff.method calculation

model
9 412 1.46 pressure 1.25 1050 5.78 6.46 4,87
10 416 1.63 pressure | 1.25 1050 6.89 7.36 5.72
11 420 1.62 uplift 1.25 1050 430 !) | 5.91 5,36 1) 5.49 1)
12 412 1.64 pressure | 0.17 1220 5.95 6.42 5.99
13 400 1.63 uplift 0.17 1220 470 1) | 5.32 5,92 1) 5.38 1)
14 410 1.64 pressure | 0.22 1450 5.37 2) 6.43 5.71
6.43
15 422 1.62 uplift 0.22 1450 540 1) { 4.48 2) 5.83 1) 5.55
16 3) | 278 1.43 pressure | 0.44 1530 4.28 (yield | - (yield | 2.93 (yield
at 3.43) at 2.97) at 2.50)

1) the deflection of the web is included in the rotation 8

?) slipping occured in the seams of the bracing structure leading to failure

3) continous beam without overlapping
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5. CONCLUSIONAL REMARKS

A calculating model for a wide range of use has been presented. Tests that have
been performed show a satisfactory agreement between tests results and calculated
values. The results show also the need of taking into account the side slip of
the flange in compression even when it is braced especially if there is material
between the purlin and the bracing stucture.
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Fig. 1 Thin-walled open cross sections. Gc = gravity centre. Sc = shear centre.
X, y are main axes. y; is load direction.
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Fig. 2 Real structure and column for which critical stress is determined by
means of calculations.
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