Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 42 (1983)

Artikel: Faisabilité économique des protections des piles de pont

Autor: Requena, Leonel F. / Juan, Andrés M.

DOI: https://doi.org/10.5169/seals-32446

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wirtschaftliche Durchführbarkeit von Brückenpfeilerschutz Economic Feasibility of Bridge Pier Protection

Leonel F. REQUENA Ingénieur Ensae CONSULAR S.A. Buenos Aires, Argentine

Leonel F. Requena, né en 1933, ingénieur diplômé à l'Ensae, France, a travaillé dans plusieurs domaines d'application de la mécanique des milieux continus. Depuis cinq ans a conduit à CONSULAR plusieurs études et projets de systèmes de protection de ponts contre les chocs de bateaux.

Andrés M. JUAN
Lic. sciences écon.
CONSULAR S.A.
Buenos Aires, Argentine

Andrés M. Juan, né en 1953, Licencié ès Sciences Économiques de l'Université de Buenos Aires, 1976. Depuis lors fait partie de l'équipe de CONSULAR pour les Études de Faisabilité.

RÉSUMÉ

L'article présente une méthode de calcul de faisabilité des protections et une méthode simplifiée d'estimation du coût d'interruption du service.

ZUSAMMENFASSUNG

Es wird eine Berechnungsmethode vorgeführt für die Durchführbarkeit von Schutzbauten und eine vereinfachte Kostenkalkulations-Methode im Fall einer Betriebsunterbrechung.

SUMMARY

A method for the calculation of the feasibility of protections and a simplified method for the estimation of the service interruption cost are presented.

1. PRESENTATION

Le risque économique dérivé du passage de bateaux sous les ponts doit etre évalué souvent pour les ponts existants et l'est, aussi, pour ceux qui sont en cours d'étude. On suppose ici que le pont existe déjà, mais le problème posé pour des ponts futurs peut être analisé d'une manière similaire. La question est de savoir s'il convient de prévoir des dispositif ou des renforcements spécialmente conçus.

La décision dépend de la comparaison entre le coût du risque et le coût des protections.

On présente una méthode de calcul et on introduit les notions d'éfficacité de la protection et de systeme de protection.

2. COÛT DÉRIVÉ DE LA VULNERABILITÉ D'UNE PILE

Si une pile est détruite il y a deux genres de dépenses:

C₁ = coût de réparation de la partie affectée.

C2 = coût anmuel d'interruption du service (allongement des distances de transport, changement des moyens de transport, étc., voir 8)

Le coût total dérivé d'une pile détruite est donc:

$$CA = C_1 + C_2 \cdot t$$
 (2.1.)

où t est le temps de la réparation.

Si r est la durée de la vie utile de l'ouvrage et q l'année où se produit l'accident, le coût actuel est:

$$CA_q = Ca (1 + i)^{-q}$$
 (2.2.)

ou i = intéret annuel de l'argent

Si le flux de bateaux est constant, toutes les années ont la meme probabilité d'accident et le coût moyen d'un accident est:

$$CAP = \frac{CA}{r} \sum_{q=1}^{r} (1+i)^{-q}$$
 (2.3.)

Si m est le nombre total d'accidents pendant le temps r, le coût total des accidents est:

$$CV = m \cdot CAP \tag{2.4.}$$

Si n est le nombre total de passages pendant le temps r, on sait que $0 \le m \le n$, et on peut atribuer une probabilité p_m a chaque valeur m.

L'espérance mathématique du coût total des accidents, c'est à dire ce que'on peut s'attendre a avoir a dépanser, est:

$$E_{(CV)} = \sum_{m=0}^{n} P_{m} \cdot m \cdot CAP$$
 (2.5.)

3. PROBABILITÉ DE QUE LA PILE SOIT DÉTRUITE m FOIS

Si p_d es la probabilité de que la pile soit détruite quand il y a un seul passage, on a:

$$p_{m} = p_{d}^{m} \cdot (1 - p_{d})^{n-m} \cdot \frac{n!}{m! (n-m)!}$$
 (3.1.)

Mais, en réalité, il y a une limite supérieure N pour m, N \prec n, étant donné que, après un accident qui détruit une pile, il existe un temps mort pendant lequel il ne nous intéresse pas s'il y a d'autres chocs contre la même pile. Nous supposons que nous pouvons considérer comme temps mort le temps t de réparation de la pile. Le nombre maximum d'accidents pendant la vie utile r est donc: N = r/t, et $0 \le m \le N$.

Si le flux de bateaux est constant, le nombre des bateaux qui passent dans la période t est $N_t = n$. (t/r). La probabilité de que la pile soit détruite au moins une fois dans cette période est:

$$p_{dt} = 1 - (1 - p_d)^{N_t}$$
 (3.2.)

La probabilité p_{m} doit donc etre calculée au moyen de la formule:

$$p_{m} = p_{dt}^{m} (1 - p_{dt})^{N-m} \cdot \frac{N!}{m! (N-m)!}$$
 (3.3.)

et la limite de la somme (2.5.) est N au lieu de n.

La probabilité p_d de qu'une pile soit détruite est le produit de la probabilité de qu'elle soit heurtée $p_{\rm ch}$ par la probabilité de que le bateau ait una énergie suffisante pour la détruire $p_{\rm e}$:

$$p_{d} = p_{ch} \cdot p_{e} \tag{3.4.}$$

La probabilité p_{ch} est le produit de la probabilité de qu'un bateau soit "sans contrôle" (causation probability) p_c par la probabilité de que ce bateau heurte effectivement la pile (probabilité geómétrique) p_g :

$$p_{ch} = p_c \cdot p_g$$
 (2.5.)

La probabilité p_c est de l'ordre de 10^{-4} [1]; la probabilité p_g peut être estimée par exemple, d'après Buffon, sous la forme:

$$p_g = \frac{L}{2\pi \cdot d}$$
 (L \le 2d) (3.6.)

où L est la longueur moyenne des bateaux qui passent et d la distance de la pile considérée au centre du canal de navigation.

La probabilité p_e , à vitesse de passage uniforme pour tous les bateaux, est égale a la probabilité de que la masse du bateau soit supérieure a une valeur donnée (par une analyse dynamique de la structure). Si la vitesse n'est pas uniforme la probabilité p_c sera une fonction des probabilités de la vitesse et de la masse.

4. COÛT DE LA PROTECTION

Le coût de la protection est function de trois paramètres:

C3 = coût d'installation de la protection

C4 = coût de maintenance

C₅ = coût de réparation dans le cas où la protection soit heurtée

Si le coût annuel de maintenance est M_a , on a:

$$C_4 = M_a \cdot \sum_{q=1}^{r} (1 + i)^{-q}$$
 (4.1.)

Si nous appelons C_r le coût de réparation de la protection chaque fois qu'elle est heurtée, le coût moyen pendant la durée de vie utile r est:

$$c_5 = \frac{c_r}{r} \sum_{q=1}^{r} (1+i)^{-q}$$
 (4.2.)

En supposant que le temps mort après un choc est du même ordre que celui du pont, l'espérance mathématique du coût de la protection est:

$$E_{(CD)} = C_3 + C_4 + \sum_{m=0}^{N} p_m \cdot m \cdot C_5$$
 (4.3.)

5. EFFICACITÉ DE LA PROTECTION

Toutes les solutions techniques au problème de la protection des piles ne sont pas 100 % efficaces, soit parce qu'elles n'entourent pas complètement la pile, soit parce qu'elles ne supportent pas nécessairement l'énergie cinétique maximun que l'on peut espérer. En effet, on peut démontrer que, en général, il n'est pas économique de prévoir des protections pour cette énergie a moins qu'elle ait una probabilité d'occurrence suffisament élevée. On doit donc, en général, attribuer à la protection une efficacité e (0 < e \leq 1) qui réprésente la proportion des chocs qui seront effectivement évités.

Le coût de la protection doit etre majoré du coût des chocs contre la pile qui ne seront pas évités:

$$E_{(CDC)} = E_{(CD)} + (1 - e) \cdot E_{(CV)}$$
 (5.1.)

6. LES SYSTÈMES DE PROTECTION DE PLUSSIEURS PILES

En général il faut étudier la faisabilité des protections de plusieur piles, ce que nous appelons un système. La probabilité p_{di} de qu'une quelconque des j piles protégées par le systeme soit détruite (si le systeme n'est pas installé), est function de la probabilité p_{di} de chaque pile:

$$p_{dj} = \sum_{i=1}^{j} p_{di}$$
 (6.1.)

En ayant compte du temps mort, l'équation (3.2.) s'écrit avec:

$$p_{dt} = 1 - (1 - p_{dj})^{N_{tj}}$$
 (6.2.)

où le temps t_j qui définit N_{t_j} est une moyenne pondérée des temps t_i de réparation des différentes piles protégées par le système:

$$t_{j} = \sum_{i=1}^{j} t_{i} \cdot \frac{p_{di}}{p_{dj}}$$
 (6.3.)

Les coûts du risque et de la protection doivent etre corrigés, pour le système, de façon qu'il puisse etre traité comme s'il s'agissait d'une seule pile, comme suit:

$$c_{1j} = \sum_{i=1}^{j} c_{1i} \cdot \frac{p_{di}}{p_{dj}}$$
 (6.4.)

$$c_{2j} = c_2$$
 $(t = t_j)$ (6.5.)

$$c_{3j} = \sum_{i=1}^{j} c_{3i}$$
 (6.6.)

$$c_{4j} = \sum_{i=1}^{j} c_{4i}$$
 (6.7.)

$$c_{5j} = \sum_{i=1}^{j} c_{5i} \cdot \frac{p_{di}}{p_{dj}}$$
 (6.8.)

et l'efficacité du systeme devient:

$$e_{j} = \sum_{i=1}^{j} e_{i} \cdot \frac{p_{di}}{p_{dj}}$$
 (6.9.)

Les espérances mathématiques du coût du risque et du coût de la protection seront différentes de celles qu'on obtiendrait de la somme des valeurs obtenues pour les piles considérées séparément, étant donné que la formule 6.1. n'est pas valable por m chocs, ce qui justifie la notion de système.

7. FAISABILITÉ

Le système de protection j est "faisable" s'il remplit la condition:

$$E_{(CV)j} - E_{(CDC)j} > 0$$
 (7.1.)

et le nombre des piles a protéger, j, est celui pour lequel cette différence est maximun. On trouve qu'on peut aussi maximiser cette différence and mélangeant des différentes soluctions techniques en function des conditions locales à l'endroit de chaque pile (profondeur, distance du canal de navigation, etc.) et que, évidemment, les protections son d'autant plus faisables que le flux de bateaux est plus grand.

8. COÛT D'INTERRUPTION DU SERVICE

L'estimation de la valeur C_2 est très compliquée, en général, sinon impossible pour una durée suffisament longue r. On présente donc un critère de calcul basé sur l'hypothèse de que la construction du pont était ou est justifiable économiquement. Si ceci est vrai alors la valeur minimun du bénéfice économique apporté par l'ouvrage annuellement doit etre suffisant pour amortir l'investissement plus les dépenses de la maintenance. Si nous appellons B le bénéfice annuel minimun, I l'investissement, αI la dépense annuelle de la maintenance et a le taux de retour minimun, on a:

$$B = I \left[1 / \sum_{q=1}^{r} (1+a)^{-q} + \alpha \right]$$
 (8.1.)

Il peut être suffisant de calculer cette valeur pour définir la faisabilité des protections.

On a:

$$C_2 = B \tag{8.2.}$$

9. RÉFÉRENCES

1. MACDUFF, T. Probability of Vessel Collisions. Ocean Industry, Vol. 9, N° 9, Sept. 1974, pag. 144-148.