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Design Assumptions and Influence on Design of Offshore Structures

Hypothèses de projet et influence sur la conception des constructions offshore

Entwurfs-Voraussetzungen und Einfluß auf die Projektierung der Offshore-Bauten

Svein Fjeld born in 1939,
Dr.ing. degree in structural
engineering Technical
University of Norway 1968.
10 years design work mainly
in the fields of foundations,
harbours and offshore
structures. Present position
as assistant head of
Industrial and Offshore Division
of Det norske Veritas.

SUMMARY
The paper reports on present design requirements as laid down by National and Certifying Authorities.

Bridge pier design is relatively briefly dealt with whereas main attention is paid to design of
offshore structures in steel and concrete. The basis for the requirements and assumptions is briefly
outlined. The present design practice developed to meet the requirements is described with examples to
illustrate the practical consequences for the design. These consequences concern all levels of design
from the field development plan through platform concepts and member design to structural detailing.

Platforms stabilized by buoyancy require a redundant system of water tight compartments.

RÉSUMÉ
Cette étude présente les conditions de projet couramment formulées par les autorités nationales ainsi

que les organismes de contrôle. Le projet de la pile de pont est traitée brièvement; les constructions

offshore, en acier et en béton, constituent l'objet principal de l'étude. Les hypothèses de base et
les règlements sont brièvement décrits et les procédés et pratiques courants sont exposés avec des
exemples illustrant les conséquences pratiques pour le projet des installations. Ces conséquences
concernent toutes les phases du projet depuis l'étude générale jusqu'à la conception de la plateforme
et l'étude détaillée des éléments de structure. Les plateformes stabilisées par flotteurs nécessitent
un système surabondant de compartiments étanches.

ZUSAMMENFASSUNG
Der Artikel berichtet über die gegenwärtigen Forderungen zur Konstruktion von Seiten der inländischen

Behörden und Prüfungsinstitutionen zu geben. Während der Konstruktion von Brücken
begrenzte Aufmerksamkeit gegeben wird, konzentriert sich der Bericht hauptsächlich auf Offshorebau-
ten aus Beton und Stahl. Die Grundprinzipien und Voraussetzungen der Forderungen werden kurz
umrissen. Die Konstruktionspraxis, die sich zur Erfüllund der Forderungen entwickelt hat, wird anhand
von Beispielen erläutert, um die praktischen Konsequenzen für die Konstruktion zu verdeutlichen.
Diese Konsequenzen umfa/3en alle Stufen der Konstruktion, von der Felderschließung zur Entwicklung

von Plattformkonzepten und schließlich zur Dimensionerung und Festlegung einzelner
Konstruktionsdetails. Die Plattform, die durch Auftrieb Stabilisert werden, erfordern ein redundantes System
wasserdichter Unterteilungen.

Svein FJELD
Senior Principal Surveyor

Det norske Veritas
Oslo, Norway
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1. MAIN DESIGN PRINCIPLES

Design measures to avoid damage due to accidents such as collisions can be
categorized as follows:

event control
indirect design
direct design.

1.1 Event Control

The purpose is to reduce the probability and magnitude of the collisions. A

majority of authoritative requirements to avoid collision damage to bridges
seems to fall within this category. The main measures are beaconing, navigation
restrictions and traffic monitoring. However, these measures often seem to aim
at the safety of ships and efficiency of traffic rather than protection of
bridges.

Offshore ship collision risk is often an important parameter for the oil field
and platform layout. Even if not specified in any compulsory rules, the
distance from the main platform to the offshore loading system is taken as
2400 m. The direction to the loading buoy is also chosen with a view to
collision risk. The same applies to the general layout of the platform assembly
at the field. Attention should be paid to confining the supply ships and
possible floating work or accommodation platforms and barges in areas where they
cannot jeopardize neighbouring platforms. General ship traffic is forbidden
within a distance of 500 m from the platforms which are fitted with warning
signals, i.e. radar, radio, light and sound to reduce the risk from such ship
traffic.
Event control is considered beyond the scope of this paper and not discussed
further in the following.

1.2 Indirect design

The purpose of the indirect design is to improve the general behaviour of the
structure in case of unforeseen external impact without direct considerations to
anticipated collision scenario. All structural codes include requirements to
obtain reasonably ductile and robust structures. Bridge design specifications
are often found to require divided pillars to carry the bridge even if one
element is broken. Indirect design seems to play a more important role for
offshore structures, such as jackets etc., than for more massive bridge piers.
Flexible offshore structures which are supposed to absorb considerable energy in
accident conditions must be ensured to behave in a ductile manner. Measures to
obtain ductility are:

- connections of primary members to develop a strength in excess of that of
the member;

- redundancy in the structure so that alternative load distributions may be
developed;

- avoid dependence on energy absorption in slender struts with non-ductile
post-buckling behaviour;
avoid pronounced weak sections and abrupt change in strength or stiffness;

- avoid, as far as possible, dependence on energy absorption in members
acting mainly in bending; and

- non-brittle materials.
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1.3 Direct Design

Direct design means to check the behaviour of the structure when exposed to some
prescribed deterministic collision.

This paper will mainly address the direct design and associated requirements to
the indirect design.

2. GENERAL STRUCTURAL CODES

Code requirements to direct design against accidental loads have been
recommended in international model codes [l] [2] [3] and have eventually been
introduced in the majority of new national structural codes. Ship collision
against bridge piers or offshore structures is a typical example of accidental
loads to be covered by these requirements.

The national design code formats for design against accidental loads are not
completely uniform. Some codes require these loads to be checked in their
ultimate limit state whereas others have introduced a separate limit state of
progressive collapse. In the latter limit state, local structural damage is
accepted provided collapse of significant parts of the structure is avoided.

Tables 1 and 2 record load and material coefficients required for design against
accidental loads according to different structural codes.

In cases where local damage to the structure is accepted, rational design
against ship impacts will normally encompass a check of the plastic deformations
necessary to absorb the impact. In this check, restrictions to the acceptable
plastic strain will be a more meaningful measure of safety than a traditional
material coefficient [22]

ECCS CEB-FIP CP 110

Load coefficients Steel Concrete Concrete
structures structures structures

Dead load 1 o '<*0 1.1 -0.9 1.4 0.9 1.2

Live load 1.0') 1.0') 1.6') 0 1.2')
Environmental load 1.0') 1.0') 0 1.4') 1.2')
Accidental load 1.0 1.0 1.05 1.05 1.05

Material coeficients

Structural steel 1.0- 1.12 — —

Reinforcement steel — 1.0 1.0

Prestressing steel — 1.0 1.0

Concrete — 1.3 1.3

'(Characteristic values reduced by factors taking into account the probability of simultaneous occurence

Tab le 1. Loads and material coefficients to be used for accidental
combinations. General structural codes.
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Load coefficients Norwegian Petroleum
Directorate')

Det norske
Veritas')

FIP
Concrete
Structures

Accidental
load included

Accidental
load not
included

Dead load
Live load
Environmental load
Deformation load
Accidental load

1.0

1.0

0

0')- 1.0-)
1.0

1.0

1.0

1.0

0 - 1,0:)
0

1.0

1.0

1.0

0')- 1.0-')

1.0

1.2 1.1 0.9
1.6 1.3 0.9
1.4 1.3 1.3

I.I I.I I.I
1.05 1.05 1.05

Material coefficients

Structural steel 1.0 _ 1.0 —

Reinforcement steel 1.0 — 1.0 1.0

Prestressing steel 1.0 - 1.0 1.0

Concrete I.I — 1.1 1.3

] Indirect effects

2 Direct effects

t I ocmI damage accepted

Table 2. Loads and material coefficients to be used for accidental
combinations. Codes for offshore structures.

3. CODES FOR BRIDGES AND OFFSHORE STRUCTURES

Bridge codes cover ship collision to a limited extent only. If at all covered,
a design ship impact is seldom specified in terms of energy, impulse or force.
This reluctance seems appropriate as the actual impacts will inevitably depend
upon the local conditions and possible collision control measures. The design
impacts required are normally expressed in terms of general philosophies, see
for example the Nordic Road Federation Loading Code [il]

It has been attempted to express design collision criteria in probabilistic
terms. Based on different reasoning [4] [5] and [6] all estimate an
annual probability of 10"^ to be a feasible basis for the design impact. As
the data necessary to estimate the corresponding impact are normally
non-existent, this number mainly seems to include a principle to be aimed at. In
practice, sailing restrictions imposed by the authorities or nature will form
the basis for the choice of design impact.

Specific design rules are often given in appendices or comments to the codes.
For large bridges, special design criteria will normally be prepared, in each
case, based on a rational evaluation of the ship traffic at hand. Different
criteria will often be implemented for the navigation span as compared to the
sidespans. However, this practice might be questioned inasmuch as severe
collisions have occurred a long way from the navigation span. Saul and Svensson
[l2] have recorded 18 major collision disasters, 13 of which concerned the

sidespans and only 5 the main span.

Table 3 records the design impact forces as implemented by a selection of
authorities and used for certain large bridge projects worldwide. In current
design practice, the design impact is normally expressed in terms of some
specific force whereas criteria for large bridges and offshore structures are
expressed by ship magnitude and velocity.
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Governmental authorities responsible in the North Sea and Veritas only have
rules for collision resistant design of offshore structures. Their design
practice is meant to cover an impact from a freely drifting supply vessel. The
corresponding energy required is absorbed by deformation of the structure and
the ship. An exception is the U.K. guidance [9] which specifies a very low
impact velocity and requires all the impact energy to be absorbed by the
structure. This requirement might lead to inferior designs of weak, flexible
platforms (e.g. jackets) compared to stiff and strong platforms which will not
become deformed if exposed to forces exceeding the strength of the ship.

ii LANE 1 LANE

150 000

100000

50000

WDISIN P=0,88 dwt

6 7 8 9 K) 11 12
DRAFT (m)

—! i 1 1

5000 3300 5000 7500 11000
"* VESSEL MAGNITUDE (brt)

r 4-
3200 5000 7500 11000 20000 40000 80000

VESSEL MAGNITUDE (dwt)

Fig. 1, Nordic Road Federation. Recommended impact force.
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Ship size Ship Velocity Design Procedure for force
Displacement force estimate, comment

if not otherwise

specified
Bridqe codes and practice
Nordic Road Federation see Fig. 1

Desiqn load code (11)
Current practice
small bridqes:

Norway J_ 3000 t
II 1 500 t

Sweden 1000 t
West-Germany
Roads _L 2000-6000 t

II 1000-2000 t
Deutsche
Bundesbahn (7) (1800 t) (5.88 m/s) 3000 t

Offshore structures
codes and practice
Danish shelf (8) >2500 t >2 m/s Enerqv consideration
UK shelf (9) 2500 t 0,5 m/s All energy to be

absorbed by platform/
fenderinq

Norwegian shelf 5000 t 2 m/ s PLS, energy
considerations

(20)(10)(18) 5000 t 0,5 m/s ULS

Bridqe projects:
01and bridge, Sweden 5000 t
0resund Bridge, Sweden/

Danmark 50000 t 9.4 m/s 14200 t
Great Belt Bridge Denmark

Navigation span 250000 t (dwt) 44000 t
Side spans 4000 t (dwt) 6000 t
Western Bridge 1000 t (dwt) 2000 t

Bahrein/Saudi bridge 20000 t 4.2 m/s 5600 t
Luling Bridge USA. 40000. t (dwt) 3.5 m/s 27000 t
Okanagan Lake Floating
Bridge Canada 1.135 t 2.25 m/s

Zarata-Brazo Largo
brige Argentina (12)

Main spans 20000 t 2 m/ s

Secondary spans 10000 t 2 m/s

Second Hobart Bridge
Australia 10000 t

Table 3. Ship impact assumptions
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The combined drift and sway velocity of a freely drifting ship in waves of
significant height H can be expressed as v (m/s) ^/2 Hs (m).

As weather restrictions for the operation of supply boats may be laid down in
the operation manual of the platform, this formula may constitute a rational
choice of design velocity.
The magnitude of supply ships in the North Sea seems to increase with time. The
magnitude of supply vessels in the Veritas class is shown in Fig. 2.

— 1 1 \—r 1

2000 3000 4000 6000 10000

DISPLACEMENT (TONS)

Fig 2. Supply vessels in the Veritas class - 1980.

Please note that according to Norwegian offshore rules ship impacts have to be
checked at two levels. In addition to the accidental impact, the platform shall
withstand an operational impact with V 0.5 m/s. This is checked in the
ultimate limit state, i.e. with normal safety factors.

Direct design control of bridges in itself usually address the resistance
against the impact, and the bridge can be closed shortly after damage. Possible
subsequent damage in the case of, for example, strong winds in repair periods
will not normally have major consequences.

Also, offshore structures can be shut down after collision damage. However, the
topside facilities will normally have a value of at least ten times the main
load bearing structure. The production time lost in the period necessary to
replace a completely wrecked platform will probably be several times higher than
the total platform cost. Therefore, according to Norwegian rules, offshore
structures are checked in two conditions [22] [18] :

a) The ship striking the platform which experience plastic deformations, and
b) The ship will be removed but the platform will have been damaged as per a)

and exposed to environmental loads corresponding to a recurrence period
three times the anticipated repair time or at least one year.
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In the offshore industry, the above-mentioned philosophy 10~^/year being a
feasible recurrence period of the design collision,would result in the
conclusion that design should take severe ship impacts into consideration.

Ship traffic in the vicinity of offshore platforms may be of the following
categories:

i) Authorized vessels servicing the installation
ii) Tankers for offshore loading in the area
iii) All other kinds of bypassing ships and fishing vessels.

Extensive collision risk analyses have been carried out on several platforms in
the North Sea [lô] These analyses show that all categories of vessels can
strike the platform with a probability of more than 10~^/year unless an event
control, as discussed above, is used to reduce it. A current practice is to
design for the first category only, tacitly assuming such measures will be
taken.

4. DETERMINATION OF IMPACT FORCES

Any rational determination of the impact load should be based on the following
basic laws of physics:

a) force equilibrium
b) energy conservation.

The impact force can then be determined by the simple principle shown in Fig. 3,
considering the condition.

ABSORBED ENERGY (B)

Fig. 3. Energy distribution ship/structure.
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1/2 (m + Am)v2 Ap + As

m ship mass
Am added mass
V ship velocity
As energy absorbed by ship
Ap energy absorbed by structure

Any other basis for determination of impact forces should be rejected. If the
impact is not centric, part of the energy will be lost in the rotation of the
ship. However, unless specific measures have been taken to exclude the
possibility of centric impacts, current practice has been to assume the full
kinetic energy absorbed by ship and structure.

Depending on the dynamic properties of the structure, As should include the
elastic energy absorption. Mainly, this contribution seems to be of importance
for relatively flexible jacket structures. Rigid piers and concrete structures
seem to have a small elastic energy contribution.

The water mass A m to be added to the mass of the vessel to determine the design
impact has been subject to discussion. This mass will be significantly
dependent on ship configuration, water depth, impact velocity, etc. [3l]

As far as supply ships are concerned, investigations [lshow that within the
range of current designs the added mass coefficient can be considered constant
for a given ship in deep water. The added mass coefficients of [lO]
0.4 sideways and 0.1 longitudinally seems confirmed. For an 11,000 t barge, the
coefficient sideways is found to be 0.18.

Several procedures exist to evaluate the impact force on the basis of a given
ship size and velocity. The classical Minorsky procedure [13] is revised by
Woisin [l4] and has gained widespread applications. Bridge piers are normally
assumed to be infinitely stiff compared to the ship. Under this assumption, it
has been found possible to express the maximum force [l4] by the following rule
of thumb:

pmax- °-88 dwt ± 50%

where dwt is the carrying capacity of the ship,
be approximately 0.5 Pmax (Fig. 4).

The mean force is reported to

P =r ?Pmot ' m

Zeit

Fig. 4. Time-force relation for ship impacts [Ï4]
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This procedure is based on model tests with passenger liners, tankers and
container ships of sizes up to 195,000 t |l5] Veritas have carried out
comprehensive analyses of the force indentation characteristics of current types
of ships by the application of a computer programme NVINDENT [24] The load
deforming the hull is determined- by accounting for the membrane force of the
ship side, deck and bottom and the plastic buckling load of frames contributing
during indentation.

Figs. 5 to 8 show the results for 5000 t supply ships and also a side impact on
a 150,000 t tanker. These curves concur with Fig. 4 for broadside and stern
impact of the supply ship. The impact of the supply ship bow and tanker
broadside demonstrates different characteristics. The reason for this
difference might be that Woisin apparently applies the result from impact tests
where one ship rams another. Veritas have assumed an infinitely stiff obstacle.
The assumption concerning constant resistance should, therefore, be used with
some care for ships ramming a stiff body. Further research to achieve reliable
force/indentation curves seems necessary.

In Fig. 1, the Woisin formula [14] is shown together with the Nordic Load Code
recommendations [ill

«M

If

s

s*

10 20 30 INOCNUIION (m)

Fig 5. Force/indentation curve for broadside impact with infinitely stiff
cylinder. Boat displacement 5000 t.
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WOENUIKM (ml

Fig. 6. Force/indentation curve for bow impact with infinitely stiff cylinder.
Boat displacement 5000 t.

MOCNIAIION lail

Fig. 7. Force/indentation curve for stern impact with infinitely stiff cyliner.
Boat displacement 5000 t.
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I
i-j

T
2.0 HP 6P 80

INDENTATION &[m]
Fig 8. Force/indentation curve for broadside impact with infinitely stiff
cylinder. Boat displacement 150,000 t. Diameter 13.3 m.

5. DESIGN AGAINST SHIP COLLISION

5.1 Bridges

A wide variety of pier protection methods exist, such as:

a) strengthening the pier to resist pertinent impacts,
b) protective embankments,
c) protective structures,
d) conventional fendering,
e) protective piles,
f) protection caisson,
g) floating anchored protection.

In normal cases the piers will be given sufficient strength and weight to resist
pertinent impacts, often in combination with protective structures and
tendering. The piers are given a configuration from which the vessel will tend
to glance off without centric impact.

An excellent assembly of examples are given in [23]

5.2 Offshore Concrete Structures

Some concrete structures are fitted with perforated breakwater walls. Provided
there is sufficient height, this wall normally has a large capacity to absorb
ship collision impact and further verification seems superfluous.
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Otherwise, attempts to fit the offshore concrete structures with fenders have
not proven successful. Fenders tend to constitute voluminous and expensive
structures attracting large wave forces and are vulnerable to weather damage.
For these reasons, the operational impact, as well as the accident impact are
normally directly resisted by the naked concrete shell.

The following considerations address a caisson-shaft-steel deck frame with
concrete shafts of diameters less than 20 m. The procedures and conclusions for
large bridge piers also seems applicable.

The shaft is normally assumed to be completely stiff in the force analysis. It
may be shown that the ratio of duration of impact and the natural period of
global and local bending of the shaft permit the impact to be considered a

quasi-static load. Its magnitude can simply be calculated considering the area
under the force/indentation curve of the ship.

In the case of collision with a supertanker, the frame energy absorption and
motions might require a dynamic analysis. Experience from the analysis of
several platforms in the North Sea indicate that an adequate global
cross-section capacity to resist impacts from a supertanker (150,000 t), is
easily achieved.

Considering local response, the size of the loaded area is important.
Concentrated impacts from massive, pointed objects may cause chipping or
crushing at the surface. It is impossible to describe, in detail, the
corresponding states of stress. Unlike a slab, the cylinder carries a portion of
the load by membrane resultants depending on the size of the loaded area. In

our case, punching will govern
small areas only; thus the
membrane effect is neglected
and the transverse shear force
is simply taken as the total
load uniformly distributed over
the perimeter. Locally, this
average value may be slightly
exceeded in certain cases;
however, the ship side will
bridge a possible concentrated
failure.

Plots of local bendings and
normal forces in vertical and
horizontal directions corresponding

to a 5000 t supply ship
are shown in Fig. 9 [21]

Fig. 9. Load effects and
strenght of 65 cm thick
concrete shaft.

In this figure, the interaction diagram corresponding to the ultimate limit
state of a 65 cm thick wall is also shown. Similar large safety margins have
been found for punching shear forces. The safety margins found, and the fact
that the impact forces increase only slightly with the increasing impact energy,
indicate that supply ships with velocity significantly more than 2 m/s can
easily be taken by walls 0.6 - 1 m thick. The ship will fail completely prior
to rupture of the wall. A strengthening to withstand the impact from a 150,000 t
tanker requires a significantly thicker wall. A verification of this load case

/V /
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should be based on further studies of the post-failure behaviour of the concrete
wall. As mentioned, the global frame could easily take this impact.

The punching shear strength of cylindrical shells have been subject to studies
which indicate a higher strength than that for slabs. Several different
formulae [25] [26] [27] have been developed, each on the basis of a somewhat
limited number of tests. The authors have, therefore, introduced restrictions
to the range of validity of their formulae.

However, the application of the formulae to a typical platform tower still shows
a rather good correspondence. For loaded areas below 2 x 2 m punch strengths
20-40% above the values for a slab was calculated. The collision design
consequences for the collision zone of a caisson and tower type offshore
concrete structure will normally be:

- somewhat increased wall thickness,
- increased hoop and longitudinal reinforces, and
- the introduction of a significant amount of shear reinforcement.

For temporary phases during towing and construction, marine surveyors have
required the structure to withstand collision with an offshore tug. In lieu of
a more complete analysis, a design impact load of 2000 t over an area of 1 x 1 m

is required. This load seems to be a reasonable estimate of the crushing
resistance of the tugs. However, the load area appears rather small and has
also resulted in an extensive amount of shear reinforcement in the lower parts
of the concrete shafts.

5.3 Offshore Jacket Type Platforms

These platforms are normally fitted with boat landings for small crafts and
often with barge bumpers which take the operational impact. Otherwise,
tendering has not been found feasible for the same reasons as for offshore
concrete structures.

A vessel can strike the jacket in several ways. Bow and stern are likely to
strike both bracings and legs whereas a vessel drifting sideways is likely to
strike the legs.

As discussed above, the design approach is to demonstrate the impact energy to
be absorbed by strain of the ship and the platform. For this type of impact,
the platform will often be the weaker part and consequently, have to absorb a

significant part of the energy.

The main energy absorbing effects are:

- Elastic energy:
In certain cases this energy can be considerable, however, it is normally a

relatively modest contribution. A quasi-static analysis will normally do
but should be subject to evaluation in each case. The estimate of plastic
energy absorption should be based on a thorough investigation of the
platform in a collision situation to identify the mode of deformation and
whether a plastic behaviour can be developed as assumed. The main plastic
energy contributions include:

Local denting
This contribution is indicated in Fig 10 [24] In the case of thin walls
the energy absorption is negligible. For thick walls, the tube tends to be
stronger than the ship and will experience no plastic deformations. For
intermediate thicknesses some energy will be absorbed but for bracings this
contribution will still be negligible.
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Fig. 10. Load indentation relation for steel tubes.

Three hinge plastic mechanism
This energy absorption can only be mobilized provided several basic
conditions are fulfilled. The American Petroleum Institute [19] states the
following in their structural requirements.

"Tubular joints, members and piling at locations which are required to
maintain their capacity through substantial concentrated, inelastic
deformation should be designed to meet the compact section requirements
(D/T < 9000/fy). Portion of tubular members and piling which may only be
moderately deformed beyond yield or column buckling need only be sized to
preclude premature local buckling (D/T < 22700/f„), provided their limited
deformation capacity and degrading post-buckling characteristics are
recognized. For tubular members with 9000/fy < D/T < 15200/fy, development
of full plastic load and moment capacity, but limited plastic rotation
capacity, may be presumed".

(fy in MPA)

These requirements seem to be very influenced by a paper by Sherman [23]
with subsequent discussions [32] [33]

Even if these conditions are complied with, there are several factors
modifying the energy absorption as presented in current textbooks:

strain hardening
ovalization

- local instability
- folding at ends

incomplete restraining at ends.
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These factors tend to reduce the energy absorption capacity as shown in
Fig. 11 [29]

Fig. 11.- Plastic energy absorption in a three hinge mechanism.

Please note that these curves are based on a limited number of tests and
should, therefore, be used with care.

If the member is exposed to a longitudinal follower load (e.g. a jacket
leg) the energy contribution due to the displacement of this load has to be
deducted from the three hinge mechanism energy developed to resist a
lateral impact load.

Axial tension mechanism
This mechanism will normally be responsible for the majority of energy
absorption. However, this also requires specific conditions to be
fulfilled for its mobilization.

The whole length of the bracing has to participate. For this reason, the
bracing or its joints cannot have any weak spots. Otherwise, the weaker
area would yield when the main part of the bracing is still in the elastic
range. Secondary bracing elements (conductor bracing, etc.) might confuse
the development of the wanted mechanism. They can cause local ruptures or
reduced strength at the connections with the brace member. It is to be
checked that no section of the bracing member, including its joints, has a
lower strength than the yield strength of the plain member. The ultimate
punch strength of the joints should exceed this yield strength by at least
30%. Likewise, the adjacent structure must be demonstrated to have this
strength. In practice, this is done by assuming that the impacted members
are removed and forces corresponding to 1.3 times its nominal yield
strength will be applied to the joints.

If these conditions are fulfilled the energy absorption given in Fig. 12

can be achieved.
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Fig. 12. Energy absorption in axially restrained members [29]
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The relative contribution to the energy absorption from the different effects
discussed is illustrated in Fig. 13.

ABSORBED ENERGY [MNm]

ROTATION AT END. 0
Fig. 13 Comparison of energy absorption capabilities [29]

The local denting and elastic energy seems negligible compared to the three
hinge and axial tension mechanisms. Please note that the latter two energies
cannot be added. The plastic moment will vanish as the member stresses turn
into pure tension.

The analysis of the energy absorption capacity is the first step in collision
design check. The next step is to verify the maintained bearing capacity of the
structure when exposed to forces corresponding to the plastic deformations.

Finally, the deformed platform should be verified to withstand appropriate
environmental conditions estimated for the repair period.
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The introduction of requirements to collision resistant design of steel jackets
have had some impact on the design practices and it is anticipated that more
will follow.

Extreme lightweight jackets with cost savings achieved by static determinate
structures were suggested in the mid-70's. So far, they have not had much
success. It is assumed that future platforms will tend to be designed for
structural redundancy in the impact zone. At present, K-bracings are popular,
probably x-bracings will be used the most. A cleaner configuration to avoid
local ruptures associated with the weak sections, appurtenances, etc. should be
expected. Riser positions will tend to be changed to the inside of the
structure.

The present trend seems to be increasing the strength of the jacket to exceed
the strength of the ship and thus leaving all the energy absorption to ship
crushing. This strategy should obviously result in increasing attention being
paid to the real strength of relevant ship types.

On the other hand, the design practice outlined above might tempt the designers
to design structures of low plastic resistance with large energy absorption
capacity. Such designs might be vulnerable to damage even for minor impacts and
should be avoided. For this reason, the requirement of the NPD and Veritas
rules [lO] [18] to have the platform checked in the ultimate limit state for a
smaller impact (e.g. supply vessel with a velocity of 0.5 m/sec.) seems an
indispensible safety requirement.

Finally, it should be mentioned that the design of current steel jackets to
resist larger vessels is hardly possible. This fact accentuates the request for
traffic control measures.

5.4 Buoyancy Stabilized Platforms

This heading covers a variety of different platform concepts, most of them
hardly realized so far, i.e. articulated towers, tension leg platforms, catenary
moored platforms, etc. These platforms are stabilized by buoyancy. Another
common feature is their compliance with winds and waves, and relatively small
resistance against horizontal motions. This small horizontal resistance might
lead to the incorrect assumption that the platforms also comply with impacting
ships and develop small impact loads only. However, as the impact duration
(< 5 sec.) will be much smaller than the natural period of the platform in sway
(40-150 sec.) no impact reduction is possible. On the contrary, the design
should consider the possibility of a platform motion opposite to the vessel at
impact which will result in an increased impact energy.

The maintained integrity for these platforms is expressed in terms of damage
stability and floatability requirements £20], £30]. The damage assumptions and
impact zone specified in these documents should be overruled by rational
analysis of the likely damage as discussed above. On this basis, requirements
to compartmentation of the buoyancy chambers and corresponding redundant
buoyancy can be determined.
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SUMMARY
The article discusses decisive factors in connection with the planning of a major bridge over navigated

waters and describes the design procedure found most suitable by Danish Engineers.

RÉSUMÉ
L'article traite des facteurs décisifs dans la conception et le projet d'un pont à grande circulation
enjambant une voie navigable et donne une description de processus de projet ayant été trouvé le mieux
approprié par des ingénieurs danois.

ZUSAMMENFASSUNG
Dieser Artikel erläutert die in Zusammenhang mit der Planung einer Großbrücke über schiffbare
Gewässer entscheidenden aufkommenden Faktoren und beschreibt das Bauverfahren, das von
dänischen Ingenieuren für das am meisten geeignete,gehalten wurde.
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1. DESIGN ASSUMPTIONS

Let us assume that a bridge over water can be divided into n
members that are so important that a collapse of one of them would
break the connection. Let us, initially, also assume that these
members are the bridge piers and that we know the following
characteristic quantities:

The collision force that is just sufficient to produce failure
or inadmissibly big deformations.

If the pier is not rotationally symmetrical about a vertical
axis, this force will depend on the angle with the bridge line
at which the colliding ship hits the pier
We will define as the maximum force which the pier can
resist when hit centrally at right angles to the bridge line.

N j ; The number of ships passing each year which are able to exert
a collision force on the pier.
Important contributions to evaluation of. the collision force
which a ship can exert on a pier have been made by
Minorsky [1] W. von Olnhausen [2] Woisin & Gerlach [3]
Frandsen & Langs® [4] and Saul & Svensson [5]

Readers are also referred to Theme C, and need here only be
reminded that this occurs as a consequence of energy exchanges
during which the contact pressure between pier and ship wholly
or partially stops the ship.
The maximum value and duration of the contact pressure thus
depend on the weight, speed and "hardness" of the ship and the
design of the bridge, and the values mentioned should, in
principle, be found by means of a dynamic analysis.
Such an analysis will also provide information about the
forces that will be transmitted to the superstructure during
collision with a pier.
We will, however, imagine that all N ships navigating the
waters crossed by the bridge can be characterized by a

capacity C, which indicates the contact pressure that occurs
when a ship sailing at its normal speed hits a stationary pier
at its centre line.
We can then produce a curve N(C), showing how many ships with
a capacity C pass the bridge each year (fig. 1).

On this curve we can read N^, which naturally decreases with
increasing
The curve in fig. 1 can be produced on the basis of
information on the ship traffic in the years before
construction of the bridge and forecasts for the development
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of traffic. Here we will imagine that it represents a
probable situation in the middle of the anticipated lifetime
of the bridge.

1 10 100 dwtOOOOt)

Fig. 1 Distribution of ship sizes in the Storebaelt. The
distribution has been forcasted to the year 1990. Example on
use: 1.5? of all pasing ships are bigger than 100,000 dwt.
(From [4]

Studies of the conditions in Storebeelt showed that related
values of Ni and Ci lay close to a straight line when depicted
on double logarithmic paper, 0:

log. ^ log. aj_ - bi log. or

Ni % aiCi"bi 1

The curve produced from (1) may possibly be replaced by
several curve segments to approximate better the observations
and expectations, but in the following we will assume that the
constants ai and bi in (1) are known in the area in question
and that they give a reasonable evaluation Ni for the pier
under consideration.
The uncertain factors relating to the determination of ai and
bi are at any rate far smaller than those involved in the
evaluation of the next concept.

Pi: The probability of one of the Ni ships colliding with the
element and exerting a collision force Ci.

It is obvious that Pi 0 if the pier in question stands in
such shallow water that the ship under consideration draws too
much water to reach it.
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However, if there is a theoretical possibility of contact
between the ship and the pier, then there will be some
probability of this occurring.
In order to find the magnitude of this probability a

probability model must be established which takes into account
the distance of the element from the prescribed channels,
prevailing wind, current and other navigation conditions.

The model employed in the case of the Storebaelt Bridge was
formulated by the firm, Cap-consult A/S, Copenhagen, and
assumes that a given fraction of the ships passing the bridge
will be out of control. The probability of this is called the
causation probability pc and, is evaluated by T. Macduff [6]
and Y. Fujii [7] at 2 x 10-4. This causation probability
covers both human and mechanical failure. In the case of the
Storebaelt navigation channel the causation probability was
evaluated at 0.4 x 10-4 to suit the special conditions
applying in this waterway.

By estimating how the ships will move after getting out of
control (see fig. 2) it is possible to calculate for each pier
a geometrical probability of collision with one of them.

Fig. 2 Ships out of control: estimate of possible courses
towards the bridge. (From [4]).

If, in our estimate of the movement of the ships having regard
to wind and current, we can also incorporate an evaluation of
their speed as a function of the distance from the point at
which they got out of control, and if we know the reduction of
the impact force that takes place when the collision is not
central, we can, finally, calculate a resultant geometrical
probability Pq,i of the impact force exceeding the capacity of
the pier in the direction in question.
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Similarly, by evaluating the possible collision situations, we
can obtain an idea of the resistance i which the piershould have to forces i the bridge line in 'relation to for
the probability of collapsing being equally big in alldirections.
This leads to a value p p„-p„ ,-N,, or, cf. (1):1 U bf 1 -L

p. k.-C. 1 k. p • p„ .-a. (2)il ' l C G, l l K '

If we design the bridge so that

ci > Ci,max i 1,2, n (3)

where C ^ m a. X is the biggest collision force to which pier no.
i can be imagined to be subjected, the probability of an
interruption of the crossing will be 0.

In many cases, this will result in prohibitive production
costs.

The client will then have a natural possibility of accepting a
certain risk of interruption of the connection.

By introducing two new concepts:

L: The anticipated lifetime of the bridge : the number of years
after which it is estimated to be obsolete.

r: The risk of interruption of the bridge in the period L, which
the client will accept.
We can formulate the following new design criterion:

Pi * (4)

For the sake of clarity, we have so far only considered the
bridge piers, but theoretically we can deal with the
superstructure in the same manner provided we know the forces
that are necessary to break the ships' masts and smoke stacks
and to penetrate their deck superstructure or the uppermost
part of their hulls, together with the height of these parts
over daily water levels.
We can then include the bridge superstructure in the members
considered, regarding in this case as the maximum
horizontal force which a bridge girder can resist.
This, however, calls for a new curve like fig. 1 for the
superstructure.
The design criterion (4) was employed in the case of the
Storebaslt Bridge, and the result thereof for the high-level
bridge over the east channel is shown in fig. 3.
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However, the criterion (4) gives no direct information on the
most economical distribution of the capacities although
there will be an intuitive feeling that should be small for
those members where a failure would result in exceptionally
heavy costs and inconvenience.

For a consistent economic optimization, we need to know:

Pi (C) : A curve giving a price for member no. i as a function of
the capacity of this member in a given interval about Ci.

SUSPENSION BRIDGE CABLE-STAYED BRIDGE

PIER WATER SHIP SHIP
No. DEPTH SIZE IMPACT

M DWT MN

PIER WATER

No. DEPTH
SHIP
SIZE

DWT
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1,2,3

6,7,
8,9

4.000.
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27
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30
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33,34
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60

1,2,3,
4,5

8,9

5-7 4.000

10,12, 12-25 110.000
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16,17, 15-35 250.000
18, 19,
21,22

24 13 110.000

25,26,
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28,29,
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60

-9 60.000 240
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Fig. 3 Ship impact forces specified for the piers of the
eastern high level part of the Storebaelt Bridge.
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Uj : The costs resulting from failure of member no. i.
These comprise:

1) The cost of re-establishing member no. i together with
the other members destroyed through the failure of member
no. i

2) The cost of establishing and operating an emergency
connection during the repair period.

3) The costs resulting from loss of human life, disablement
and the destruction of material assets in connection with
the collapse.

4) The national economic loss through reduction of the
capacity of the connection during the repair period.

The evaluation of will be very uncertain and, especially as
regards points 3) and 4), will be based on rather arbitrary
assumptions.

We can now calculate:

Rj.: The expected cost of repairing member no. i on account of ship
collisions in the course of the period L.

R. p.- L-U. (5)1*1 l
and the expected gross price of the bridge in its lifetime
will then be

_ n
P 2 (p. + R.) (6)

1

In order to investigate whether maintaining the design
criterion (4), variations AC^ in the capacity of the
individual members will have a favourable influence on the
effective price of the bridge, we can calculate:

_ _ n dP. dp.
P + AP T. (P + R + + L U 3^) AC.) (7)

^ i l dC^ l dC^ l
and seek a minimum value for this subject to the condition
(cf. (4)):

I (p.+Ap.) < f (8)
1 1 — 1J

Under reference to (2), we have, in a certain area of C^;

1 1
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hence,

C Ap
AC. ^ ~ ït- -1 bi pi (10)

By means of (5), (9) and (10), we can rewrite (7) as

_ _ n dP. p. b. C.
P + AP E (P. + p. LU. - (-57^ LU.) T-i Ap.)i *1 l dC. C. l b.p.1 l l i*i

n C. dP. C. dP.
Z (P. + + (LU. • -57^) (p. + Ap.)) (7a)l b. dC. l p.b. dC.
1 il *1 l l

and can now find improved values pj_ + Api of pi by seeking the
set that gives the least possible value of (7a) while at the
same time complying with the criteria (8), supplemented by

pi + Api > 1 1,2 (11)

During the design of the Storebaelt Bridge, consideration was
given to employing (7a) in connection with (11) as design
criterion, but this approach was abandoned owning to the
considerable uncertainty connected with determination of the
quantities U|, the costs which would result from failure of
member no. i
One could, however, determine the relative values of the
quantities U^ with considerably greater certainty, while
maintaining the necessary assumptions consistently and
uniformly for all members.

A minimum value of (7a) would thereby result in a reasonably
good distribution of the costs between the structural members
of the bridge, even with an incorrect level for the quantities
U^. This must just be set so low that the adopted design
criterion (8) becomes effective.
By putting L 0 in (7a), i.e. by disregarding the magnitude
of any repair costs, one could arrive at the cheapest design
that satisfies the design criterion.
It seems like that, in the planning of an offshore structure,
one would have a greater possibility of calculating the
consequences of a collapse and thus of employing (7a) and (11)
as design criterion: however, a discussion of this falls
outside the scope of this article and the author's experience.

It should, of course, be noted that the foregoing only
provides information on the necessary capacities of the n
members in a specific design of the bridge and that an
economic optimization is therefore pointless before one is
certain that a different design, for example, with other spans
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or a different longitudinal profile, more extensive
precautions for protection of the piers etc. will not give a
better solution.

1.1. Summary of design criteria
When planning a major bridge over navigated waters, certain steps
must be taken as outlined below in order take account of the risk
of the connection being interrupted due to collisions between the
bridge and ships:
1) Procure information on the number of ships that must be

expected to pass the bridge each year within a certain time
horizon.

2) Arrange the ships in an order that as far as possible gives
the largest force C which they can exert on the bridge during
a collision, in other words, plot a curve as in fig. 1.

3) On the basis of this curve and information on navigation
conditions, wind, current, etc., formulate a model that gives
the probability p^ of a ship hitting an important structural
member (no. i) in the bridge during a year, thereby imposing a
load 2> on the member, where Ci is the force that just
causes the member to fail.

4) By means of the model, determine a value -| of the
components' resistance to forces £ the bridge line that the
probability of failure is equally great in all directions.

5) Decide on the risk r that one is prepared to run of a
breakdown of the bridge in its expected lifetime L.

6) Design the bridge so that £ p^, extended over all members, is
smaller than r

L

With this approach, and taking account of the costs resulting from
an increase in and the costs resulting from failure of the
member, one can seek to achieve the desired result as economically
as possible.

By designing on the basis of the procedure outlined above, one will
have done one's best to achieve a safety level adopted in advance,
although it must be admitted that the precision with which this
level is reached is hardly likely to be very great.
On the other hand, precise determination of the safety level
considered to be desirable is also an extremely difficult matter
for the client, who, while wanting this to be as high as possible,
has limited means to invest in the construction of the bridge
because of necessary considerations to other national tasks.

In a manner of speaking, the concept "the risk of breakdown of the
connection within a certain time horizon", puts the client and the
technicians working for him on speaking terms, allowing them to
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negotiate and reach the best possible decision guided by the
knowledge existing at any time - which must naturally be constantly
widened and deepened.

The most difficult task of all is undoubtedly to judge the
probability that one ship out of a number of ships that are
theoretically able to collide with the bridge with fatal
consequences, is actually doing so, and then to find the means to
reduce this probability.
It is to be hoped that the contributions to Theme C will create the
possibility of a more reliable solution of these problems.

On the other hand, with the knowledge we already possess, we can
determine with reasonable accuracy the consequences of collision
with a ship of known size, speed and type.

In the view of the author, the greatest advantage offered by the
design method described lies in the fact that one ensures a
structure without isolated, particularly weak points, and that the
materials and other resources made available for construction of
the bridge are distributed in the most appropriate manner. In
other words, an additional investment to take account of the risk
of ship collision is utilized as effectively as possible.
1.2 National design rules

Such thorough treatment of ship collision problems as described
above would normally be reserved for big and really important
bridges, and it is obviously reasonable to establish simplified
design rules for, say, small bridges within a national area with
uniform wind and weather conditions, and especially, uniform
requirements to safety level.
The following section on collision force from the Joint Nordic Load
Specifications [8] is an example of such national design rules:

"Where there is a risk of a ship colliding with a bridge pier,
the pier shall be designed for collision. The forces
occurring during a collision will depend on the design and
size of the vessel, its load and its speed, the collision
point and direction of impact, together with the mass and
elasticity of the bridge structure. The collision forces
shall be assumed to act centrally on the pier level with the
water surface, either in the longitudinal or in the transverse
direction of the pier.
As design vessel, use can be made of a vessel whose size must
be expected to be exceeded in a specific number of passages
per annum (e.g. 100 passages/year in an easily navigable
channel). When determining the design vessel, account must be
taken of the prevailing navigation conditions (wind, current,
vision, compulsory pilotage, etc.), and of the risk which itwill be reasonable to accept having regard to the design of
the bridge, the width of the channel and the intensity of the
traffic.
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In the comments guidelines are given for evaluating the
magnitude of the collision forces assuming that the bridge
pier can be regarded as non-yielding and that the whole of the
collision energy is absorbed through deformations (damage) in
the vessel. This assumption normally applies where the pier
is designed to take account of the risk of collision by big
ships.

In the case of an elastic bridge pier, which can occur in the
case of low collision energy, the collision force can be
determined on the basis of the deformation properties of the
structure and the ship.
Comments :

On the basis of the size (tonnage or draught) of the
design vessel and the permitted speed in the channel,
the magnitude of the collision force can be estimated by
means of the following diagram (fig. 4)."

Magnitude of ship collision force as a function of
ship size and speed. (From [8]).

It will be seen that these rules are very similar to those proposed
earlier.
We put Ni -v 100 and thereby arrive at a ship of a certain size.
From fig.4 we then read C^, for which the piers are designed.
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Since P ^ Pc'PQ.,i*Ni> we accept, cf. 4 a risk
1OOL-P0-Pq i-vO.U-pG,i of collision with pier no. i disrupting the
bridge during its lifetime.
Contributions to Theme F containing examples of national design
rules will be of great interest for the preliminary report.

2. INFLUENCE ON DESIGN

In the foregoing attention has
rules that will, with reasonable
navigated waters from being
collision.
The principle effect of these
appreciably more expensive.

been concentrated on establishing
certainty, prevent a bridge over
interrupted on account of ship

rules is to make the piers often

They must be designed as strong, solid structures without abutments
or other slender members that can result in secondary, but
catastrophic failure.
They must have ample resistance to loads in all directions,
including torsion, which can occur in the event of eccentric
impact, and it should be ensured by means of a dynamic analysis
that any bearings between piers and superstructure can transmit the
forces occurring during a collision.
Simply to be able to resist collisions, the piers get such large
dimensions that their carrying capacity in respect of deadload,
traffic load, wind, etc., cannot be fully utilized unless suitable
bigger spans are introduced than have hitherto been used.

The development can be illustrated by a brief account of the
proposals put forward over the years for a bridge crossing the east
channel in Storebœlt:

A proposal in 1936 from the Danish engineering firms, Christiani &

Nielsen, H®jgard & Schultz and Kampsax, resulted in the firstofficial project from the Bridge Office of the Danish State
Railways which was at that time responsible for all major bridges
in Denmark.

In 1948, a broadly composed commission was appointed to investigate
the conditions for and the effects of a permanent crossing. In
December 1959, this commission presented its report including a

proposal, which was an obvious development of the project of the
Danish State Railways, envisaging a 2-level lattice girder for road
and railway with navigation spans of 300 + 350 + 300 m and approach
spans of 135 m.

In 1965-67, an international competition for sketch proposals was
held, and following this, the working committee appointed presented
a proposal with similar spanning as the 1959 proposal.

In 1970, a Technical Committee was appointed which, in its report
from 1972, presented two proposals:
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1. A continuation of the lattice girder solution with 5 spans,
280 + 400 + 325 + 400 + 280 m over the navigation channel.

2. A solution with two cable-stayed bridges, 210 + 600 + 210 m in
direct extention of each other, forming two separate
navigation spans of 600 m.

In 1973, the Board for the State Bridge Storebeelt was appointed. In
1978, the Board, assisted by its consultants, prepared two tender
projects :

1. A cable-stayed bridge with a navigation span of 780 m, two
side spans of 300 m and approach spans of 144 m.

2. A suspension bridge with a navigation span of 1416 m, two side
spans of 360 m and approach spans of 144 m.

In all cases, but especially in view of the constantly increasing
requirements to resistance collision forces, the proposals in
question were optimized with regard to spans, taking due regard to
water depths and foundation conditions.
The big spans have the added advantage of reducing the direct risk
of a ship colliding with a pier, because there are fewer piers.
In other words, the risk is reduced of environmental damages
occurring through a ship with a hazardous cargo springing a leak
through a collision.
We have not earlier concerned ourselves with this aspect,
concentrating on whether the bridge would be damaged in a
collision, and not thinking about the ship.

In this connection, I would finally like to make a few remarks
regarding special protective measures for the piers, for example
protective islands. With the conditions applying at many of the
piers in Storebaelt, protective islands proved to be an effective,
low-cost method of increasing the capacity C^, while at the same
time reducing the damage to the ship.

However, with the exception of the anchor piers of the east bridge,
the idea of using protective islands had to be abandoned for fear
that their consistent use would reduce the passage so much that it
would have damaged the environment in the Baltic.
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