Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte
Band: 47 (1983)

Artikel: Software quality assurance
Autor: Kersken, Manfred
DOI: https://doi.org/10.5169/seals-36639

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.09.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-36639
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

135

Software Quality Assurance
Assurance de qualité du logiciel

Qualitatssicherung in der Entwicklung von Software

Manfred KERSKEN

Electrical Engineer

Gesellschaft flir Reaktorsicherheit
Garching, Fed. Rep. of Germany

Manfred Kersken, born 1944, got
his Dipl. Ing. in Electrical Engineer-
ing from the Technical University
of Berlin. He worked for the Lehr-
stuhl flr Reaktordynamik und Reak-
torsicherheit of the Technical Uni-
versity, Miinchen, afterwards he joi-
ned GRS, Garching. He is involved
in the analysis and qualification of
computer systems in safety related
areas such as nuclear power plants
and railway transportation systems.

SUMMARY

A short survey is given on the methods applied to avoid errors as far as possible during the construc-
tion of software. Likewise the fundamental analytical possibilities to remove remaining errors in pro-
grams are outlined.

RESUME
L‘article présente les méthodes utilisées pour la prévention de fautes lors du développement du logiciel
et sur les possibilités analytiques d'élimination de fautes restantes.

ZUSAMMENFASSUNG

Ein kurzer Uberblick wird gegeben iber Methoden, die verwendet werden, um Fehler wahrend der
Erstellung von Software weitgehend zu vermeiden sowie iiber die grundsatzlichen analytischen Mog-
lichkeiten, um verbleibende Programmfehler zu entfernen.

136 CONTRIBUTIONS BY ATTENDANTS
1. NECESSITIY FOR QA IN SOFTWARE
The facts

-

While the costs for hardware are decreasing, the costs for software are
steadily increasing (Fig. 2).

Up to 50 percent of the costs for software in its life cycle (Fig. 1) ori-
ginate from verification and validation (V&V).

in spite of V&V, a lot of errors which are impiemented in ail phases of
software development, remain in the programs which are delivered to the
customer.

Specified properties of software, like reliability, effectiveness, maintaina-
bility, testability, readability, are insufficiently fulfilied.

The remedies

Structuring the process of software development to prevent software
errors (constructive approach).

Structuring the process of software V&V to remove software errors (ana-
lytic approach) effectively.

CONSTRUCTIVE APPROACH

Top-Down Development: The phases '"Requirements", "Design" and "Co-
ding” are deveioped from general towards specific aspects (Fig. 1), to
avoid integration problems when developing a system bottom-up, from the
component to system level.

Levels of Refinement: Top-down development results In hierarchical
levels within each of the development phases (Fig. 1). The steps between
successive levels of refinement should be small to avoid errors in the
transfer of a level to the next lower one. Each level of refinement must
describe the whole system and must be fully documented.

Development Tools: As far as possible computer assistance is involved in
the development process. There are existing software systems which en-
force a structured development of requirements-, design-, coding- and
maintenance phase.

Choice of Suitable Languages: Dependent on the problem to be solved, a
suitable language is chosen, e.g. FORTRAN is good for numeric pro-
blems, ALGOL supports a good structure and the readability of pro-
grams, ATLAS has powerful features to implement test devices,..

Restriction of Language Features: Theoretical work has shown that every
problem (a computer can solve) can be solved with the three language
constructs "Sequence", "Conditional Branch" and "Loop" (Fig. 3). With
these constructs well structured programs can be written; however,
every language contains additional constructs, some of which may con-
tradict to the envisaged goal. E.g. a jump backward into a loop (see
Fig. 3, dotted line) is a construct which is harmful for readability,
reliability.

ANALYTICAL APPROACH

Verification & Validation (V&V): The development of software is accom-
panied by V&V activities (Fig. 1). Verification is the process of demon-
strating that all properties of a level of refinement have been translated
in a correct manner to the next level of refinement. Validation comprises
several levels of refinement, e.g. the coded software (a program written
in a programming language) is compared against its specified require-
ments; it is shown whether the code fulfills the requirements or not.

M. KERSKEN 137

Requirements : :!
e ————
<
9 &
Design 2
e $
L %
2 %0 »
g Hordware ’//
Codlng § 80 d
=
h 40+
Maintenance
m..
Softwore
°
tevels of Refinement T W o B W0 ey
Fig. 1: Software Life Cycle Fig. 2: Costs for Computer Systems

L

no
yos no ?>
| Staternent I yes

[Stoternent] [Statements] [Statements |
{

l__T_l

IF... THEN'.../ELSE"

Sequence

Cond'tional Branch

WHILE...'DO
Loop

Fig. 3: Language Constructs

138

CONTRIBUTIONS BY ATTENDANTS

4.

Methods of V&V: These are static and dynamic analysis, testing, symbo-
lic evaluation and proof of correctness.

Proof of Correctness: Proving mathematical theorems about a program
given its intended behaviour in the Torm of a set of assertions. These
proofs are very difficult to realize, up to now no program of practical
size could be proven with this method.

Symbolic Execution: The program is executed as a sequence of symbolic
formulas (with symbolic input data instead of numeric values). In the
course of this method a set of symbolic expressions is produced, the

solving of which may be very difficult - in a variety of situations even
impossible.
Program Analysis: The structure of a program is worked out, i.e. the

control flow (all possible successions of statements which depend on
jumps and branches) and the data flow within the program. With this
knowledge the mappings of input data to output data by means of the
program are demonstrated. All properties of the program are represen-
table by these mappings.

Testing: The program is executed with a predefined set of input data
and it is observed whether the appropriate set of output data is pro-
duced. Difficulties arise in the determination of this set of output data;
often it is determined from the requirements or by simulation. Testing is
mostiy preceded by program analysis to embed program structure in the
tests.

Verification Tools: As in development there exists a wvariety of software
systems which are helpful in structuring the V&V procedure.

Software Reliability Models: There are a variety of modefs which make
the attempt to describe the activities of programming and removing of
errors in a mathematical way and to give estimations on several figures
of merit like "number of remaining errors after test" or "mean time to
next error after test". As the above mentioned activities are very com-
plex, the models can only be rather inaccurate as well as the resulting
figures of merit.

CONCLUSIONS

The proof that a piece of software is free of errors cannot be given by a
single of the constructive and analytic methods. The only way to give a cer-
tain amount of confidence into the software is to apply a meaningful combina-
tion of methods which are ''taylored" to the software to be examined.

	Software quality assurance

