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unter Windlasten
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ZUSAMMENFASSUNG
Für dünnwandige, zweiseitig und vierseitig gelagerte rechteckige und ebene Fassadenplatten
werden analytisch geschlossene Lösungen der Differentialgleichung für das Gleichgewicht am
verformten System unter Berücksichtigung von nichtlinearer Geometrie bei den Verträglichkeitsbedingungen

vorgestellt. Ergebnisse aus Rechnung und Versuch werden verglichen.

SUMMARY
For thin-walled rectangular and flat facade plates which are supported along two or four edges,
complete analytical solutions of the differential equation for equilibrium of the deformed system
are presented, including the non-linear geometry in the conditions of compatibility. Results of
calculation and of tests are compared.

RÉSUMÉ

Cette contribution présente des solutions analytiques complètes de l'équation différentielle
exprimant l'équilibre des systèmes déformés d'éléments de façade plans, rectangulaires et à

parois minces appuyés sur deux ou quatre bords. Cette analyse prend en compte dans les
conditions de compatibilité la non-linéarité géométrique des éléments. Les résultats de l'analyse
sont finalement comparés à des résultats d'essais.
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1. EINLEITUNG

Großflächige, rechtwinklige und ebene Fassadenplatten aus den Werkstoffen Aluminium,

Stahl, Kunststoff, Keramik und aus Verbundwerkstoffen werden insbesondere
in Kombination als Sandwichelemente in zunehmendem Maße für Außenwandbekleidungen

von Bauwerken eingesetzt. Diese Platten werden in der Regel neben ihrem
Eigengewicht und evtl. Schnee- und Eislasten hauptsächlich durch Windlasten und
durch Zwängungen infolge Temperatur beansprucht und sind als in statischer
Hinsicht untergeordnete Bauteile relativ schlank und biegeweich ausgelegt.
Großflächige und biegeweiche Platten erreichen bei den nach den Regeln der Technik

anzusetzenden Windlasten oft Feldmittendurchbiegungen, die das Vielfache
ihrer Dicke erreichen. Um den Schnittgrößenverlauf in einer Platte mit einer im
Verhältnis zur Plattendicke großen Durchbiegung wirklichkeitsnah erfassen zu
können und um' die Horizontalkräfte in den Befestigungsmitteln überhaupt bestimmen

zu können, müssen die üblichen Näherungen der Statik aufgegeben werden. Es
wird erforderlich, das Gleichgewicht am verformten System aufzustellen und bei
den Verträglichkeitsbedingungen Anteile aus nichtlinearer Geometrie zu
berücksichtigen.

Bei einer einachsig gespannten Fassadenplatte, die z.B. mit Nieten oder Schrauben

an der Unterkonstruktion befestigt ist, werden sich mit steigender
Querbelastung und damit zunehmender Durchbiegung infolge der in Längsrichtung elastisch
gehaltenen Plattenrändern Membrankräfte aufbauen, siehe Bild 1.

Statisches System 1

(Theorie I. Ordnung)
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Bild 1 Einachsig gespannte Platte unter Windlast w

Ähnlich verhält es sich bei der vierseitig liniengelagerten Platte. Durch die
großen Durchbiegungen der Platte werden ihre Ränder zur Feldmitte gezogen. Im
Gegensatz zur einachsig gespannten Platte werden hier nicht Befestigungsmittel
zur Aufnahme der entstehenden Zugkräfte benötigt.
Durch die Linienlagerung bleiben die Randbereiche der Platte weitgehend eben
und wirken als ringförmig aussteifende Scheiben, in die sich die biegeweiche
Membran hineinhängen kann (innere Membrantragwirkung). In Bild 2 sind
Verformungen, in Bild 3 der resultierende Druckring und die Hauptrichtungen der Zug-
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Spannungen im Feld schematisch dargestellt.

Bild 2. Verformungsbild einer vier¬
seitig freidrehbar und in
der Plattenebene frei
verschieblich gelagerten Platte

Bild 3. Innerer Membranspannungszustand
in einer Platte, die, wie in
Bild 2 dargestellt, verformt ist-

2. ABBILDUNG DES REALEN SYSTEMS EINER EINACHSIG GESPANNTEN PLATTE IN EIN
MECHANISCHES MODELL

2.1 Statisches System

Das statische System des betrachteten Stabes ist in Bild 4 dargestellt.

Sandwichplatte (Alu-Kunststoff-Alu)
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Bild 4. Systemannahme für die einachsig gespannte Platte und Steifigkeiten für
ein Beispiel eines Sandwichelementes
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2.2 Differentialgleichung (DG1) und deren Lösung

Die Differentialgleichung eines Stabes mit konstanter horizontaler Zugkraft am

Stabende und mit konstanter Streckenlast querbelastet, entsprechend Bild 5,

H i 1 1 1 I 1 1 1 1 J FH

-+

Bild S. Statisches System eines mit einer konstanten Zugkraft H und einer kon¬
stanten Streckenlast w querbelasteten Stabes

lautet bei der Aufstellung des Gleichgewichts am verformten System:
M

DG1 : y" -oC2- y, + °*x) 0 (1)1 (x) * (x) D

J? H/D, C2 H 12/D <f} l2

M Momentenverlauf nach Theorie I. Ordnungo(x)

Die allgemeine Lösung der DG1 lautet:
1

y C • Sinh (d0- x) + C • Cosh (<£• x) + — • (M + ° X
+ (2)

vXJ 1 t. rl OlXJ ou

Die Berücksichtigung der Randbedingungen und der speziellen Last für das in
Bild 5 dargestellte System ergibt die folgende Lösung:

W • l4 £2 x
y, — [ y-- Cosh (</-• x) + Sinh (d6x) + —•—•( 1 - x) - 1] (3)

(x) D'&4 2 L
1

1 - Cosh£mit y— Sinh£

Die Verkürzung des Stabes infolge seiner Durchbiegung y ergibt sich entsprechend

Bild 6 wie folgt: x
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Bild 6. Geometrischer Zusammenhang zwischen Durchbiegung und Auflagerver¬
schiebung

Differenzieren von Gleichung (3) und Einsetzen in Gleichung (4) ergibt:
2 ,7

1_ w • 1

4
'

2 r2v | tfj + (/ - 5). | 5-f] (5)
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Die Erfüllung der Verträglichkeitsbedingungen zu den Längsfedern am Stabende
erfordert :

H

(W/1 /D,£ (6)

w kann damit in Abhängigkeit von den anderen Parametern explizit dargestellt werden:

w • 1 IF - Cr 12 £ 9 H

(7)
6 • y " 5>-£ - 60-J"

Der funktionale Zusammenhang von Gleichung (7) ist in Bild 7 dargestellt.

Bild 7. Grafische Darstellung des
funktionalen Zusammenhangs
der Gleichung (7)

1 2 3 * 5 6 7 8 9 10 11 12 13 H'l'/O

2.3 Vergleich der Ergebnisse aus Rechnung und Versuch an einigen Beispielen
In Bild 8 sind Last-Auflagerverschiebungskurven für ein System wie in Bild 4
abgebildet für unterschiedliche Lochspiele (Lose), v Federsteifigkeiten c und
Biegesteifigkeiten D dargestellt. Vergleichsrechnungen mit der Methode der Fi-
niten Elemente für geometrisch nichtlineare Systeme ergaben im Vergleich zu der
hier vorgestellten Lösung bis zu einer Feldmittendurchbiegung max f/h 9,2
bei den Verformungen in Feldmitte keine größeren Abweichungen als 1,8 %, bei
den maximalen Spannungen keine größeren als 3,3 % und bei den Auflagerverschie-
bungen keine größeren als 4,0 %.

Bild 9 zeigt eine Last-Durchbiegungskurve für die Plattenmitte und eine Last-
Auflagerverschiebungskurve wie sie mit dem hier vorgestellten Modell errechnet
wurden, und an 5 Stellen, welche mit Kreisen gekennzeichnet sind, in Bauteilversuchen

gemessene Werte. Zum Vergleich wurden die Werte der Durchbiegung in Feldmitte

nach Theorie 1.0. berechnet und mit einer unterbrochenen Linie eingezeichnet.
Weiter ist in Bild 9 der Lastabtragungsanteil der Biegetragwirkung bezogen

auf die Gesamtlast dargestellt.
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Bild 8. Last-Auflagerverschie¬
bungskurven für verschiedene

v, c und D

Bild 9. Theoretisch berechnete Kurven
und einzelne Meßwerte (©/O) aus
Bauteilversuchen
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3. NÄHERUNGSLÖSUNG FÜR EINE ZWEIACHSIG GELAGERTE PLATTE MIT INNERER MEMBRAN¬

TRAGWIRKUNG

3.1 Analytische Lösung des Biege-Membran-Problems

Gleichung (8) gibt eine Näherungslösung für die freidrehbar und in der Plattenebene

verschieblich liniengelagerte Platte nach Barês [1] wieder, die insbesondere

auf die Anwendung für Sandwichplatten hin modifiziert wurde.

16 • w » a

if • D • h
- <r2,„2.,/h, 2.00. y2-<1 -|,2| .t^slZiL

(y + 0,6 + —j) h - (h-t) '

IT

(8)

mit w gleichmäßige Flächenlast
y Seitenverhältnis der Platte (y= a/b)
a kurze Seite der Platte
t Dicke der beiden Deckbleche
h Höhe des Sandwichelements
f Plattenmittendurchbiegung 2
d Plattensteifigkeit (D El/(l-|i) E •

h3-(h-t)3
12 2)'

1-U

Spaltet man die Gleichung (8) nach ihrem Linearanteil, welcher die Biegetrag-
wirkung berücksichtigt, und kubischen Anteil, welcher die Membrantragwirkung
beinhaltet, auf, so erhält man Gleichung (9) und (10).

W w + w oder 1 w* + w* ,wB M B M' B,M

B
(«2 + 1)2.

» 4 w

w 16 • a

TZ D h
w*

B,M

16 - a

w* «
2,0Q.f2- (1 - ü2)

y2 + 0,6+i2
tr6- D

16a4
I t ' f /h
W 'h3-(h-t)3

(9)

(10)

In Bild 10 sind die Lastanteile für zwei unterschiedlich hohe Belastungen w* und
w* in Abhängigkeit vom Seitenverhältnis wiedergegeben.

"B
w

1,0

0,5

w*i bei w*

w*> w*
2 1

w*2 bei w*

0,5

1,0

M

W

0 0,2 0,4 0,6 0,2 y=l,0
Bild 10. Lastabtragungsanteile aus Membran- und Biegetragwirkung (qualitativer

Verlauf) in Abhängigkeit von Plattenseitenverhältnis y- und der Lasthöhe
w* (Die Summe aus w* und w* gibt immer 1)

B M
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3.2 Vergleich der Ergebnisse aus Rechnung und Versuch für einige Beispiele
In Bild 11 sind die Mittendurchbiegungskurven von vierseitig gelagerten Sandwichplatten

für zwei verschiedene Kernschichtdicken h; (h^ 4 mm, h^ 6 mm) und
jeweils zwei verschiedene Seitenverhältnisse

1,22 m y. _ 1,22 m _ 1,47 m _ 1,47 m

ru " 1,22 m' 012 ~ 3,66 m' #21 " 1,47 m' 022 ~
3,66 m

angegeben. Ferner sind die Versuchswerte an einzelnen Laststufen durch Symbole
gekennzeichnet.

X •

///J/ y1
0 0 9 1 0 1 50 '

Mittendurchbiegung C (mm)
'

Bild 11. Last-Verformungskurven von Sandwichplatten, die mit einer gleichmäßi¬
gen Flächenlast w beaufschlagt werden.

Krümmungen bzw. Spannungen lassen sich jedoch nach dieser Formel wegen der
sinusförmigen Ansatzfunktion der Lösung nur sehr ungenau, aber meist auf der sicheren
Seite liegend, angeben.

4. SCHLUSSBEMERKUNGEN

Für den mit konstanter Flächenlast querbelasteten Plattenstreifen, der an den
beiden liniengelagerten Rändern in Plattenebene elastisch gehalten ist, wird
eine analytisch geschlossene Lösung angegeben. Ferner wird eine analytische
Näherungslösung für die Last-Mittendurchbiegungsbeziehung einer vierseitig
liniengelagerten und mit einer konstanten Flächenlast querbelasteter, rechteckiger

Platte angegeben, welche die innere Membrantragwirkung der Platte
berücksichtigt.

Meßwerte aus Bauteilversuchen werden mit Hilfe der angegebenen Gleichungen
berechneten Werten gegenübergestellt. Versuchswerte und berechnete Werte stimmen
gut überein.
Die angegebenen analytischen Lösungen ermöglichen somit, die Membrankrafteffekte
von den genannten Plattentypen mit großen Durchbiegungen wirklichkeitsnah und
im Vergleich zu numerischen Berechnungsverfahren wie z.B. mit der Methode der
Finiten Elemente und mit dem Differenzenverfahren ohne Computereinsatz relativ
einfach für praktische Fälle genügend genau zu berechnen.
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