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SUMMARY

The paper deals with the ultimate load of masonry structures conceived as discrete structures for-
med from rigid blocks and frictional joints. The problem is treated as one of limit analysis of a dis-
crete rigid-plastic structure with non-associated flow rule. A numerical procedure is proposed
which at first obtains a lower bound of the collapse factor and then, if necessary, calculates the
true collapse factor by solving a non-linear program.

RESUME

Le probléme de la charge ultime pour les structures en magonnerie est résolu a I'aide d'un modeéle
formé de blocs rigides et de joints avec frottement. Il s'agit d’un probléme d'analyse limite pour une
structure rigide-plastique. Une procedure numérique fournit une valeur inférieure du facteur de
charge, et calcule le facteur ultime exact a I'aide d’'un programme non linéaire.

ZUSAMMENFASSUNG

Die Arbeit behandelt das Problem der Traglast von Mauerwerk. Das Mauerwerk wird als diskrete
Struktur aus starren Blocken und Fugen, welche als Reibungsflachen gedacht sind, aufgefasst. Der
Grenzzustand wird mit Hilfe eines starr-plastischen Modells ohne zugeordnetes Fliessgesetz er-
fasst. Das Berechnungsverfahren bestimmt einen unteren Grenzwert der Traglast. Wenn notwen-
dig wird dieser mit Hilfe eines nichtlinearen Programmes optimiert.
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1. INTRODUCTION

The collapse load of masonry structures is the oldest problem in the structural
mechanics field (see [1] for an exhaustive bibliography) and the first paper on
the masonry arch or dome, allowing for friction and coesion is due to Coulomb
[2]. More recently, Heymann [3—4] showed that the masonry's collapse load can be
viewed as a limit analysis problem, and Livesley [SJ provides a formal procedure
for finding the collapse load of any structure formed by rigid blocks, with the
block interfaces capable of carrying only compressive and shear stresses.
Livesley's procedure maximizes the load factor p subjected to the linear
equilibrium equations and the linearized constraints imposed by criteria of
failure at block interfaces. Because the limit on the shear force is assumed to
be that associated with Coulomb friction, the normality flow rule is
not-satisfied and the obtained load factor is only an over-extimate of the true
factor [6]. Consequentially it is necessary a post-optimality analysis to test
the validity of the computed load factor.

The present paper studies the collapse load of masonry structures with the same
Livesley basic assumption (discrete rigid-plastic model with frictional
interfaces) in the general framework of limit analysis for material with
non-associated flow rule [7]. For a such structure, the computation of the load
collapse multiplier p implies the solution of a non linear, non convex
mathematical program; instead it is relatively easy to construct [8] an upper
bound p,; (or a lower bound pl) to p, solving, in both cases, a standard limit
analysis problem of an auxiliary structure , which must have the same geometry
of the original one but different constitutive equations, suitable choosen and
w1th associated flow rule. You propose a numerical procedure formed by three
steps i) a lover bound pp of the real collapse multiplier Pa is obtained
solving a linear programming (LP); ii) a post—-optimality analysis of LP solution
checks if pg 1s at the same time the real p (p2 p ), iii) only if the above test
fails the real multiplier is obtained solv1ng a non-linear program.

For semplicity sake the paper deals only with plane masonry structures (as simple
or multiple arches and walls) but all the results of this paper can be easily
extended to spatial structures (as domes).

Matrix and vector quantltles are denoted by underlineed characters; O denotes
the null matrix or vector; A or At denote the transpose of A, and superimposed
dot (°')denotes a time derlvatlve

2. THE MASONRY STRUCTURE AND THE IDEALIZED MODEL

Any (plane) masonry structure can be described as an assemblage of regular form
stone blocks, with interposed mortar joints, which can carry only compressive
and shear stresses. An useful approximation to the very complex behaviour of a
such structure is obtained assuming the stone blocks as rigid and the joint's
tickness as infinitesimal. The structural model is conceived as formed by rigid,
discrete size, nodes (n in number) with interposed m rigid-plastic sections
(m>n), which have yield limits on the (generalized) stiress vector o= [N Iz Nﬂt

The limit on the shear T is linearly dependent on the normal force N (N>0) with
non-associated flow rule (NAFR). Because no-interaction is assumed between the
shear T and the bending moment M, the yield domain in the (V,M) space is the
usual interaction curve, suitably linearized (see Fig.l related to a recta ngular
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Fig.l Elemental yield domains: axonometrie and sections.

cross—section). The analytical description of this constitutive law (elemental
conformity conditions [9]), can be given the following matricial form:
gENions ki =0, M0 = kY

; o Al (1)
A0, Bi -0, &=k

which usually refers to a single section or element, but can refers to the full
element set by a suitable redefinition of the vectors and matrices as super
vectors and block diagonal supermatrices. In Eq. (1) g)i,515°, (with the same
dimension) are, respectively, the (elemental) yield function, (plastic) potential,
multiplier rate and (plastic)resistance vectors. Eq.(le-d) define the flow rule:
the strain rate vector &é=[&y ép ékﬂt dual in the v.w. sense of vector g, is a
linear combination of the yield.modes M; (i.e. of the plastic potential gradient),
with non-negative coefficients A/, which can be non zero only if the corresponding
y-£. ¢ vanishes. Some remarks will be useful: i) Adding to Eq.(1lb) the sign
requirement ¥<0, you can define the reduced yield domain with AFR, currently
used to obtain a lower bound multiplier ES—Q]; this definition requires a simple
modify of the usual assumptiom: M% and k% must be interpreted as proportional to
unitary external normal and to distance from the origin of the ¥.=0 plane.

ii) The ¢ vector can be split in two subvectors_9=[ga_gnjt, whereiga collects the
y.f. with AFR (1-6 in Fig.1) and ¢  the y.f. with NAFR (7-8 in Fig.l); breaking
in the same way the ¥ vector, and observing that, as consequence of the assumed
flow rule, ¢ =Y, (whereas‘gnfgn), you obtain the following relations:

O _a40 (] () o LS o (o] O o -
e e TS el B okellof DT (2a-d)
where N;EM; depends on the cross-section type and the assumed linearization and:

+
= .0 07
P° = 2
=T { = 0 0 } 5 &)

With a redundant stresses formulation [10], the equilibrium conditions for a
one-parameter loading (with parameter p20) and the compatibility condition are:
o=A(£°+fp)+Bx, G=AE, 9=BE=0, (3)
where the vector Ef(g) collects the nodal forces equivalent to the fixed
(variable) load sistem, and the vectors x,u,f are respectively the redundant
stress, the (nodal) displacement rate and the distorsion rate vectors. The
compatibility matrices A and B depend only on the structure's layout and on the
assumed redundant stresses.

3. THE COLLAPSE MULTIPLIER CLASS AND ITS BOUNDS

In the limit analysis with AFR, the collapse multiplier is the only load
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multiplier value so that you can associate to it an equilibrated and conforming
stress state and a compatible and conforming strain rate with active load power
rate ﬁﬁié_ positive . The limit analysis with NAFR retains such definition
and same theorems [7—8] permit to obtain easily lower and upper bounds of the
collapse multiplier. From that, you can deduce an entire collapse multiplier
class exists. The existence of a such class, either discrete or continuous, can
be realized by a simple examination of the assembled structure (AS) conformity
conditions. Adding to Eq.(1),(3) the requirement p>0, eliminating the stress
vector 0, with some arrangements and utilizing the positions:

REBNE. S SEANT,k ekl rfANE
S o > "o Lo (4)
MeBM®,  mefAM’, Kk =k -fTAM
you obtain the following AS conformity conditions:
=N x+n p-k_<0 ‘P=I:’[ x+mp -k
i 0 (5)
A0 e 0 B Vel il SesRi S uE0)

where ¢(¥) can be called the AS yield function (plastic potential) vector, and
w 1s a positive number.
x A

[ o

i |

(a

Fig.2 Assembled structure yield domains: two ideal cases.

In the z=£§p]t;space (the AS stress space), Eq.(5a) defines the AS rigid region,
whose boundaries are the AS yield planes ¢=0. Denoting with M. the j-th column
of M and with m; the j-th scalar component of m, you can say that an AS
deformation mod; vector gj=[ﬁf mj]t 1s associated to each plane wj=0, and that
the AS strain rate vector éf=[ét b]t is obtained as linear combination of these
deformation mode vectors (i.e. of the AS plastic potential gradient) with non
negative coefficient Aj, subjected to the complementary conditions (5d). The
geometric interpretation of the AS conformity conditions (5) is formally similar
to the usual for the elemental conformity conditions (1), but it is really most
restrictive: it is easy to realize that the Eq.(5e-f) require only a value for
dorti e, éﬁéﬁ=[9‘w]b, which 1s a vector orthogonal to thesubspace x and directed
as the positive p-axis.

Therefore a collapse condition can be represented by those points Zﬁ of the AS
rigid region boundaries to which you can associate, through the generalized flow
law (5c¢c-f), the AS strain rate vector éﬁ=[§_w]t. For AFR structures, QJ coincides
with the external normal to the ¢ plane, and the X° point set, either only a
point or a continuous set, coincides with the boundaries point subset which have
the greatest distance from the x=0 plane. For NAFR structures the y° point set
can be either discrete or continuous with a corresponding collapse multiplier p°
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set either discrete or continuous. Fig.2 represents the AS rigid region of
hypothetical structures with NAFR: in Fig.2a you have a continuous Zﬁ set and
a continuous collapse multiplier p° set, and in Fig.2b you have only a y° point
and only a p° collapse multiplier, but the point y° don't coincide with the
boundaries point subset with the greatest distance from x=0 plane. For the
structural safety, the only interesting value of the p° collapse multiplier set
is the minimum value p, which can be defined from the following non linear
program (NLP):

iz =N x+n p-k
D= ) min p

TEin ; (6)

4
The NLP (6), often encountered in the structural engineering field [11—13J is a

marginally non linear program (in the sense that it is a linear program at all
but with the complementarity relations §q&=0, which makes NLP (6), strictly
speaking a non convex non linear program) whose solution, theoretically and
computationally speaking, is not easy.

On the contrary, it is relatively easy to construct [8] an upper bound p and a
lower bound Py to Pes i.e. PSP oSPy- The upper bound p, can be obtained as the
collapse multiplier of an auxiliary structure which has the same geometry, load
sistem and rigid region of the assigned one, but with AFR. The value of p, can
be obtained [5] solving the following LP:

pu={max P l @u=§5+2 & _EN = My DZO} ’ (7)

where guiis defined in Eq.(5a), i.e. ¢,,=9.

The lower bound p, can be obtained as the collapse multiplier of a second
auxiliary structure which has the same geometry and load sistem of the assigned
, but a reduced yield domain with AFR. You can define [9] the elemental
reduced yield domain as the envelope of the planes with external normal ﬁﬁ and
passing through that points of the original polyedron face from which ortogonal

one

proiection on M’ has the minimum value; in Fig.l e 2 this reduced domain 1is
depicted with dashed lines. The value of p, can be obtained solving the following
IEj2E

p,={max o[ gp=Mx+mp-ky <0, p20}, (8)

where 9 is defined from Eq.(5b), i.e. 9,=¥. In both cases considered in Fig.2,
we have depicted the points ey and p,-

4., THE LOWER BOUND APPROACH AND THE NUMERICAL PROCEDURE

We propose a numerical procedure based on a lower bound approach, i.e. on the
relation PSPLs where p, and p, are obtained solving the LP (8) and the NLP (6),
respectively. We call lower bound solution (l.b.s) the optimal solution of the
LP (8), i.e. the value set QQ’EQ’EQ’ which verifies the optimality condition
[10] of the LP (8):

Q=M+ mp sk, <0, Ay 20,7 g, A, =0
- ; (9)
Mi =0, mi,=w0, p,20.

We call admisstble collapse solution (a.c.s.) a value set p°,§f,i° which verifies
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the constraint set of NLP (6) and the relation:
pSp°. (10)
The following theorems can now be given:

1-st Theorem. If the lower bound solution is an admisstble collapse solution,
then the collapse multiplier and the lower bound multiplier values coincide
(i.e. pc=pg)

Proof .. If the l.b.s. pz’fi’éi’ is an a.c.s. then, by Eq.(10), you have PE SRS,

whereas plarse by definition. The continuous inequality P SPaS plinmlies

=Py -

2-nd Theorem. If the lower bound solution verifies the relation:

O£P° Xo=0, (_0_2=é(£°+£p2) + 13_52), (11)

then the l.b.s. s an admissible collapse solutio?, and, by th.1l, Ba=0,

Proof. We must demonstrate that the l.b.s. pp,X,,A,, with the added condition
(11) verifies the constraint set of NLP (6). This set differs from Eq.(9) only
for the yield function (i.e. wl#m) and the complementary condition (i.e.

P9 A A%m k), so it is necessary to demonstrate only that w(x P )0 and
¢(X2’DE)_1 =0. In order to this, we observe:

i) @2(x2,p )<0 implies g(x ,p£)<(3 because the reduced yield domain 32539 is
not external to yield domaln 020 by definition.

ii) ¢ (Xl’p )Av—O with the cond.(11), implies Q(XR,DQ)A 0; in the elemental
stress space 0, the c.c. (9¢) can be written as (M g —k )t/\Q O, and adding to it
the cond.(1l1l), you -obtain ((M +P )0 -k )tA =0, i.e. m(xl,pg) =0 by position
(2a).

Corollary. If the lower bound solution implies a collapse mechanism without
relative sliding rate at critical sections, T.e. with éT-=O =12 e then
the 1.b.s. s an admissible collapse solution, and, by th.1, P =P

?roof: It is easy to see, by position (2d), that éTj=O (j=1,2,...m) implies
gzzf_l=0, i.e. the 1.b.s. is an a.c.s.

Adopting the lower bound approach, we propose a numerical procedure in three
steps; the first, which requires a not-heavy .computational effort, must be

always executed, whereas the second and the third, which one requires a heavy
computational effort, can be sometime omitted. The steps are: 1) Solve the LP(8),
obtaining the 1.b.s. OZ’EL’X ; 1f the obtained e is sufficient to ensure the
structural safety, the procedure can be abandoned; 2) Test, using the previous
corollary or Th.2, if the 1.b.s. is an a.c.s.; 1in this case the procedure can
be abandoned because PPy s 3) Solve the NLP (6) to obtain the collapse solution
and the collapse multiplier P

The solution of the NLP (6) can be obtained adopting espressly conceived
algorithms {11,12,14], of the branch and bound type, or trasforming the NLP (6)
in a mixed integer program (MIP) and solving it by commercial codes [15]. This
trasformation can be easily obtained replacing the complementarity cond. (6c)
with an equivalent set of constraints on the yield function g, the multiplier
rate é.and an auxiliary boolean vector z. The MIP problem is:
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| . |eNxtno-ky<0, Mi=0, mi=w0,120,
ch)mlnp ( (12>
Bz—p <0, A+Bz<Bi, 2;=(0,1), 020
where if(l...l...l)t and B>>1 must be assigned to ensure always that —B<¢; and

A;<B. Beginning the numerical experiences, we chose to solve the NLP in the
derived form MIP (12) for two reasons: 1) the commercial code, with some
arrangements, permit to execute automatically the necessary steps; ii) the codes
available to solve the NLP (6) are not sufficiently tested even for moderately
large problems. The solved problem are not so many to give a judgement about the
validity of formulation (12), but we notice that the assignement of value to B
seems to be a critical problem.

5. NUMERICAL EXAMPLE

As a simple application we consider (Fig.3) a two trapeizodal blocks (4,B), three
critical section (a,b,c¢) plane model, with a one parameter loading system,

fYﬁ ij -0. 2fl , £4,70. lﬁ% , where Ng is the yield limit to normal force Nb at
sect.b, where we have assumed M =Tb=0. The yield domain at sect.a and ¢is as in
Fig.1l, with yield limits N°=Ng/c03'y(where v=15° is the section's inclination),
M°=N°%/8, T°=0.1N°, 0=0.35 and friction angles ua=17° and uc=13°

)@ TfyA b c

Y
N i
Bs e e |
v G0 60, 0 o

Fig.3 Structural model (a) and assembled structure yield domains (b).
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We have depicted the yield domain (the reduced one with dashed lines) in the
adimensional AS stress space‘y=[x p]t, where x=Nb/M£ is the redundant stress and
p is the multiplier of the load JVA. The yield planes indication meaning is:

the letter denotes the section, and the following digit denotes the yield plane
number in the elemental stress space (Fig.l). We remark: i) the yield plane (a5)
points and the corner (a8)-(ab) point are admissible collapse solution, i.e. they
are two subsets of the y° set defined in Ch.3; ii) the collapse point, i.e. the
NLP (6) optimal solution is the cormer (a6)-(a8), with pc=1.356, xc=0.385;

iii) the upper bound multiplier oy =1.415 is, at the same time, an admissible
collapse multiplier; iv) the lower bound solution is at the corner (a6)—(a8")
with pR—O.773.
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