Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte
Band: 40 (1982)

Artikel: Role of database management systems in structural engineering
Autor: Fenves, Steven J. / Rasdorf, William J.
DOI: https://doi.org/10.5169/seals-30900

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-30900
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L 229

Role of Database Management Systems in Structural Engineering
Systemes de gestion de base de données dans le domaine des structures

Datenbank-Management-Systeme im Bauingenieurwesen

Steven J. FENVES William J. RASDORF
Professor Assistant Professor
Carnegie-Mellon University North Carolina State Univ.
Pittsburgh, PA, USA Raleigh, NC, USA

Steven J. Fenves, born
in 1931, received his
degrees in civil engi-
neering from the Uni-
versity of lllinois, where
he taught until 1972,
His teaching and rese-
arch activities deal with
computer-aided engi-
neering, with emphasis

William J. Rasdorf,
born in 1951, received
Bachelor's and Ma-
ster's degrees in Archi-
tectural Engineering
from the Pennsylvania
State University. He
worked as an Architec-
tural Engineer for 3

vears. He received his

Ph.D. from Carnegie-
Mellon University whe-
re he became inter-
ested in computer re-
presentation of engi-
neering design data.

on representation of
standards, databases
and expert systems.

SUMMARY

The future integration of structural engineering application programs will depend critically on
integrated databases which provide access to information in essentially arbitrary sequences, and
which automatically perform a large portion of integrity checking on the data. One source of such
design databases are the database management systems (DBMS) evolving from management
applications. The paper surveys such systems and presents some extensions needed.

RESUME

L'intégration future des programmes d'application dans le domaine des structures dépend de
fagcon critiqgue de la mise en place de bases de données intégrees. Celles-ci doivent permettre
I'accés aux informations selon des séguences essentiellement arbitraires et assurer automatique-
ment une large part des contréles d'intégrité des données. Les systémes de gestion de bases de
données (SGBD) issus des applications de gestion constituent un point de référence. L'article
examine ces systémes et propose certaines extensions nécessaires a leurs applications dans le
domaine technique.

ZUSAMMENFASSUNG

Die zukinftige Vereinnheitlichung von strukturellen Applikationsprogrammen wird kritisch von
integrierten Datenbanken abhangen, die Zugang zu Information in wichtigen, willkirlichen Ab-
ldufen verschafft und die automatisch eine breite Integritatsiiberprifung ausfiihren. Eine Quelle
solcher Entwurfsdatenbanken sind die Datenbank-Management-Systeme, die von Management-
Anwendungen stammen. Dieser Bericht betrachtet solche Systeme und behandelt einige erforder-
liche Zusétze.

230 ROLE OF DATABASE MANAGEMENT SYSTEMS F -\

1. INTRODUCTION

The decade of the 80's will see a major trend towards the integration of stand-alone
structural engineering application programs into comprehensive design systems. The
bunifying element of such systems will be a central data base, containing up—to—date
information about the evolving design The organization and operation of such a database
has to be drastically different from the file or secondary storage management systems
now in common use. Integrated databases must allow users and application programs to
access information in essentially arbitrary sequences without regard to the internal
organization of data Furthermore, such databases must automatically perform .a large
portion of the consistency and integrity checking on the data, both within the structural
design process itself and in integrating structural data with other disciplines participating in
the design.

Database management systems (DBMS's) incorporating physical and logical data
independence and consistency enforcement have evolved for management applications, and
many DBMS's are commercially available. A major challenge is to evaluate such systems for
their applicability to structural design and to implement necessary additions or extensions.

The paper is organized into three parts. First, the the present use of datz are critically
evaluated. Second, the relevant concepts of DBMS's and the major existing database
models are briefly introduced, with primary emphasis on the relational model. Third, a class
of necessary extensions to the relational model is presented, dealing with the
representation and processing of constraints that arise in structural design lllustrations are
drawn from a prototype structural design database system recently developed.

2. DATABASE IMPLICATIONS OF STRUCTURAL ENGINEERING COMPUTER USE

2.1 Trends in Computer Use

Computer usage in structural engineering design has had an explosive growth in the past
15 years. Around 1970, the only common structural engineering applications were analysis
{usually restricted to linear elastic models), and detailing of certain repetitive structural
components. Except for some simple file structures for storing input data and results or
for providing restart capabilities on long runs, essentially all data had a lifespan restricted
to the duration of a single computer run.

Since the early 1970's, computer usage has grown in four distinct directions, all of
which have a major impact on the lifespan of the data and the manner in which they are
used:

® Increase in_depth Computer programs are now commonly used at ali stages
of design of a structure (conceptual, preliminary and detailed); and for
fabrication and construction scheduling and control. it has therefore become
important to "capture data at the source,” so that the output of one stage can
serve directly as input to the next one.

® Increase in_breadth The range of programs used at any one stage has grown
similarly. For example, it is now common practice to perform a linear, static
analysis for one set of loads, and a dynamic and/or nonlinear analysis for
another set of environmental conditions. While some large analysis packages
support all these analysis options, it is not uncommon that different programs
must be used for the different analyses. It is therefore necessary to have
the common input data available in a program-independent fashion

L S.J. FENVES, W.J. RASDORF 231

® increase in_integration. As the other design disciplines (e.g. architecture,
mechanical and electrical engineeringl have increased thaeir computer usage,
there has been an increasing need for two-way interchange of information
between the structural engineer and the other disciplines; it becomes less and
less desirable to re—enter the shared data manually or even to re—format them
with ad-hoc programs.

® Increased need for flexibility. The combination of the three factors described
produces a fourth one, namely, the need to accommodate much more flexible
design sequences than was the practice in the past Thus, programs must
accommodate a much larger range of "inputs,” in terms of the decisions
previously made.

2.2 Present Usage of Data

The present methods of data storage and access in structural engineering fall short of
the needs. These methods generally belong to one of the following three categories:

e Temporary files. Most large structural analysis programs store and access
information in temporary files (usually unformatted or binary) for segmentation
purposes, backup/restart, or postprocessing).

e Explicit interface programs. When the output of one program serves as input
to another, interface programs are written for performing the necessary
conversions and reformatting.

s Text files. Many organizations save both input and output data in alphanumeric
formatted text files. Input files can be edited for changes and resubmitted
for reanalysis, and output files can be scanned for relevant information
retrieved.

The first two methods exhibit strong physical and logical data dependence, ie., the
content and organization of the data is totally dependent on the needs of the programs
using them. The last method, by contrast, exhibits data ignorance; the file management
system only knows the name of the file, and knows nothing about its contents.

These are a number of notable exceptions to the limited range data storage and access
methods discussed above. Only a few of these can be reviewed here.

e Both GENESYS [9] and ICES [18] contain a common system for data
storage and communication among subsystems. ICES contains a subsystem,
TABLE, specifically for storage and access of data POLO [10] goes a step
further and contains a database management system, FILES [11].

e A number of application—independent centralized databases have been
developed. In systems such as IPAD [3, 18] or COMRADE [1, 17]), all data
are stored in a single common pool and are accessible to all users.

e General finite element pre— and post-processors such as UNISTRUC [22] and
FASTDRAW [13, 14] represent the mode! in a “neutral file", when model
generation and manipulation is completed, a "source file” for a specified
analysis program is generated. Similarly., results from any of the supported
analysis program can be reformatted into a "neutral file" and post—processed

e GLIDE (Graphical Language for Interactive Design in Engineering) [5, 6] is a

232 ROLE OF DATABASE MANAGEMENT SYSTEMS

prototype system using a flexible dstabase supporting high level data
abstractions and geometric modelling capabilities.

A recent survey of database applications in engineering practice [2] shows that 53 out
of 153 firms surveyed use some form of database applications, but that the majority of
the use is in accounting, personnel records and project management Only 23 firms use
databases for analysis or design

2.3 Shortcomings of Present Usage

The present methods of data storage and access have three major shortcomings. First,
these methods are not suited for supporting flexible design sequences, where the
programs may interact in a variety of sequences, where multiple iterations have to be
performed, and where multiple alternative designs may have to be generated and results
compared. Such flexibility cannot be provided if the internal representation (content and
organization} of the data is integrally dependent on the specific program(s) using the data

Second, these methods provide no general mechanisms for either querying or updating
the database. All updates or queries must be specifically programmed, using the specific
internal representation of the data

Third, and possibly most importantly, there are no general ways of insuring or monitoring
the integrity and consistency of the stored data One cannot impose constraints such as
"beam depth < clearance allowed” unless one knows exactly where and in what format
"beam depth” and "clearance allowed” have been stored.

3. DATABASE MANAGEMENT SYSTEMS

3.1 The System

In administrative data processing applications there has been a major trend toward the
use of DBMS systems. DBMS's are designed to store data in a manner independent from
programs, to allow programs to access and retrieve data, and to provide a means of
inserting, deleting, and modifying data A DBMS can be represented as a series of layers:

e Core. The actual data as it is stored on a physical device.

® Interface. The layer immediately surrounding the central data core is a
collection of software that enables the core to be used it is the
communications link between the stored data and users; it acts as a transfer
mechanism that converts the "raw” data from its stored physical form to a
logically structured format

® Users and applications. The outermost layer consists of database users and
application programs accessing and performing operations on the data

Each level of the DBMS contains a different view or description of the data A view of
the core shows the physical layout of the data as it resides on a storage device. This is
the view of systems designers and programmers concerned with system performance, data
indexing, and data location [4]. The organization of the data at this level is referred to as
the physical structure of the data

Software associated with the second layer of the DBMS converts the physical structure
of the core data to a logical structure or schema. The schema is an overall representation

4 S.J. FENVES, W.J. RASDORF 233

of the data describing it in logical rather than physical terms. The overall schema is further
converted by the software associated with the outermost layer into smaller views referred
to as subschemas, portions of the overall logical data representation used by application
programs. The schema provides an overall view of the logical representation of all of the
data, while a subschema provides a limited view structured for a particular application

One of the key objectives of a DBMS is to allow different applications to use the same
data in a program—independent fashion To do so requires a data structure where all data
is pooled together at the physical level and selected views of the data are appropriately
available.

The DBMS must also provide the capability for the database to grow and change as
needs dictate. Over the life of the database it must be possible to dynamically change its
logical structure as new types of data are added and new programs developed

Flexibility in a database is possible only if physical and /ogical data independence is
maintained between the layers of the DBMS. The physical data structures of the core must
be entirely separate from the data structures of the logical outer layers perceived by users
and programs. The connection between the layers is maintained by the DBMS software.
Changes to either the data or the programs can be made without requiring changes to the
other. Only the layer of DBMS software that interfaces with the change needs to be
moedified In this manner the database need not be restructured when new programs are
written and existing programs need not be rewritten when changes are made to the data
structure.

There are three major capabilities provided by a DBMS:

e Data definition Data definition defines the schema and builds the framework
into which attribute values are placed Data definition is performed by the
database administrator using a data definition language (DDLI.

e Data modification Data modification includes insertion, modification, and
deletion of data values and is performed by the database user using a data
manipulation language (DML).

e Data retrieval. Data retrieval consists of obtaining desired information from
the database and includes the ability to search, manipulate, and query without
the necessity of writing application programs. Data retrieval is performed by
the user using a guery language.

The DBMS communicates with application programs written in a standard programming
language through a host language inmterface. The interface consists of a set of call
statements to DML procedures that initiate the desired operations on the database.

3.2 Common Data Models

A data rmodel defines the overall logical structure of a database [12]. It provides the
structural framework into which the data are placed Three database models have come
into common usage: the hierarchical, network, and relational models.

Hierarchical Data Model. The hierarchical model is tree structured. It is composed of
nodes connected together by /inks as shown in Figure 1. The nodes may be grouped into
horizontal layers called /eve/s. As Figure ¥ shows, a hierarchy is a multilevel data model
The tree structure of the hierarchical model implies that each node may be linked to more

234 ROLE OF DATABASE MANAGEMENT SYSTEMS

than one node below but to only one node above itself [12].

—

Figure 1: Hierarchical Data Structure

A node represents a type of entity about which information is stored. An entity may be
an object such as a bolt, a column, or an entire frame. Each entity has certain descriptive
information associated with it This information determines the entity type and is referred
to as the attributes of the entity. Links represent relationships between the entity types.
The direction of the link indicates a relationship of one to many from the tail of the arrow
to its head

Network Data Model A network is a directed graph. The network model is a multilevel
data model in which each node may be linked to more than one other node in both upward
and downward directions [4]. This is the distinguishing difference between the hierarchical
and network models; it allows relationships to be established horizontally within levels
between different entity types as waell as vertically between levels.

Figure 2 illustrates an example of a network data structure. It has basically the same
structure as the hierarchy of Figure 1 with the addition of muitiple network links. It can
readily be seen that the hierarchical model is a special case of the network model.

.
S

Figure 2: Network Data Structure

S.J. FENVES, W.J. RASDORF 235

Relational Data Model A relational model is a single /evel model consisting of a
collection of re/ations represented in two—dimensional tabular form [18). Associated with
the relations is a set of operators that allow for the insertion, deletion, modification, and
retrieval of data A figure for the relational model similar to Figures 1 and 2 would simply
contain a collection of nodes without any links between them. There are no predefined
hierarchies or networks in the relational model Links needed between nodes are
automatically created by the relational DBMS upon demand and an access path is established
to any node.

Figure 3 illustrates the structure of a relation The rows of a relation called tup/es and
its columns are called attributes. All attribute values are drawn from the same domain ie.,
they are of the same data type. Each tuple represents an entity and contains a value for
each attribute. All tuples are distinct; duplicates are not permitted [16). Tuples and
domains have no order; they may be arbitrarily interchanged without changing the data
content and meaning of the relation Tuples are accessed by means of a key, a single
attribute or a combination of attributes that uniquely identifies a tuple.

A standard shorthand notation to represent relations is as follows:
RELATIONname (ATTRIBUTEiname, ATTRIBUTE2name, . . .)
with the BEAMS relation of Figure 3 being represented as:
BEAMS {(Designation, A, d, b, t, t)

The name of the relation is listed first followed in parentheses by the names of all of its
attributes. The underlined domain of a relation is the key.

BEAMS
| Designation | A ' a ! bf ' tf i tw {{——-ATTRIBUTES
! H | ! ! ! !
! W12x50 ! 14.70 | 12.19 | 8.077 ! 0.641 | 0.371 }
] H] {~- ! ' '
' W12x58 ! 17.1i0 | 12.19 | 10.014 } 0.641 | 0.359 |---TUPLE
! H ! ! ! | !
! W14x26 ! 7.67 | 13.89 | 5.025 { 0.418 | 0.255 |}
: i] L]] i Y | !(
1]]]]] []
! W14x38 ! 11.20 | 14.12 ! 6.776 ! 0.513 ! 0.313 | !
- !
- 1
1
] [}
[[3
~—DOMAIN RELATION-———

Figure 3: The Structure of Relations

236 ROLE OF DATABASE MANAGEMENT SYSTEMS

3.3 Model Comparison

The similarities between the multilevel hierarchical and network models are evident The
network model is more flexible, allowing non-hierarchical or, multi—hierarchical relations to
be defined This added fiexibility results in greater representational power, although it still
does not afford the representational capabilities of the relational model

Relationships among entities and constraints among attributes impose critical requirements
on a database. All user queries and updates generally cannot be anticipated prior to the
establishment of the structure of the database. To satisfy diverse access needs, links may
be required between any of the components of the database. Both the hierarchical and
network models are composed of precisely defined links between the nodes. As a result,
the structure of the database is fixed and cannot easily be changed

Both the hierarchical and network models present difficulties in representing many to
many relationships. An additional disadvantage is that /oops are not permitted, ie.,
relationships cannot be established between a record type and itself. This is particularly
disadvantageous in a structural engineering database where such relationships are common
beams are connected to adjacent beams; columns to adjacent columns; etc.

Neither of these disadvantages occurs with the relational model Its use requires
knowledge of only one data construct and its underlying access mechanisms are hidden
from the user. The user needs to be concerned only with the content of individual
relations. The hierarchical and network models do, however, allow for efficient
implementations. Because hierarchy and network links are implemented as pointers, node
traversal is direct and fast These efficiencies contrast with the relational model whose
primary disadvantage at the present is its lower efficiency of accessing

An additional advantage of the relational model is its ability to aveid common anomalies
through normalization, the process of removing dependencies from among the attributes
of relations. The concept of normalized relations is an integral part of the relational model
and it promotes the achievement of well structured data while providing a degree of
automatic integrity and consistency checking

Most existing commercial database systems are based on the hierarchical and network
models. The relational database model is the newest model and only recently have
commercial relational database systems such as RIMS [7] and SQL [20, 21] become
available. However, as efficiency problems are reduced, relational implementations will see
far greater use. The versatility and fiexibility of the relational model make it ideal for
managing structural engineering data

4. THE FUNCTION OF DATABASE MANAGEMENT SYSTEMS |IN STRUCTURAL
ENGINEERING

4.1 Potential Role

DBMS systems offer many advantages for structural engineering use. Program-data
independence is one of these. A DBMS stores data in such a way that many different
applications, both existing and planned, can use it The data is structured for efficient use
but it is not tailored to a particular application program

DBMS systems provide a structure for storing a wide variety of data A collection of
data far more global than that needed by a single application program or a single design

'ff-:'.“ S.J. FENVES, W.J. RASDORF 237

discipline can be achieved, linking together many different applications around commonly
shared data This integration offers promise of significant improvement in overali
information storage and handling.

DBMS systems provide the conceptual framewcrk for organizing design data so that all
database needs can be efficiently and uniformly supported. Two aspects of DBMS's are of
particular significance. One is the intellectual discipline required to formulate the overall
framework or schema of the entire database, an absolutely essential step but one likely to
be ignored when a system of programs is allowed to grow in an uncoordinated fashion It
is worth emphasizing that the schema can be extended and the database reorganized as
needed without affecting existing applications. The second significant aspect is the
availability of query languages, so that many accesses to the database can be made directly,
without the need to first develop an application program.

It is to be expected that structural engineering design systems will be developed based
on both the network and relational data models (hierarchical models have already been
essentially supplanted by network models). In view of the conceptual advantages of the
relational model and the vast amount of research and development for making it more
general and efficient, it is iikely that eventually it will become predominant The comments
that follow are based on this development

4.2 Extensions Needed

To assume a major role in structural engineering, extensions to the present relational
DBMS capabilities are needed. These are particularly necessary in the areas of run—time
storage management, extension of data types, and integrity management

Run—-Time Storage Management The efficient operation of data dependent systems and
the integrating capabilities of data independent systems are both desirable characteristics.
The logical extension to existing DBMS systems to achieve both simultaneously is a facility
for run time storage management Such a facility would temporarily restructure those
portions of the database needed by an application program during its operation.
Application programs interfacing using a DBMS with a run time storage management system
would be treated as modules that utilize the DBMS only for input and output For program
input the DBMS would export the data to the storage management system. Output data
from the application program could be processed directly using DBMS facilities.

Extended Data Types. From a structural engineering perspective one of the significant
drawbacks of existing relational DBMS's is their nmited number of available data types:
integers, reals, and character strings. These types are sufficient for business applications
but engineering applications require the use of a wider range of data types including
vectors, arrays, matrices, etc.

Integrity Management Enhancements. Extensions are also needed in the area of integrity
management. The built—in integrity controls of present relational DBMS systems are
extremely limited. In the majority of cases only constraints on single attributes of single
tuples can be enforced These are not sufficient to satisfy engineering design integrity
management needs. Functional dependencies between multiple attributes of tuples must be
established. Where functional dependencies result in defined constraints, those constraints
must be automatically enforced. Mechanisms to achieve this integrity capability are
introduced below.

238 ROLE OF DATABASE MANAGEMENT SYSTEMS ‘

10
5. INTEGRITY AND CONSISTENCY ISSUES

5.1 Functional Integrity

Functional integrity and consistency with respect to governing laws must be enforced by
application programs. These constraints cannot be built into the database because they
must invoke high—level complex sequences of computations.

For example, a structural analysis application program must output a set of member
forces and member properties in accordance with structural laws of compatibility and
equilibrium. As a result the interface between the database and the program is very limited.
The interaction between them is simply an input/output transformation. It is taken for
granted by the database that the output it receives from the application program is
consistent with the constraints built into the program.

5.2 Constraint Needs

Although the global constraints mentioned above cannot be built into the database, there
are many constraints and design functions that can be Design criteria, interaction
constraints, consistency constraints on redundant data, and iteration control are examples of
constraints that must be enforced in a structural engineering database.

Design Criteria Design criteria specify limitations on attribute vaiues and may be defined
by codes, standards, and specifications or by a database user or designer. Codes,
standards, and specifications comprise a class of constraints designed to assure the
functionality and usability of the entity which they govern. They consist of a set of
requirements that govern the design and behavior of the components of the entity [8].
Examples of such design criteria are:

s 2 M for a member, and
provided required

b/tsKH+ rFy for a plate element of a steel member.

User—defined constraints arise from each user's personal design style. They may be
issued at any point during the design process and incorporated into the database. An
example of a user—defined design criterion would be:

F < S50ksi
Y

limiting yield stress to a maximum value of 50 ksi.

Interaction. Each design discipline deals with a set of attributes commonly used by
designers of the discipline. Often individual attributes of one discipline are related to
attributes of other disciplines. Such attributes are referred to as boundary attributes.
Interaction constraints are those which define relationships between boundary attributes.
One example of an interaction constraint is:

d < clearance.

This constraint relates the beam depth, d, under control of the structural designer, to the
available clearance, dealt with by the architectural subsystem.

Consistency. Consistency is a special case of integrity and deals either with an attribute
redundantly stored in more than one database location or with dependencies among
attributes where dependent values are calculated on the basis of independent data and
constraints among the attributes. In the first case each occurrence of the attribute is

L\ S.J. FENVES, W.J. RASDORF 239

equivalent and must have the same value. In the second case the value of the dependent
data may be computed when it is needed.

The constraint among beam section properties:
S§=2=s1/d

can be used to illustrate redundancy and consistency. If the values of S, |, and d are all
stored, their integrity must be maintained with regard to the constraint, ie, if the value of
any one of these attributes is changed, the value of one of the others must also be
changed; otherwise the consistency of the relationship and the integrity of the database are
violated The constraint is thus used in a passive checking mode. Alternatively, it is
possible to store any two of the three attribute values, calculating the third as needed. In
this manner the constraint is used in an active assignment mode and integrity is
automatically maintained.

In structural engineering databases redundantly stored attribute values and consistency
constraints among attributes are necessary. Unfortunately, the only tool available in a
relational DBMS to prevent redundancy and consistency problems is normalization. But
structural engineering data storage needs cannot be satisfied by normalization because they
require that a variety of interrelated data be stored together, as shown above, so that ali
potentially needed data is immediately available for use.

lteration One important capability that must be supported by an engineering database is
the design of an entity through multiple iterations and the control of the process of
iteration. The database must provide the ability to distinguish between iterations and to
orderly assemble subsequent generations of data

The control of iteration can be achieved using constraints. To determine if the result of
a structural analysis—sizing iteration has converged, for example, one must measure the
difference between the moment of inertia, I, before and after sizing using the constraint

IIMW - loldl 11, S epsilon
If the difference is less than the acceptable tolerance, sizing is complete and another
design stage may be initiated. Otherwise, additional iterations are necessary.

5.3 A Model

Introduced above were a number of requirements a database must satisfy to be an
effective structural engineering tool. Reference [16] describes a new relational data
structuring scheme that eliminates problems of redundancy, update anomalies, and other
irregularities caused by intrarelation dependencies among attributes. The new model does
s0 by introducing into relations new attributes that record the status of all constraints
defined on the relation The integrity of intrarelation dependencies is thus always
monitored. At the same time, the model retains immediate local access to all of a relation’s
attribute values.

As an example consider the relation
MEMBER (D, S, |, d}

containing the attributes of the section properties constraint introduced above. The
alternative to normalizing this relation is to introduce into the relation the new attribute
sectionOK

240 ROLE OF DATABASE MANAGEMENT SYSTEMS ;;_;:}:5‘

MEMBER {ID, S. I, d. sectionOK)

that monitors whether or not the constraint is satisfied. The attribute sectionOK is a
boolean domain whose value is determined by the constraint The constraint itself is stored
in the database as a function Whenever one of S, |, or d is changed, or when a new
tuple is added to the relation, the constraint function is invoked and its value (true or faise)
is computed and stored in the tuple.

This model can be generalized to handle multiple constraints. All of the constraints
introduced earfier can be converted to assignment form as follows:

strengthOK := M

2
provided Mraquired

sectionDK := S =2 +«1/d

clearanceOK := d £ clearance

iterationOK := /1 < epsiion.
new

'old '

These assignment statements would be inserted into functions and stored in the database.
The modified relation would then contain the following attributes:

MEMBER (ID, S, I, I d , strengthOK,
- new

old ' Mprovided’ Mrequired

sectionOK, clearanceOK, iterationOK).

In this manner the status of multiple constraints among intrarelation attributes can be
monitored and recorded

An additional capability provided by the model is the assignment of attribute values to
dependent data items in such a way that the governing constraint{s} is automatically satisfied.
To do so requires the constraint checking function to be converted to an assignment
procedure in which the left hand side of the assignment statement is the dependent
attribute. Converting the sectionOK constraint redundant in this manner results in the new
assignment procedure:

PROCEDURE S (I, d : reall VAR S : real; VAR sectionOK : boolean);

BEGIN
S=2+#1/d
sectionOK = TRUE
END;

The designer thus gains a new tool with which he can assign results known to be
consistent with other attribute values in the database.

The primary advantage of the model is that the database user has direct access to the
values of all of the attributes in the relation while insuring a measure of intrarelation
integrity and consistency. Even though functional interdependencies are retained, the
integrity of the tuples can at all times be determined by invoking the stored checking
functions and recording the values returned.

6. CONCLUSIONS

The clear trend in structural engineering computer usage is towards higher levels of
integration of individual programs, both horizontally {among different structural applications}

A S.J. FENVES, W.J. RASDORF 241

and vertically (between structural applications and the applications of other participating
disciplines, from planning to construction management and facility operations). At the same
time, there is a similar trend towards more flexible use of programs in response to the
wide range of design and analysis sequences needed in diverse projects. The data
exchanged and shared among the applications is the key to integration

There are three paths that organizations may take in their approach to data usage. One is
to continue extending the present mode of high program-data dependence; this approach is
highly self-limiting, and there is a clear indication that this mode cannot be fruitfully
continued. Second, we can wait for the development of an "ideal” system, incorporating all
structural engineering needs. The third approach, advocated in this paper, is to build on the
highly developed — and rapidly developing — area of DBMS's, adding those specific
extensions necessary for structural design

A DBMS-based structural design database will provide much more than a passive
repository of data, and will serve as an active agent in the design process. Many of the
design control functions will be part of the database management activity. Consistency
management with respect to a wide range of design constraints can be made an integral
part of the DBMS. Other consistency management functions, such as monitoring spatial
conflicts, can also be included in the DBMS. The need for a centralized database
incorporating a high level of consistency management will become even more acute as the
trend towards more decentralized computing, inciuding personal computing, accelerates.

ACKNOWLEDGEMENTS

This work was sponsored in part by the National Science Foundation under grant
MCS57822328 entitled "Data Base Methods for Design”

REFERENCES

[1] Bandurski, A E, and Wallace, M. A
COMRADE Data Management System Storage and Retrieval Techniques.
In Proceedings 1973 National Computer Conference and Exposition, pages 353-
357. AFIPS, Montvale, NJ, 1973.

[21 Bland, R.
Private communication.
1982.

(3] Burner, B, lves, F, Lixvar, J., and Shovlin, D.
The Design, Evaluation, and Impiementation of the IPAD Distributed Computing
System.
In Proceedings of the First Conference on Computing in Civil Engineering, pages
126—-144. American Society of Civil Engineers, New York, NY, June, 1978.

(4] Date, C.. J.
An Introduction to Database Systems.
Addison Weslay, Reading, MA, 1977.

[5] Eastman, C., and Thornton, R
A Report on the GLIDE2 Llanguage Definition.
Technical Report, Computer—Aided Design Group, Institute of Physical Planning,
Carnegie—Mellon University, Pittsburgh, PA, March, 1978

(6] Eastman, C.
An Introduction to GLIDE: Graphical Language for |nteractive Design.
Technica! Report, Computer—Aided Design Group, Institute of Building Sciences and
Computer Science Department, Carnegie—Mellon University, Pittsburgh, PA, 1980.

242

ROLE OF DATABASE MANAGEMENT SYSTEMS

[7]

[8]

{9]

[10]

(11}

[12]

[13]

[14]

[15]

[(16]

(17}

[18]

[19]

[20]

[21]

[22})

Erickson, W. J., Gray, F. P, Limbach, G
Relational [nformation Management System
Version 5.0 edition, Boeing Commercial Airplane Company, Seattle, WA, 1981.

Fenves, S.J. and Wright, RN

The Representation and Use of Design Specifications.

In W.J. Hall (editor), Structural and Geotechnical Mechanics, pages 277-304.
Prentice—Hall, Englewood Ciiffs, NJ, 1977.

Genesys Limited.
GENESYS.
Technical Report, Genesys Limited, Loughborough, England, 1976.

Lopez, L A
POLO: Problem Oriented Language Organizer.
Journal of Computers and Structures 2(4)555-572, 1972

Lopez, L A

FILES: Automated Engineering Data Management System.

In Sixth Conference on Electronic Computation, pages 47-71. American Society
of Civil Engineers, New York, NY, 1974.

Martin, James.
Principles of Data-Base Management.
Prentice—Hall, inc., Englewocod Cliffs, NJ, 1976.

FASTDRAW/[3 Reference Manual
MCAUTO - Graphics Products, McDonnell Douglas Automation Company, St Louis,
Missouri, 1978

FASTDRAWI|3 |nteractive Postprocessing Reference Manual
MCAUTO - Graphics Products, McDonnell Douglas Automation Company, St Louis,
Missouri, 1980.

Miller, R E et at
Feasibility Study of an Integrated Program for Aerospace Vehicle Design (/PAD).
Technical Report, Boeing Commercial Airplane Company, Seattle, WA, 1973

Rasdorf, W. J.

Structure and Integrity of a Structural Engineering Design Database.

Technical Report DRC-02-14-82, Design Research Center, Carnegie—Mellon
University, Pittsburgh, PA, April, 1982.

Rhodes, T. H
The Computer—Aided Design Environment Project (COMRADE).
In Nationa/ Computer Conference, pages 319-324. AFIPS Press, 1873.

Roos, D.
ICES System Design
Second Edition edition, The MIT Press, Cambridge, MA, 1867.

Sandberg. G
A Primer on Relational Database Concepts.
{BM Systems Journal 20(1223-40, 1981.

SQLl! Data System General [nformation
International Business Machines (IBM}, White Plains, NY, 1981.
Report GH24-5012-0.

SQL! Data System Concepts and Facilities
International Business Machines (IBM), White Plains, NY, 1981.
Report GH24-5013-0.

UN/ISTRUC 2 Reference Manual
Control Data Corporation, Minneapolis, MS, 1979.

	Role of database management systems in structural engineering

