

Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 46 (1983)

Rubrik: Session 1 : Strengthening of building structures - invited lectures

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 05.02.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

SESSION 1

Strengthening of Building Structures - Invited Lectures

Renforcement des structures de bâtiment - Conférences

Verstärkung von Bauwerken - Einführungsreferate

Leere Seite
Blank page
Page vide

Restoration of Monuments and Intervention on Old Buildings

Restauration de monuments et intervention sur des bâtiments anciens

Instandsetzung von Monumenten und Eingriff an alten Gebäuden

G. DE ANGELIS D'OSSAT

Professor Emeritus
University of Rome
Rome, Italy

Guglielmo De Angelis d'Ossat, born 1907. Former Professor of restoration of monuments and Dean of Architecture Faculty. Honorary Member of ICOM and ICOMOS (International Council of Monuments and Sites). Former President of High Council of Antiquities and Fine Arts of Italy.

SUMMARY

The author proposes the division into two classes of all types of intervention on buildings. The term «restoration» and «conservative restoration» should be limited to those operations which are actually aimed at ensuring the survival and utilization of old buildings. The other more complex activities should be included and evaluated under a separate heading which may be defined as «architectural intervention on existing buildings». This would include undertakings and projects meeting major needs and more ambitious commitments.

RESUME

L'auteur propose de classer les interventions faites sur d'anciens bâtiments en deux catégories. Les termes «restauration» et «conservation» devraient être réservés aux seules initiatives de consolidation et de réhabilitation qui assurent la remise en état et l'utilisation des bâtiments. Les autres opérations qui modifient les volumes et les pièces doivent rentrer dans le domaine créatif de l'architecture et être qualifiées de «nouvelles interventions architecturales sur les constructions existantes».

ZUSAMMENFASSUNG

Der Autor schlägt vor, die an alten Gebäuden durchgeführten Eingriffe in zwei Kategorien einzuteilen. Die beiden Ausdrücke «Instandsetzung» und «Erhaltung» sollten ausschliesslich für die Verstärkung und Sanierung verwendet werden, welche die Instandsetzung und Ausnutzung von Gebäuden sicherstellen. Die anderen Arbeitsvorgänge sollten in einem separaten Kapitel behandelt werden, das man mit «Neue architektonische Eingriffe an bestehenden Tragwerken» betiteln könnte.

I should first of all like to express my lively appreciation of the initiative of IABSE in opening this 1983 Colloquium with a series of introductory lectures with the purpose of drawing attention to the cultural values of buildings and urban complexes and of pointing out the structural problems affecting their survival. These make a useful introduction to show how far the cultural sector has gone on an issue of unquestionably current importance for which there is a large number of answers, but not always the right ones. I, therefore, willingly accept this stimulating opportunity for presenting my subject in concise form and for bringing together its essential theoretical aspects.

So as to provide a better definition of the task assigned to me and to determine the fields and limits of restoration work, we must first of clarify the traditional terminology. To do this, the essence and meaning of the old phrase "restoration of monuments" have to be established, since the historically acquired meaning has changed considerably over time, becoming coloured by additional implications and subjected to infinite overtones.

The significance of the two words "restoration" and "monument" has, in fact, greatly broadened. The term "monument" relates to the concept of "monument historique", or historical monument, proclaimed by the French Revolution for a few representative buildings of outstanding importance which were alone declared to possess architectural values of public interest. This distinction is quite outmoded today, since it has subsequently come to be applied to less illustrious buildings and hence to all old architecture; moreover, it has been further extended to the environment in which old buildings stand to the point of embracing the so-called "environmental monument", including rural habitat and vernacular buildings. In recent years, there has also emerged new awareness, even for conservation purposes, of industrial archaeological buildings. So we see an increasingly diffuse and automatic expansion of the corresponding obligations of respect and protection. Today, these are considered equally proper even if on varying scales for all kinds of building and all examples of architecture. The term "monument" has shown itself to be unsuitable to express the broader meaning required to embrace all past activities, and has given way to other terms, being practically replaced by more colloquial and less solemn words like "architectural property" or even "architectural object".

It is a matter of fact that today we are interested in all the external and intrinsic, social and cultural aspects of old buildings, as equally valid, irrepeatable historic and formal evidence, viewing them naturally in their individual right and also in their group or urban context. This higher level of appreciation and the new demand for protection of what were formerly considered minor buildings and of all historical environment, an achievement of recent generations, are now so well established and widespread that any rule or consideration concerning architectural conservation has to take into account that it is no longer solely addressed to monumental buildings.

The new attitude has amplified both scope and responsibilities in architectural restoration, opening up unimagined horizons and leading to further interrogatives. This more ample viewpoint ties in with the programme and purpose of our Colloquium, to be interpreted as the problems of conservation at the levels of both architectural expression and structural solutions, from the simplest to the most advanced and difficult.

The word "restoration" is still frequently employed in an even more general and flexible sense with meanings ranging from simple maintenance work to complete rebuilding and substantial alterations which may give a new appearance or make for technical completion. So the brief and all-embracing term restoration is used today to signify and justify all kinds of action applied to existing buildings.

In the context of this dual interrelated extension of semantic horizons, we come to realize that the objects of such action are all worthy of consideration. They are in reality historical documents, often more significant and valuable than others, and have to be appreciated and carefully studied on a par with all other cultural property that has come down to us.

Buildings inherited from the past constitute a manifold and complex, still little known reality. They are themselves a form of information, not solely of a cultural nature, which serves various disciplines, and a source of new suggestions which we feel the need to reflect. The whole of the immense field of restoration has to be conscientiously cultivated and cannot be the privilege of restricted circles. The discussion of these themes is not the preserve of specialists alone, but has to be laid open to public discussion, both because it is a question of our common heritage and because its handling is a measure of the effective capacity of our culture and the precursor of future developments.

Given the multiplication and interrelation of factors in restoration, we should now proceed to distinguish them and to try to define various kinds of intervention, the more so as, while they all follow utilitarian ends, some are based on largely conservationist criteria and others on strictly architectural preferences and innovation. Even if a clear, precise distinction is not always possible, it must nonetheless be attempted so as to establish coherent lines of action and to overcome those deleterious misunderstandings often found today. To pursue this question better, let us see which are the main typologies of restoration of works of architecture.

Besides sporadic action, best considered as extraordinary maintenance, there are two classes or main groups of works: those essentially aimed at structural consolidation and those intended to reestablish a satisfactory appearance and to improve living conditions within the building.

Works falling in the first of these two groups, aimed at structural consolidation, acquire a specific, substantial profile, and sometimes demand very delicate action directed particularly at overcoming static disturbances developed over time or presently developing. As you know, such works consist of deepening or improving the foundations, of consolidation of walls, remaking or rectifying vaulting, ceilings, roofs or terraces.

The need for such work, which may affect only part of the building, is determined by the damage caused by mistakes in design or in building, or else by subsequent, possibly traumatic events. All this kind of intervention concerns primarily the structure of the building and therefore acts at the levels we may

consider the necessary supports of the figurative aspects of the architecture.

The other group concerns works directed at the building's rehabilitation and include various kinds of intervention, from setting the basement right to repairing the lofts. These works constitute the recovery of lost features and functions and concern in particular the elimination of damp, thermal and acoustic insulation, remaking floors, walls and ceilings, cleaning facades, etc. The installation of new plumbing and heating has to be included to ensure improved habitability for the building as a whole.

Services and equipment are being constantly developed; besides the usual ones, I would remind you of airconditioning and ventilation, anti-burglar alarms and security systems, fire prevention sensors, closed circuit television, computers, telex and so on. The introduction of special services and equipment raises new problems and calls for comprehensive projects so as to limit the amount of piping and cabling, grouping them and running them through walls of lesser interest, without omitting to allow space for other services which are sure to be wanted in the future.

While the works we have to expect to find in this group cannot all be considered suitable, they do not generally significantly affect the appearance of the building; in any case, in these and other circumstances a slight **modification** to the pre-existing fabric can suffice to document the work done.

On the other hand, considerable importance attaches to changes in internal spaces with a view to judicious re-arrangement, which must always conserve the disposition of the walls and respect the horizontal lay-out determined by ceilings and vaulting, without ever altering interior environmental conditions. The value of internal spaces must not be disregarded or underrated; detailed restoration is often worth while, applying specific techniques for the walls depending on how they are decorated and filling in with a neutral surface if necessary.

In effect, the whole of the second group of works concerns the appearance and habitability of the old building; all the work to be done aims at preventing the ageing of the building and at permitting a clear "reading" and more comfortable and efficient utilization.

Both classes of work are always conducted within the limits of the existing building without introducing new or discordant forms. As we have said, they meet the two substantive criteria, consolidation and usability, typical of the restoration of other important man-made works, such as paintings and sculpture.

In spite of the disparity between the subjects, the comparison fits well and responds to the same reality: the second criterion corresponds to what determines the various phases of cleaning of works of figurative art, and the problems are analogous; the removal of patina in the one case and the treatment of facades and internal surfaces in the other.

The widespread methodological uncertainty and consequent prevarication sometimes met in applying new colouring to facades are attributable to a lack of cultural links with the principles of restoration appropriate to works of figurative art, and is certainly systematically cultivated and has long been applied by art historians.

In concluding this list of types of intervention, I wish to emphasize how all the undertakings cited in the two classes considered, fall precisely within what can well be defined as the conservative restoration of buildings. In this they correspond to the conscientious practice which presides over the conservation of all other concrete testimony of human activity, not only that of works of art, but also that of ruins and of archaeological finds, of archival records made of parchment, paper or papyrus, of incunabula, rare books, and so on.

You will forgive me for raising such unusual comparisons, but they are not all that extraordinary nor are they out of place, since they all involve conservation and the enjoyment of the works of mankind. It seems to me that they are highly relevant and indeed indispensable for a correct approach to the problems concerning building restoration. Naturally, there are differences and these can be considerable due to the distinctive characteristics of architecture relative to the other arts, and therefore concern interior spaces and their vital usability.

It is on the typical distinctive features of architecture that I now intend to dwell so as to show that all those other operations concerning old buildings not yet considered which fall outside the comparative framework outlined so far. Since we cannot take the comparisons given any further, we have to recognize that there must be a clear and significant break in our brief discussion.

The utilitarian aspects of architecture naturally stimulate the on-going use of buildings under the most modern conditions of fitness for use, but they also tend to introduce different or cumbersome applications, or else an actual change in the use made of the property, necessitating more or less appreciable alterations and extensions. These needs have been felt at all times and even more so today, given the growing multiplication of projects and of new needs. When requirements acquire considerable scale and projects become more comprehensive, restoration changes its character because it tends to affect the figurative aspects of the work, especially where external volumes are increased and interior spaces are unified. Apart from conservation work and rehabilitation, actual architectural intervention takes place in just the same way as in the past when so many additions were made to pre-existing buildings to an extent and in ways which reflect the spirit of so many different cultures. These cultures confronted their past in different ways, sometimes with respect, more commonly independently and aggressively, as I have shown on other occasions. This difference in architectural intervention in itself explains the break in our discussion of restoration.

Today our sensitivity and acquired historical awareness, typical of our times, certainly no longer permit us to destroy certain things not to make unwarranted changes. But in examining the situation today, we cannot fail to be struck by the juxtaposition of new work with old, sometimes with disgust, and the many outrageous tints given to facades bring this problem and the probable emergence of certain trends home to us; they wish to seem intelligent or at least original, but will end by proving to be nothing but profane barbarism. Lastly, it is not to be forgotten that in rare instances, architectural operations in some countries can be taken to extremes, the removal of smaller historical

historic buildings from one site to another, an undertaking which is questionable and difficult to confine to extreme cases. Today, there has again come to the fore the problem of enclosing old monuments fallen into a bad state of conservation within new, transparent structures.

Leaving pessimism aside, it is certain that largely innovative intervention on old buildings will become increasingly frequent, with restructuring and extensions made to satisfy different uses. It is to be hoped that they will not be too incongruous. A broader is opened for us: that of new architectural intervention on pre-existing buildings in which the fantasy of the artist is applied to the remoulding of spaces and volumes and the highest forms of expression may be achieved, as has been found extensively in the past.

The fields of activity of so-called restoration in the architectural sector are therefore found on two different fronts and have quite distinct connotations: that of conservation and of innovation. The demarcation line between these two fronts is now quite clear and it allows us to define in different ways an entire category of intervention in which the designing architect's commitment must make itself felt. The legitimacy of new creative insertions must not be questioned, particularly in well-defined and adequately studied circumstances.

Following the arguments based on the points and comparisons that have been made, it is natural to proceed to a clarification of the scope for, and limitations to the restoration of architectural property in accordance with the present state of critical knowledge and with the solicitations of architectural culture. Now we have at last come to the point. I gladly take the opportunity offered by this Colloquium to propose the division of all types of intervention on buildings into two classes. The term "restoration", indeed "conservative restoration" should be limited to those operations which are really aimed at ensuring the better survival and utilization of old buildings. The other more complex activities should be included and evaluated under a separate ample and capacious heading which we may define as "architectural intervention for pre-existing buildings", in which would be included undertakings and projects meeting major needs and more ambitious commitments, to be critically and severally evaluated and to be controlled with the utmost care in the execution stage.

The limitation of the use of the term "restoration" to be applied solely with reference to the field of conservation, exactly as it is for other old products of human activity, would save architectural intervention for old buildings from this incongruous, even though traditional label and free it from a persistent misunderstanding which is damaging both to the buildings and to the architect's freedom of expression. This distinction is proposed here for the first time and satisfies the requirements of historical studies and logical recognition of new architectural commitment. It relieves conservative restoration from an embarrassing position of inferiority, aligning it with other established types of operation and with the theory of restoration formulated by Brandi; moreover, it endows architectural creativity with the right of choice for any further intervention. The results

should be more rigorous as well as more efficient and genuine.

The two classes of intervention for the physical reality and historical image of the building must be corrected and judged in different ways: that of conservative restoration by the yardstick of historical respect, that of architectural intervention from the determinant angle of what exists and hence with a substantial measure of aesthetic criticism and of formal compatibility.

My expert audience may object that the critical measure proposed for the division of operations into the two classes mentioned, is bound to compositional and formal assessment rather than to those subjects and requirements of a technical and constructional nature being examined in this Conference. However, it must be recognized that formal problems are not extraneous or even separable when taking any responsible overall view.

In that the participants in this Colloquium are concerned with the design and application of structural methods and techniques, they are necessarily not unaware of the incidence of the formal effects and of the architectural aspects which accompany and follow on new structural solutions. This is not solely a reference to the results of building operations, assuming that their effects are in some way induced or connected, because the interests of builders go beyond such issues and are not limited to a conservationist horizon. They are all concerned with the promotion of other ventures and with the development of all the activities of the sector which, necessarily, call for the enlargement of interior spaces and for changes to external volumes.

So as to avoid deleterious misunderstandings, it is always necessary to recall the existence and weight of other unquestionable constraints connected with such operations. Respect of these constraints makes it possible to effect the intervention, since they are the conditions inherent in the building's recognized values. The limitations to the operational horizon within which architectural design can move have therefore to be indicated, repressing any arbitrary desire to go further.

On this score, we must remember the binding existence of the Venice Charter, an international document which in general terms regulates the whole subject of architectural restoration, since that day, 31st May 1964, when I had the honour to declare it approved at the conclusion of a Congress of specialists meeting together for that express purpose on this same, splendid Isola di San Giorgio.

The close relationship, indeed the indissoluble link between any new intervention and architectural expression, imposes the need for general regulation, valid for any kind of building which I would call professional ethic for those who work in the many-sided sector of building re-use. These are rules which, as such, appear categorical but must not be considered to remove all incentive, also because they can often be capable of adaptation in detail.

It has to be said at once that the innovative aspects of projects should be contained within the narrowest possible limits, and all kinds of showiness avoided. Above all, contractors responsible for the work should ensure the conservation of our building heritage; it is their duty to respect the original and other forms which have been handed down to us as evidence of the building's history, always seen as individual architecture and as a determinant element in

the environment and of community life. The necessity for ensuring that any intervention has been studied in such a way that it can be reversed must be borne firmly in mind.

It is worth warning against so-called "improvement" concept which is very often introduced or invoked to justify questionable new intervention, the contents of which are rarely valid. This term, like others of the kind, expresses a natural sentiment always pursued by man, trusting in the results of his actions and at the same time tending to under-rate or even to despise the forms handed down to him from a recent past and which he unconsciously wants to alter. On the architectural and figurative planes, these sentiments therefore provoke facile impulses which, instead of the hoped-for improvements, end with the destruction of traditional features. I therefore wish to put clients, as well as those offices responsible for control, on their guard, warning them all not to agree to or accept easily the pretended improvements which however glibly presented and often well-intentioned, do not stand up to thorough criticism.

Between these two firm limitations, substantial respect for the past and a brake upon alterations, the ability of the designer and director of works has to be applied to seek intelligent solutions which prove congenial or at least compatible with the building; very often such shrewd opportunities exist and have to be grasped and exploited.

The study of new but not abnormal or discordant solutions can be inspired by a potential quest for harmony, naturally without drifting into forms and expressions of stylistic imitation nor indulging too far in gratifying allusive evocations of the past.

On the contrary, a simple, frank juxtaposition of original parts and new additions must always be viewed sympathetically and suggested, in the majority of cases, as a loyal expression of constructive sincerity which nonetheless excludes daring matching and showy contrasts, which could only be appreciated for the polemical character displayed. It is also necessary to study the ancient techniques used in depth and with loving care, so as to understand their intimate suitability and to pass on to posterity, if possible, a renewed living memorial.

But I earnestly wish to suggest general, meditated employment of up-to-date methods and the newest materials. The selection of tested techniques for intervention must resolve effectively and in modern terms the problems proposed and makes for only one substantial limitation, that of not introducing unexpected problems, especially on the figurative plane. By means of the many techniques and refinement of operational instruments, everything possible must be done to try the best and most daring solutions, with light and felicitous hand, counting on the quality and evocative power of the property to be conserved, without letting oneself be excessively conditioned by the prospects of speculative exploitation.

The similitude that has been established between historic monuments and ordinary buildings from the past, undoubtedly constitutes a revaluation of the latter, so we must recognize that the design of old buildings, even where they are not terribly significant, entails greater responsibility and costs than in the past. These have to be accepted, since truly significant undertakings have to be studied and implemented on the plane of the culture of conservation.

The choice of methods and techniques for an intervention must therefore be carefully pondered and for this all useful contributions by competent persons should be accepted; practical discussions and theoretical proposals should not be despised. Also it will not be forgotten that all possible financial assistance should be sought so as to involve directly and indirectly public and private bodies in the responsibility for the undertaking, the preparation of the project and the painstaking execution of the work. The commitment in fact goes beyond the interest of the individual and rises to social and cultural levels.

We said at the start that we would show what the situation is regarding the problems connected with the restoration of buildings; we believe that this has been done, even if in general terms and without reference to concrete examples, and we are conscious of having also looked towards the future, making some considered forecasts. I do not know whether the sub-division proposed will enter into current acceptance and practice given the natural slowness to be expected for its reception. But apart from terminology which is of lesser interest, we are convinced that we have contributed towards clarification of the underlying problems so that definitions for the activities of the sector as a whole can be determined.

Leere Seite
Blank page
Page vide

Structural Problems Connected with Restoration and Strengthening

Problèmes structuraux liés à la restauration et au renforcement des bâtiments

Baustatische Probleme bei den Restaurierungs- und Verstärkungsarbeiten

Fritz WENZEL

Professor

Univ. of Karlsruhe

Karlsruhe, Fed. Rep. of Germany

Fritz Wenzel is a structural engineer. He lectures on structures at the faculty of architecture, Univ. of Karlsruhe. He is concerned with the diagnosis and therapy of old building structures, in research and practice. As a consulting engineer he participated in the restoration of many historic buildings and he has reported on this work in numerous publications, lectures and seminars.

SUMMARY

The planning methods for the restoration of old buildings differ considerably from those applied to new buildings. Although there might be similarities in structural problems, each old building is a case of its own. The civil engineer should treat the building as a doctor would deal with his patient: anamnesis, diagnosis, therapy, prognosis. Careful restoration techniques and new research findings help to minimize the intervention and reduce the necessary repair and strengthening aids. Working with old buildings leads to a balance between theory and practice, experience and intuition.

RESUME

Les méthodes de planification utilisées lors de la restauration d'anciens bâtiments sont différentes de celles appliquées dans de nouvelles constructions. Malgré les problèmes structuraux souvent de même nature, chaque ancien bâtiment représente un cas particulier. Pour l'ingénieur civil, la meilleure façon de s'attaquer au problème d'un ancien bâtiment est celle du médecin traitant un patient: anamnèse, diagnostic, thérapie, pronostic. De nouvelles méthodes de restauration mélangant la substance combinées à des résultats de recherches récentes contribuent à minimiser l'intervention et à limiter l'emploi de matériaux modernes. Le travail de restauration et de renforcement représente une recherche de l'équilibre entre théorie et application, expérience pratique et esprit d'invention.

ZUSAMMENFASSUNG

Die Planungsmethoden für die Instandsetzung alter Bauten sind andere als für den Neubau. Altbauten sind, bei mancher Gleichartigkeit der baustatischen Probleme, jeder für sich ein Sonderfall. Am besten nähert sich der Bauingenieur dem alten Bauwerk wie der Arzt dem Patienten: Anamnese, Diagnose, Therapie, Prognose. Substanzschonende Sanierungstechniken und neuere Forschungsergebnisse helfen, die Eingriffe in den Bestand zu minimieren, die modernen Zutaten zu beschränken. Die Arbeit an den alten Bauten ist ein Feld des Ausgleiches zwischen Theorie und Praxis, Erfahrung und Erfindung.

Different planning methods for new buildings and building repair.

When we deal with new buildings as structural or civil engineers the architect himself tells us of his plans from the very beginning. The building is actually erected towards the end of our work. As it is designed by us it is also our product. Drawings, calculations and descriptions give information on all details. Of course we do not want to be confronted with damages on these buildings, so we construct them accordingly. Essentials for the planning and building process are laid down beforehand, we have personal contact with the soil engineer, the heating engineer and with the supervising architect. The amount of work and the fee involved can be estimated before signing the contract, the office organisation is arranged to suit the needs of the building task. Generally, we can base our calculations on codes and standards which are approved rules of architecture. We work with well-known materials, the quality of which we determine ourselves, and with bearing systems and structures, we have had much experience with. We apply well-established calculating methods, programs and formulas for rough estimating. We know about the building process and the techniques involved and the craftsmen are experienced in this field. Finally we are also able to determine the costs to a certain extent. On the whole when planning a new building we have many approved methods at our disposal.

When we repair an old building the structure already exists, its architect has been dead for a long time. He can describe to us neither the process of planning and development of the erection nor the finished product. We have to ascertain everything about it ourselves. The architect's plans no longer exist and reliable surveys of the building are seldom at hand. Structures added later have changed the substance.

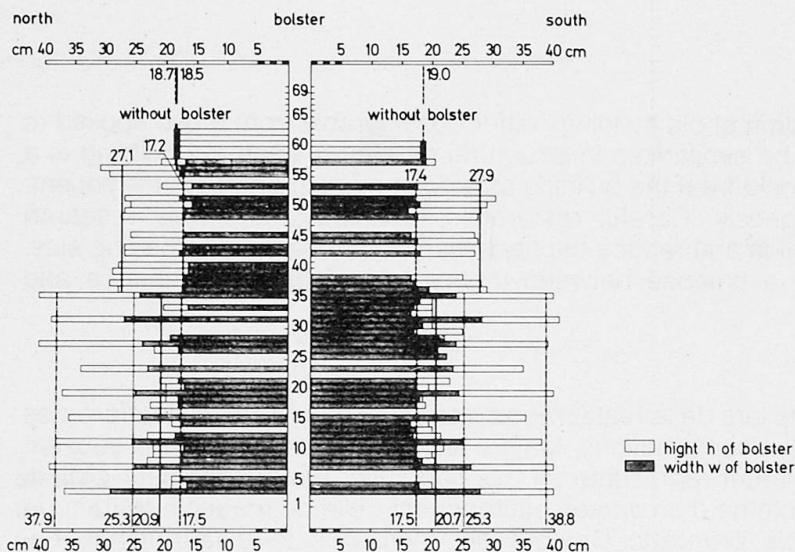


Fig. 1:

Minster of Freiburg

A survey and statistic valuation of the foot plate (bolster) cross sections in the roof of the nave helped discover the original system of tie beams. Most of the beams the rests of them being of larger size than the other plates were cut away when the vaults were built.

Each time we face structural damages, we are expected to provide a concept of restoration. The course of planning and constructing differs in each case depending on the nature and the size of needed repairing. Unfamiliar partners like conservators and restorators exert influence on our task. Being committed to the history of art they pay only marginal attention to the structures. Often we are called in too late which makes our task even more difficult because we must consider the restoration work already carried out which would better have been done after the structural repair. It is difficult to estimate the extent of our work and to fix the fee in advance. We are forced to do a lot of things ourselves, as designers and draftsmen cannot be employed as usual. Codes and standards which were not established for old buildings are seldom helpful. We have to deal

with unfamiliar, aged materials of unknown qualities. We are not accustomed to the bearing systems and bearing structures. The common methods of calculation can be applied, at best, if they are modified. Little-known techniques must be used, so we depend on special firms. The other craftsmen are virtually inexperienced in the field of historical construction. To estimate the probable costs is difficult, takes a long time and is sometimes altogether impossible. All in all the working methods for the planning of new buildings are unsuitable for the restoration of old buildings.

Anamnesis, Diagnosis, Therapy, Prognosis

An old building is a patient with handicaps likely from congenital defects, damages from aging and wear, after-effects from early manipulating with the substance, injuries from accidents or wars to decrepitude. The civil engineer has to help this patient as a doctor would. It is therefore advisable to apply the doctors methods: anamnesis, diagnosis, therapy, prognosis.

In our context anamnesis means gathering information on the buildings history of illness and damage. Literature and old reports of defects have proven to be very helpful. For instance measuring results in expertises made by geodesists and geologists can be compiled to show in detail the behaviour of both the building and the foundation soil over the last decades.

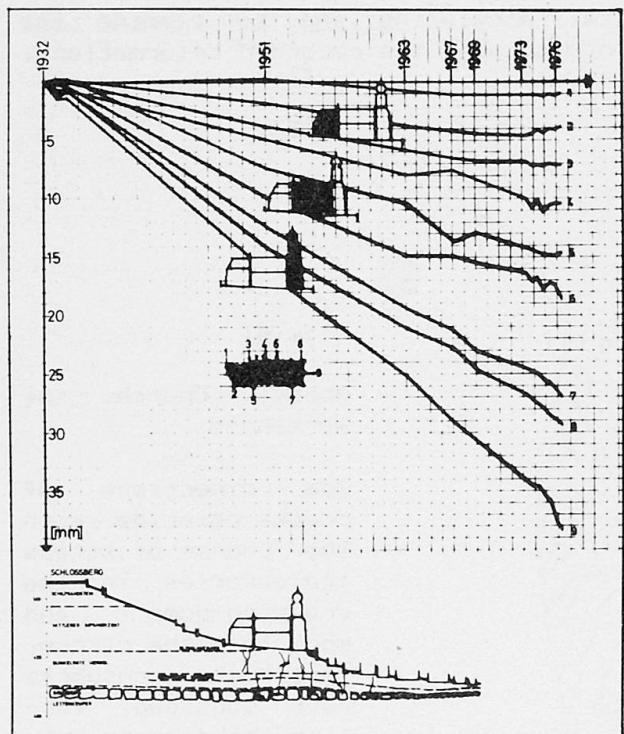


Fig. 2:

Collegiate church of Herrenberg

The results of geodesic measurements over a period of 5 decades show the gradual increase of subsidence from the choir to the tower and with the course of time as well.

Reports of damages and proposals for repair made in the past can help improve the judgement of the state the building is in today.

The better the anamnesis the more precise the diagnosis will be. Physicians point out that a good anamnesis can make for half of the diagnosis. It is similar with old buildings. But still, surveys of substance and damage have to be conducted on the site, drawings showing the course of cracks and deformations, high precision levelling and measurements of horizontal movements, observations carried out with plaster indicators as well as diagnostic operations

such as exploratory drilling and samples taken from the building, foundation and soil to complete the examination of damages.

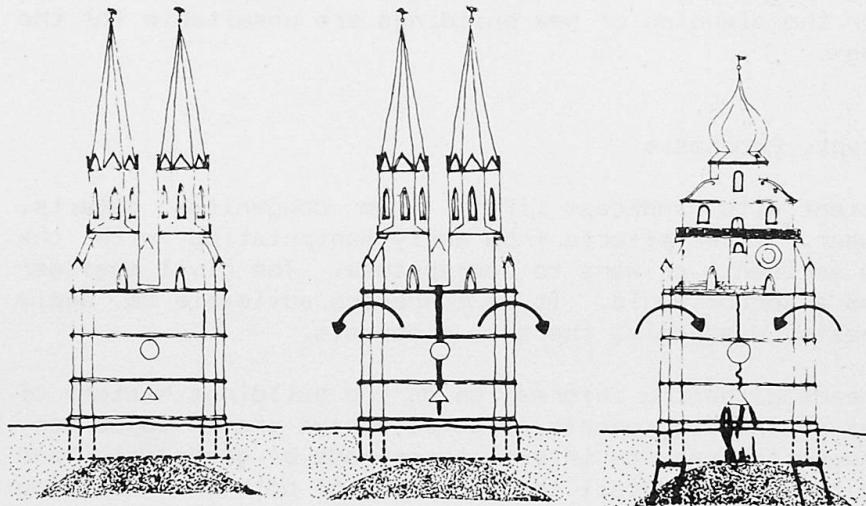


Fig. 3:

Collegiate Church of Herrenberg.
Crack damages, first in the upper and middle, then in the lower part of the tower, indicate saddle - supporting and subsequent underpinning which was confirmed by exploratory drilling.

It is part of the diagnosis to do statical calculating and to examine the present stability of the building taking into account the recorded deformations.

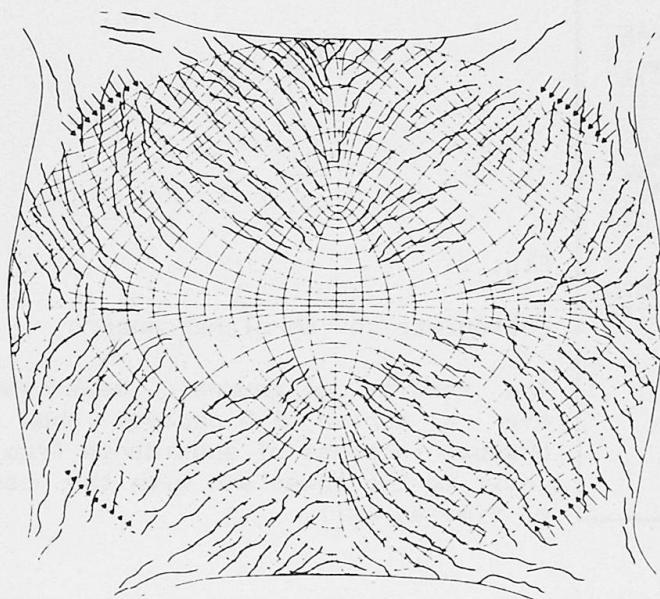


Fig. 4:

Abbey Church of Neresheim

The directions of cracks coincide with the course of stress trajectories in the crossing-dome and show that the circumferential supports have subsided, forcing the dome to settle on the four crossing-piers.

The therapy concept often results very obviously from the anamnesis and diagnosis made. Significant advice as to what repair and strengthening aids might be adequate in type and form can be drawn from the building's history. Our assisting measures must fit into the old building structure. It does not suit the building to arrange them according to statical and constructional needs only.

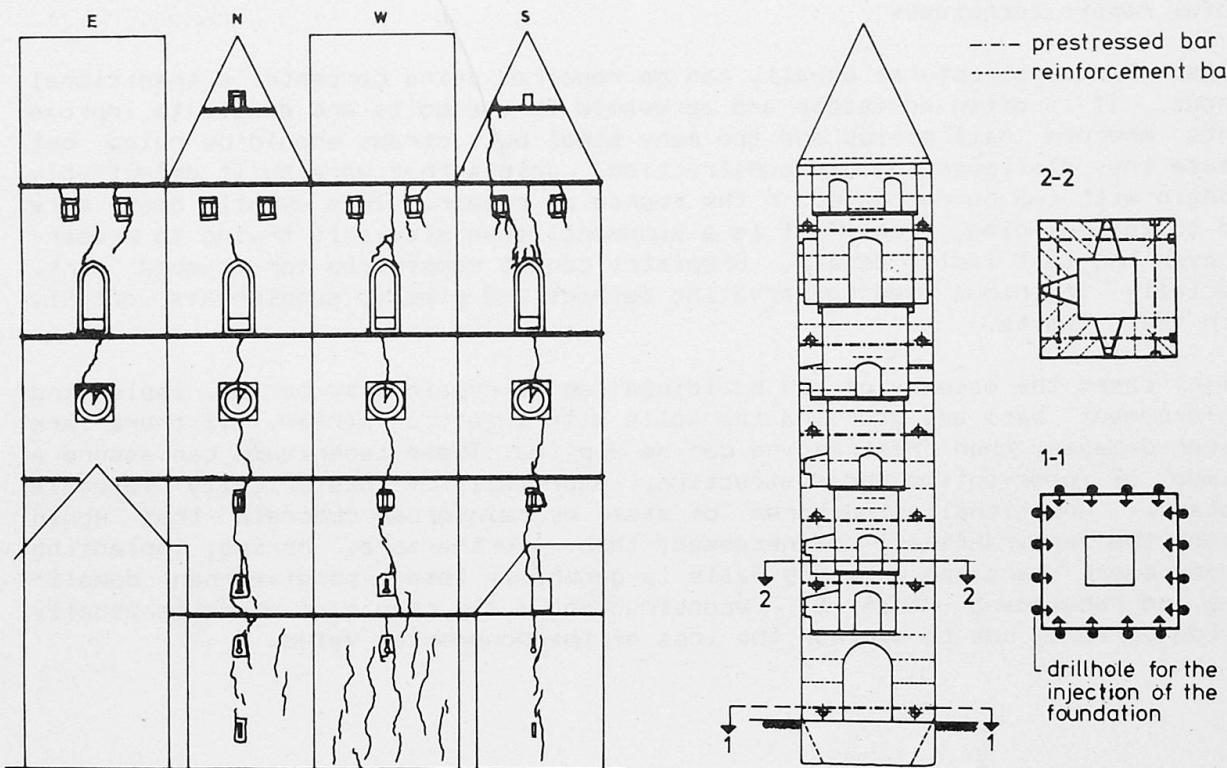


Fig.5:

Church steeple of Weitingen

The masonry which was torn apart on all sides and separated into four corner sections (left) now functions as a structurally complete unity after prestressing, inserting reinforcement bars and injecting cement (right).

When carrying out the therapy concept in measures to secure and repair the building it is necessary for the engineer to be on the site as much as possible to be able to adjust planning to the actual situation of the building. Most of the decisions necessary for this can only be made on the site.

To give a prognosis on how long our stabilizing efforts will prevail is difficult. Statistical considerations and the theory of probabilities can usually be eliminated as aids to assess the time. We would need too much data and information on the building and the soil. But by careful investigation of the building's present condition and with the help of the experience we have had to date with securing techniques, we can at least come to a rough estimate of the probable durability of the repairs, so as to extrapolate our experience into the future. To assess the cost-benefit-ratio of our repair suggestions this prognosis is appropriate in any case, even though it is based on an estimate.

Careful repair techniques

Damaged wooden structures usually can be repaired using carpenter's traditional methods. It is often advisable and agreeable to use bolts and dowels to improve joints whereas nail strips and too many steel butt straps should be ruled out because they disfigure the old construction. Joints that were built defectively to begin with can be corrected in the course of repair. This usually does more good to the building, even if it is a monument, than slavishly trying to preserve even the last faulty detail. Chemistry cannot compensate for scamped work. Especially ingenious wood conservating methods and plastic supplements quickly reach their limits.

In many cases the masonry of old buildings can be repaired by boring, implanting reinforcement bars and grouting the walls with injection mortar. If there are greater damages, then prestressing can be applied. These techniques can assure a minimum of intervention and destruction, especially of historically valuable substance. Additional structures of steel or reinforced concrete that would disturb the appearance are not necessary then. Furthermore, boring, implanting reinforcement bars and grouting walls is generally less expensive than demolishing and rebuilding - that is: reconstructing - the result of which is usually far too perfect, not to mention the loss of the monumental value.

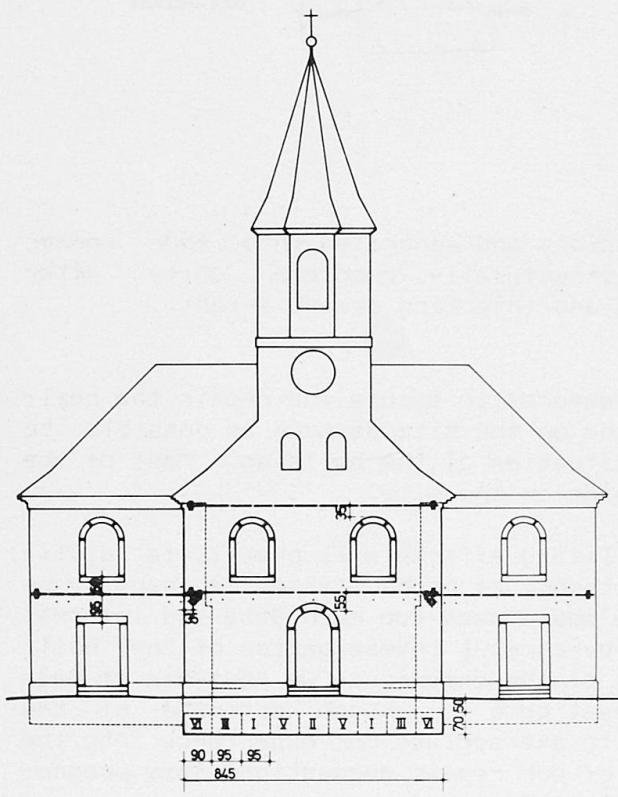


Fig. 6:

Village Church of Spielberg

Inexpensive repair of the torn walls, whose foundations were not deep enough, by underpinning, prestressing, implanting reinforcement rods, grouting and installing an upper peripheral tie beam.

Damaged masonry vaults are often stabilized by applying shotcrete. If possible the shotcrete should be restricted to the spots of damage or to small bearing strips. This way the effect on the temperature gradient in the vaults and on the resistance to diffusion of vapour is minimal. This is especially important if there are paintings on the ceiling underneath. Only if it would be insufficient to mend the joints or to just apply shotcrete partially, should it be considered to strengthen the complete surface of the vaults with a shell of reinforced shotcrete on top. Besides, it usually pays to examine the statical behaviour of the vaults more closely by taking three-dimensional-bearing systems into ac-

count. This can be done according to diagramms of the contourlines and by checking the load transfer in the downlines. By doing so, expensive repair measures were avoided in several cases. This would not have been possible without precise information on the flow of forces within the vaults.

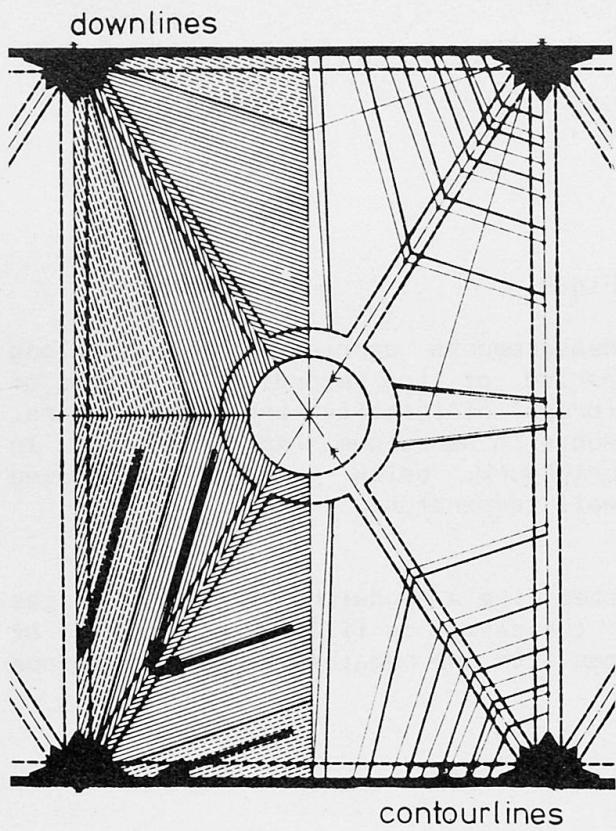


Fig.: 7

Minster of Freiburg

Contourlines and downlines of a cross-ribbed vault. 65% of the load are transferred to the cross rib, 25% to the transverse arch and 10% to the wall arch.

New research results

To complement the methods for improving masonry which were derived from practical experience, research has now supplied results that are applicable in practice.

For prestressing masonry in historical buildings data has been compiled concerning the permissible partial surface pressures underneath anchor plates; the flow of forces in walls can now be described; information is given on the size of the splitting tensile forces. There are also specifications on the loss of prestressing forces in course of time and several other special problems are dealt with.

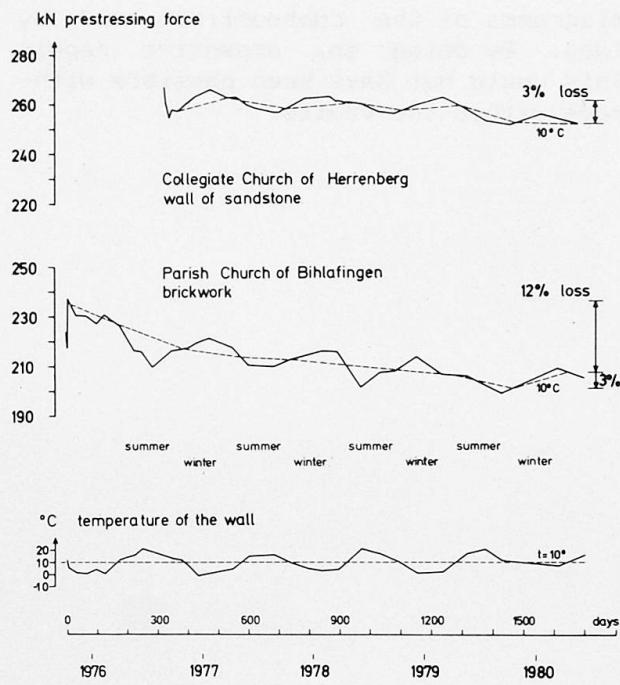


Fig.8:

Measurements carried out over a long period of time recording the losses of forces of installed prestressed bars. Above in sandstone masonry, centre in brickwork, below is the corresponding wall temperature.

Walls in old buildings are often constructed like a sandwich: The outer slices are more or less built in masonry bond, the cavity is filled with pieces of stone, sand, at best mortar but at times with the remains of the previous building.

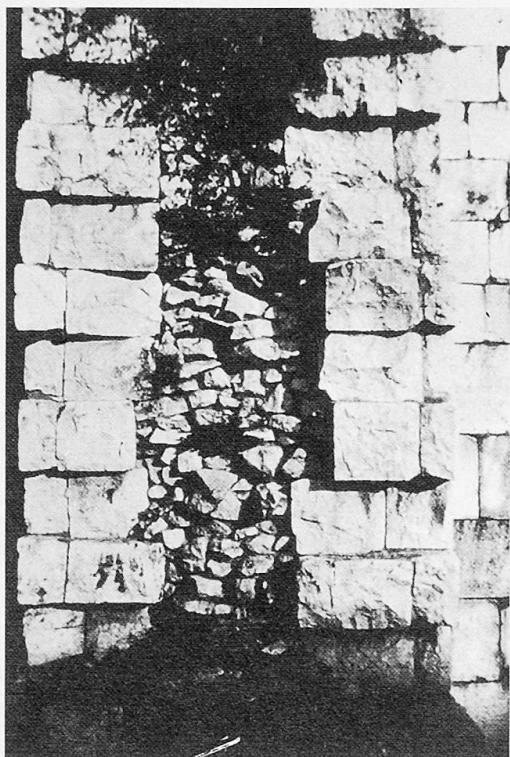
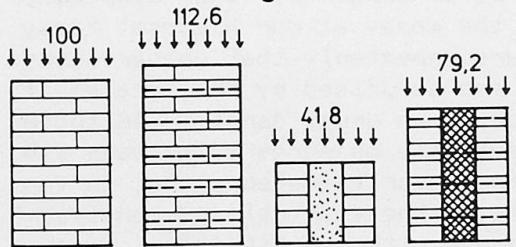
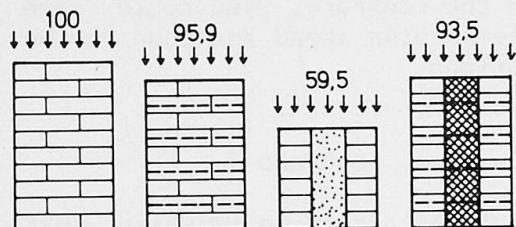



Fig.9:


Diocletian palace in Split sandwich walls

The bearing capacity of such sandwich masonry is small because of the lack of rigidity towards transverse stress. Test results now show how much the load at cracking and the ultimate load of sandwich brickwork can be increased by inserting reinforcement rods to connect both outer slices of the wall and by grouting the wall, especially the loose centre with mortar. The achievable increase in loading capacity is considerable. The significance this has for practice is that less old masonry has to be demolished and replaced because it can be improved sufficiently by inserting reinforcement rods and grouting. This can also be done at less cost than by demolition and reconstruction.

Load at cracking in %

Ultimate load in %

Modulus of elasticity in %

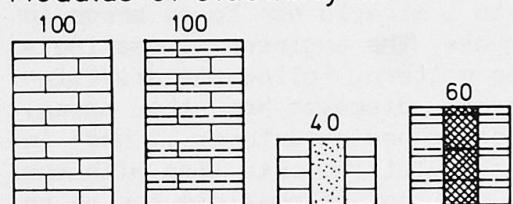


Fig.10:

Tests on brick masonry

From left to right:
one-slice masonry
one-slice masonry including reinforcement rods, ungrouted
sandwich masonry, ungrouted
sandwich masonry including reinforcement rods, grouted

Standards for old buildings?

The question has often been raised whether the practical experience and the results of scientific work on securing old buildings could be embodied in standards so that a wider circle of experts could have free access to them. The answer can only be: for heaven's sake, no. Every old building and each defect is a special case of its own. During any statical and constructional restoration the techniques applied have to be specially chosen to meet the requirements of the particular building. Therefore the structural engineer must take great care in advance and study the existing structure and the special features of the building. His diagnosis and therapy-concept should be established for this special object. If there were standards for everything then the engineer would easily be tempted to meet these standards primarily - if not even feel obliged to do so as we can experience with other standards we have - and to neglect the special situation of the specific project. For those who try to find the best possible solution to fit the needs of the particular building those standards would be more an obstacle than a help.

The causes of damage and the symptoms

In my experience as consultant and proof engineer, I have found that checks and restoration concepts often do not go beyond repairing the worst and most visible damages. You must be careful not to simply cure the symptoms and ignore the causes. In most cases the hidden causes are dangerous, not the symptoms. The size of the damage is not necessarily important: small defects at sensitive spots within the structure can have grave consequences whereas large damages at less important places need not be of any danger.

Many old buildings need help, many important monuments of architecture are in danger. In most cases you cannot tell the degree of danger by the symptoms. Because funds for repairs are becoming smaller, the money at our disposal today should be directed to specific objects. It occurs repeatedly that conservators or the state, community or church as proprietor are surprised by the statement that a certain building has very grave damages or is in great danger. In those cases the financial planning is swept over by inevitable measures to salvage the building. In the haste, steps are often taken for security reasons that go too far. If precautionary examinations were to be made of the statical and constructional condition of a top group of historic buildings, the architectural monuments, then there would be a basis to set up long-term financing and timing schedules. The expenses for these investigations would hardly be noticeable compared to the costs of securing measures. On the contrary, you could save money by setting priorities and by then being able to plan ahead and come to the technically and financially most appropriate solutions.

What about an old building that should have fallen apart long ago ?

From time to time I come to read statical calculations according to which that particular building should have fallen apart long ago. These examinations are usually supported by computer results and by lists of violated standards. The fact that it has not fallen apart is neither due to a miracle nor to an error in its bearing behaviour. The calculation is inadequate, the engineer was making a mistake. We have to find out the real load-bearing pattern, follow the diversion of loads from failing building components to others, discover how the aging, ailing building helped itself and what hidden systems and structures it has in reserve. We must also try to bring the statical calculations into line with the damage record. If we do not do all this then it will not be possible for us to give reliable information on the danger the building is in.

Help for a hundred years, not for a thousand

In my therapy-concepts I try to bring as little changes as necessary to the substance and to the soil. I try to keep risks low and try to find ways to support the building's self-help mechanisms.

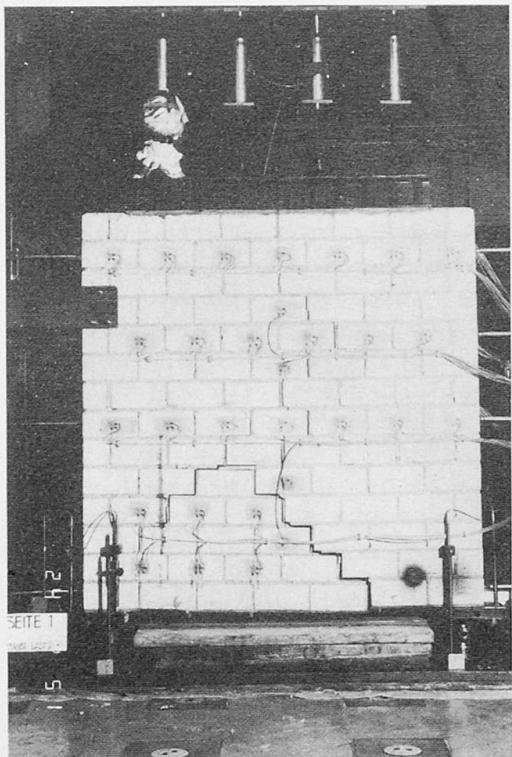


Fig.11:

Sheet action as a self-help mechanism above openings and weak spots in masonry walls. Results from tests (picture) and FE-calculation

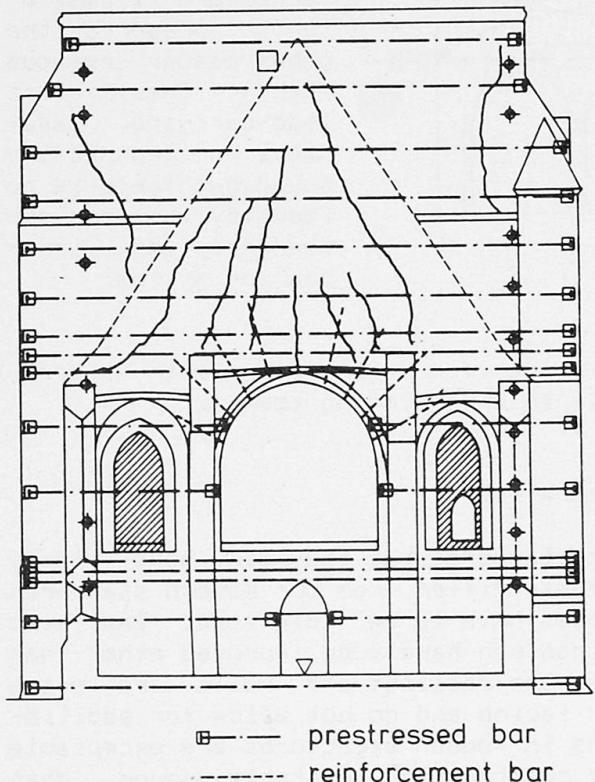
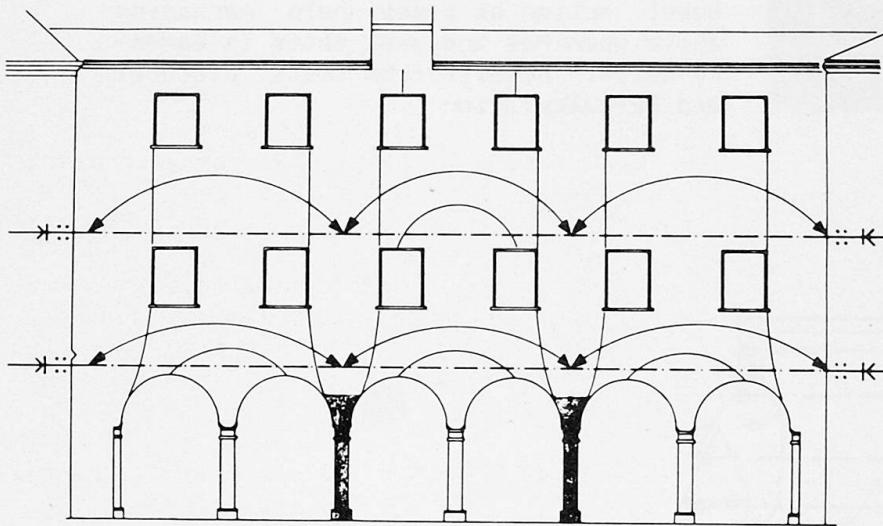


Fig.12:

Collegiate Church of Herrenberg

The prestressed masonry diaphragm spanning the big opening to the tower makes visible supporting structures of steel or reinforced concrete superfluous.


The durability of the repairs has to be estimated for each case separately. Modern imperceptible therapy methods can be helpful at crucially sensitive spots of historical buildings for a hundred years, to give a rough estimate. You could

double the period for less delicate areas. It would be irresponsible to promise more at the present stage of science and technology. Future generations will and should have to deal with the surviving monuments. To think we could and should free our descendants from such care and concern once and for all would be presumptuous.

A typical example for the question, how far an engineer should go in planning his securing constructions, is the underpinning of subsiding walls with the help of piles. It is often sufficient not to preload the piles, that is not to press them with jacking force against the wall load above. Otherwise the walls could easily be damaged additionally. The not preloaded pile foundation represents a cushioning support which is activated only when the walls sink further. They are then supposed to settle onto the support and gradually transfer their loads to the piles. The bit of subsequent subsidence has to be accepted. There are cases, though, where it can be advisable to already redistribute the flow of force within damaged walls during restoration work, to take the weight off weak spots in the structure and transfer loads to a few new supports such as preloaded piles.

Fig.13:

Laupheim Castle

Prestressing the wall in two horizons and inserting two new columns of reinforced concrete that are pressed against the wall load above with jacks make it possible to preserve the other masonry columns with insufficient load-carrying capacity. Technically sound but there is no identity between appearance and inner bearing system.

One should generally be careful preloading piles if one is dealing with vulnerable walls whereas this procedure is the rule in underpinning towers.

Proving stability before and after the restoration

Our ancestors did not build according to standards but they did have widely recognized rules of their building craft. These differ from our modern standards in a few points and some of these differences have to be tolerated. Bad heat insulation for instance in historic buildings can hardly be improved other than in radiator niches or in the attic because the ceilings and walls are often decorated with plaster, paintings or brick facing and do not allow for additional layers. Large impressions and deflections in wooden structures are acceptable if the wood is healthy otherwise and if the construction is stable enough. What if this security is not given? Securing measures for vaults, columns and walls that are aimed at achieving today's permissible stresses often lead to a great loss of historical substance and shape. What is to be done if what should be saved will be lost by the securing measures?

In those cases I begin with the ascertainment that the building although there are damages has survived till today. Because of this it will receive the safety factor 1,0. If the building's condition has been recorded reliably - which is a requirement - and if it can be proven that statical and constructive helping measures can improve safety at the most crucial points by, say, 50% to 1,5, then this is - if it cannot be done otherwise - a confirmatory strength report which I do as engineer and which I recognize as proof engineer and which I recommend to my colleagues.

I am sorry to have to say that there are proof engineers in structural statics as well as building administrators who insist on having the standards for new buildings observed to the letter and who therefore encourage destruction rather than preservation of substance. It is absolutely necessary for a larger number of engineers and proof engineers to get acquainted with the statical and constructional problems of old buildings. The questions concerning statics and construction are especially difficult with those buildings. I am always grateful to encounter colleagues while working at these tasks who co-operate in finding a safe and adequate structure.

Building-related physics

An important task for engineers and proof engineers during the restoration of old buildings is consulting in matters concerning building-related physics. The engineer is becoming more and more responsible for planning and supervision of the protection from heat, cold, noise, moisture, rot, timber pests and corrosion since the architect lacks the necessary technical knowledge to an ever greater extent. His co-operation is especially important in matters of precautionary fire protection. Adequate measures are not always possible, just think of historical staircases or long hallways in monasteries. But there are always ways to erect fire-resisting walls where old weakened framework walls are removed or to replace damaged wood-beam floors with a solid construction and thereby create fire compartments. In such cases we must proceed carefully but decisively.

Work on old buildings leading to a balance between theory and practice, experience and intuition

The engineering work as part of restoration activity is neither ideal for theory-minded calculation specialists nor for colleagues who try to make their construction job appear a bit more scientific by verbally complicating trivial matters nor for those who work according to the motto: "we have always done it that way". Instead, working with old buildings leads to balancing theory and practice, experience and intuition.

We are to deal with works of the building craft to which we are to make careful contributions. These contributions can improve in quality the more we look into the history of architecture, arts and crafts - all of which are subjects that were not part of our specialized curriculum. In this sense, engineering work on old buildings means continuous studies.

Balance between conservation and renewal

While dealing with the restoration of old buildings we engineers or proof engineers face co-operation with conservators. We must describe the building's constructive condition. We are to show in a sound and understandable manner why or why not restoration is feasible. It is equally terrible to clear away a monument of architecture as to repair it at any expense. This is where the engineer can contribute to a reasonable balance between the conservation and the renewal of our building substance. To repair old buildings can only mean to put further

decay under control. It can never be completely stopped. If it is reasonable to repair a building then we are expected to recognize its value and to work carefully and to find solutions that fit organically into the existing substance.

Why I became involved with old buildings

To conclude, please let me make a personal statement. When asked why I get involved with old buildings so often, several answers come to my mind: First of all I like to investigate the work of previous masterbuilders. Again and again I am surprised by the clarity and simplicity of many a structural concept, their effectiveness by being confined to only a few building materials and the evidence of solidity, well demonstrated by the age of the monuments. Our old buildings undoubtedly represent a positive selection, we can surely learn quite a bit from them. This in mind, I become more pensive and more cautious when I deal with the variety of modern means and possibilities, more frugal in designing my own structures.

Another answer to the question concerning the reasons for my dealing with old buildings is that very often historically interesting buildings are connected with interesting people. For instance the abbot of a monastery who is more at home in architecture and engineering and in the history of arts than some of our expert colleagues; or the administrator of public archives who asked to preserve the holes of the swift when grouting the walls of the church steeple; or say the conservator who spent many hours of his spare time in the Carolingian building he had done his graduation report on 50 years ago and who continued doing research on it his whole life long. Those are all people who looked after these buildings and it is really very rewarding to get acquainted with them.

Finally, I must also say that it is fun to apply new engineering methods to old buildings because in these cases there are not all those many standards and regulations which have prevented so many of our engineer colleagues from using their minds and have degraded them instead to "book-keepers of reinforcement", as somebody once put it. But seriously, as I have to take on more responsibility myself in work on repair of old buildings, my task as engineer is more satisfactory and rewarding than it can be with many a new building.

REFERENCES

1. VOGELEY J., Die gotische Dachkonstruktion über dem Langhaus des Freiburger Münsters.
Diss. Karlsruhe 1981
2. WENZEL F., Die statisch-konstruktive Sicherung der Stiftskirche Herrenberg.
Commemorative publication, Herrenberg 1982
3. ULLRICH M., Untersuchungen zum Tragverhalten barocker Holzkuppeln am Beispiel der Vierungskuppel der Abteikirche Neresheim.
Diss. Karlsruhe 1974
4. Institut für Tragkonstruktionen, Universität Karlsruhe,
Aus Forschung und Lehre, Heft 5:
Sicherung historischer Bauten, Dokumentation der Fachtagung im Juni 1977 in Karlsruhe

5. Institut für Tragkonstruktionen, Universität Karlsruhe,
Aus Forschung und Lehre, Heft 13:
Sicherung historischer Bauten, Dokumentation der Fachtagung im April 1981
in Bad Homburg v.d.H.
6. Institut für Tragkonstruktionen, Universität Karlsruhe,
Aus Forschung und Lehre Heft 14:
PIEPER K., WENZEL F., Statik und konstruktive Sicherung in der Denkmal-
pflege, 1981
7. WENZEL F., POERTNER R., Das Zusammenwirken von Rippen und Kappen im
Tragverhalten mittelalterlicher Kreuzrippengewölbe, Karlsruhe 1978
8. HALLER J., Untersuchungen zum Vorspannen von Mauerwerk historischer
Bauten
Diss. Karlsruhe 1981
9. WENZEL F., DAHMANN W., Verbesserung von Mauerwerk durch Zementinjektion
bzw. durch Vernadelung und Zementinjektion, Karlsruhe 1981
10. DAHMANN W., Untersuchungen zum Verbessern von mehrschaligem Mauerwerk
durch Vernadeln und Injizieren.
Karlsruhe, in preparation
11. MUTSCH P., Aktivierung von Scheibentragwirkung in bestehenden Mauerwerks-
wänden.
Karlsruhe, in preparation
12. WENZEL F., Zur Arbeit des Bauingenieurs in der Denkmalpflege.
Bauwelt 1982, Heft 31/32
13. WENZEL F., Schonende Hilfe für die historischen Bauten.
Forschung 1983, Heft 3

Leere Seite
Blank page
Page vide