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Statistical Interpretation of the Miner-number using an Index of Probability of Total Damage

Interprétation statistique du nombre de Miner au moyen d'un indice de probabilité de dommage total

Statistische Interpretation der Miner-Zahl mit Hilfe eines Indexes der Wahrscheinlichkeit einer Total-
schadigung

A. FERNÂNDEZ CANTELI
Research Associate
Swiss Federal Institute of Technology
Zurich, Switzerland

SUMMARY
The use of the Miner-number, M, as an index of probability of total damage rather than as a measure
of the partial damage is proposed for fatigue limit state design of concrete structures The method is
checked by introducing a second logarithmic index, D, more compatible with the logarithmic abscissa
commonly adopted for the Wohler-curve

RESUME
Pour le calcul à l'état-limite de fatigue des structures en béton armé ou précontraint, on propose
l'utilisation du nombre de Miner domme indice de probabilité de dommage total plutôt que comme
mesure du dommage partiel Cette méthode est complétée par l'introduction d'un deuxième indice
logarithmique D et elle est ainsi en accord avec la représentation logarithmique de Wohler

ZUSAMMENFASSUNG
Die Verwendung der Miner-Zahl wird als Index der Wahrscheinlichkeit einer Totalschadigung anstatt
als Mass der teilweisen Schädigung fur die Bemessung von Stahlbeton- und Spannbetontragwerken im
Grenzzustand der Ermüdung vorgeschlagen Das Verfahren basiert auf der Einfuhrung eines zweiten
logarithmischen Indexes D Dieser steht im Einklang mit der allgemein angenommenen logarithmischen
Darstellung der Wohler-Kurve
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1. INTRODUCTION

The cumulative damage concept proposed by Miner maintains that the damage can be
expressed in terms of the number of cycles applied at a given stress level divided

by the number needed to produce failure for the same stress level. When the
summation of these "increments of damage" at several stress levels becomes unity,
failure occurs. After its formulation, this hypothesis was repeatedly tested for
different materials under multi-step or variable amplitude loading programs. Its
practical applicability to the design of concrete structures, however, was often
questioned because of the unsatisfactory experimental evidence.

Recently, Van Leeuwen and Siemes [1], [2] contucted series of tests on plain
concrete and interpreted the scatter of the Miner-number M by deducing theoretical
expressions for the mean and standard deviation values of M from the Wöhler curve
These formulae, derived initially for the simple case of constant amplitude
cycling, were then extended to the case of general loading. They showed that the
Miner-number at failure is a stochastic variable with an approximate logarithmic
normal distribution and emphasized the importance of the study of the scatter of
the Wöhler durve for constant amplitude cycling.
From this it follows that the Miner-number can be used to ascertain the probability

of failure (as a more suitable design criterion) rather than as a measure of
a problematic and abstract "degree of damage". It can then be taken as a basis
for a consistent life prediction in fatigue design, in accordance with the
consideration of fatigue failure as the third limit state.

2. PREDICTION OF THE CENTRAL VALUES OF M

Let us conduct n one-step tests for a given stress-range Aa-j- (Fig.l) and evaluate
the corresponding M-number for each of the specimens. If N-j_ is the number of
cycles to failure in test i, the general expression for the Miner-number is

N.
„ i

cycles

Fig.1 Distribution of N^ for a Fig.2 Distribution of N^ for a
one-step test at level I one-step test at several levels
(normal scale) (normal scale)

where Nj is a representative value for the number of cycles to failure for the
n tests, normally given by the median value

Nj median (Ni) at level I
Hence, the median of M^

median (NO median (N-i „ (2)median (M. —cc =1i N median (N.)
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and the mean is „ -, c, 2 -, __ M >

> m (log N. +1.1511 • s (log N *r \
m(Ni) m(N±) 10

1.1513's (log N±)
m'Mi' N median(N.) m(log N

1 1 10 (3)

where s(log Ni) is the standard deviation of log N. and assuming a log-normal
distribution for the results of the n tests.
From

log(M^) log(N^) - logtN^) log(N^) - const,

and taking the standard deviation

sdogfM^)) s(log(N )- const) s(log(lO) (4)

Since is a random variable with an assumed logarithmic normal distribution,
it follows from Eq. (1) that for one-step tests the M-number also has a log-
normal distribution, whose median value becomes 1, Eq. (2) and whose standard
deviation is related to the standard deviation of the Wöhler curve, Eq. (4).
For the more general case of multi-step loading with Z different stress ranges
Aoj we must first determine the characteristic values Nj (median values) for
each level. The multi-step test will then be repeated n times in order to establish

the Miner-number for which we assume the existence of "isodamage lines",
i.e. lines along which the fatigue damage is the same independent of the stress
level as

^A ^B= ^ (5)
NA NB

" "
Ni " "

Nz

ISODAMAGE LINES

LINE FOR 50*/.PROBABILITY
OF FAILURE

I nUt) n,,«)»,«* n,(0! Number of
nA<2f ii<2) n,(2) n'z<2) c"cle6

Fig.3 Representation of isodamage Fig.4 Diagramatic representation of
lines (normal scale) the progress of a multi-step

test using isodamage lines
(normal scale)

This assumption enables the multi-step loading to be handled in the same way as
a one-step test. At the end of each stress level, Aaj_i, the current number of
cycles is replaced (by following the isodamage lines) by the equivalent number
of cycles at level AOj as if the loading had been maintained at AOj from the
start of the test.

The conversion of the number of cycles for the test shown in figure 4 is given
in table 1.
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LOAD
LEVEL

NUMBER OF CYCLES(START) NUMBER Of CYCLES (END)

A nA(l)=0 n4(2) >nA

B
Ng

"B<2> =nA N^
+ nB

I ni(,,=nA^+nB^+ "i-S; nr(2)"N^'(S-)+"i
I=A 1

Z-1 nZ-1(2)|A(nll^l)+nZ-l

Z nz(2)=|(".§+nZ

AI?

Ad.

NORMAL DISTRIBUTION

mediantlog N;) m(loqNj) log n

Table 1 Conversion of the number of
cycles for a multi-step test
at each level (normal scale)

Fig,5 Distribution of Nq for a
one-step test at level I
(log. scale)

The Miner-number for specimen i failing on stress level Z is given by the
expression

Z-l N„

M.
1

nz(2) I=A(ni Nl' + °Z 2-1 "i nZ Z "i
N

1 ^ + ^= Z <ÏT>
Z I=A I Z I=A I

(6)

As can be seen, the treatment of a multi-step loading as a one-step test by
means of conversions using the isodamage lines defined by the condition (5)'
leads to the same results for the Miner-number as the classical formulation.
Consequently, Eqs. (2) (3) and (4) hold for the multi-step loading case as well.
However, it cannot be accepted that for the multi-step test the scatter of the
Miner—number is related only to the scatter of the Wöhler curve at whatever
level Z the specimen happens to break. Therefore, an equivalent standard deviation

s (log Np) must be proposed for any level of the Wöhler curve. Eq. (4) be-

I (Sj (log Ni) —
s(log M. s (log N.)

eq l
I=A

Z n
E —

I=A NI

(7)

In the case of repeated loading blocks Z is the number of levels within each.
Eq. (7) assumes that the contribution of the scatter at each level to the
equivalent standard deviation is proportional to the ratio of the number of cycles
conducted at this level to the number of cycles to failure at the same level
(i.e. proportional to its contribution to the Miner-number). Accordingly the
scatter of the standard deviation of the Miner-number depends only on the
composition of the loading blocks and not on the loading sequence.

3. INDEX OF TOTAL DAMAGE PROBABILITY D AND PREDICTION OF ITS CENTRAL VALUES

As usual in the representation of fatigue results (Wöhler curve) the number of
cycles is plotted on a logarithmic scale on the abscissa. Let us define therefore

a new index D, given for the constant cycle tests by the logarithmic ratio
log nr

D I3TS7 (8)

In order to deduce the nature of the frequency distribution of D as well as its
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central values we carry out one-step tests on n specimens with a stress range
ACTj as in section 2 (Fig. 5). The general expression for the new index D for
test i at failure is given by

log N.

Di TI^Fn^ ' (9)

where (log N) j is a representative value of the fatigue lines for the n tests,
normally equal to the median and in this case also equal to the mean.

The values for m(D) and s(D) can be found as follows
m(log N.) m(log N.)

m(Di)" (log N)I iiÏÏSg Nj"
1 (10)

s(log N.) s(log N.)
s(D.) ——- ———— v log N. (11)

x (log N) m(log Kb) i
where v(log N^) is the coefficient of variation of log at level I.
As log is assumed to be a stochastic variable with a Gaussian frequency
distribution, must have a normal distribution as well, Eq. (9), whose mean value

will be 1, Eq. (10), and whose standard deviation is given by the coefficient

of variation of log N_^ at the level AOj.

As in section 2 we can now consider the general multi-step loading by first
obtaining the basic information for the component levels in the loading blocks
(as indicated in Fig. 2, i.e. (log N^) mB(log Np) m^(log N^)
mz(log N^) and then repeating the multi-step block n-times.

In order to evaluate the index D for each test (Fig. 6) we again assume the
existence of isodamage lines but using this time for the abscissa a logarithmic
scale
log n log n log n log n

h— —= !_ (12)
(log N) (log N) (log N) (log N)AB I Z

Fig.6 Representation of Fig.7 Diagramatic representation of
isodamage lines (log. scale) the progress of a multi-step test

using isodamage lines (log.scale)
This assumption again allows a reduction from the multi-step test to the one-step
test to be made as for the Miner-number Fig. 7, and after changing the stress
range from the 1-1 to the I-level the index D is evaluated as if the test had
been conducted from the beginning on the level I. However, the calculation of D,
unlike the Miner-number, requires a reconversion of the number of cycles to the
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normal (non log) scale at the beginning of each new step, Table 2.

LOAD
LEVEL

NUMBER OF CYCLES
AT THE START OF EACH LEVEL

NUMBER OF CYCLES AT

THE END OF EACH LEVEL
0 AT THE END
OF EACH LEVEL

A nA (1 » 0 nA(2)»nA(1)+nA* nA IOgnA(2>,ogNA

B nB (1 - antilog log nA(2V ^ (g®) n^J-n^n+ng l09nB(2|logNB

I n, (1 antilog log ^ N,.,) nj(2) » nj{1 +nj
log 5,(21-

1 /log N]

7-1 n^jd) » antilog (log |og ^ lW2)*rW1)+nZ-1

Z n2(1). antilog (log nZHC2)-
|Qg ^ njtZl-njMJ+nj ^izy^HZ

Table 2 Conversion of the number of cycles for a
' multi-step test at each level (log. scale)

Because of the above conversion expressions (10) and (11) which apply to the
one-step case are also valid for the multi-step case. However, a similar expression

to Eg. (7) for v(log N^) must be used in Eg. (11) that is

s (D. v (log N.)

Z n2
I(Vj(log Ni) —)

I=A I
i eg i Z n

I=A I

(13)

For concrete for which vT(log NJ - const, along the Wöhler curve

v (log N.) v (log N.) const. (14)eg i I i 11

4. PREDICTION OF NUMBER OF CYCLES TO FAILURE FOR A GIVEN PROBABILITY P%

The probability of fatigue failure can now be used for the prediction of fatiguelife for the general case of loading, since this can be treated as a simple one-
step loading, and the mean and standard deviation values M and D can be forecast
for the latter.
Using Egs. (2) and (7) it is possible to calculate the value of the Miner-number
corresponding to any given probability of failure P% with the following well-
known statistical relationship
log (M (P%) m (log M) - k(P%)*s(log M) (15)

where k(P%) is the one-sided statistical tolerance limit for a standardized
confidence level, normally taken as the value of the standardized normal distribution,

i.e. n -»- °°. The corresponding number of cycles can be found from
n

M(P%) (16)

that is
n N [antilog (m(log M) - k(P%) *s (log N) ] (17)I I eg
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Similarly, with Eqs. (10) and (13)

D(P%) m(D) - k (P%) • s (D) m(D) - k(P%)'V (log N) (18)
eq

and using
log En

0(p%) 7: rrr— • (19)
(log N)

En^. antilog [(log NJ^tmfD) - k(P%)*v (log N) ] ] (20)

where En-j- is the total number of cycles "equivalenced" to level I. The correspondence

between Eqs. (17) and (20) is illustrated in Fig. 8.
It should be mentioned that when v(loq N) const, the isodamage lines coincide
with the lines showing the same probability of failure.

S II M
• PROBABILITY
I OF FAILURE

1000 /i T JU ft

0.363

I

I

/ I I/ 1 1

(- 5%

rij '(5%) ni*Nj Number of
cycles

Fig.8 Interpretation of the correspondence between n(5%) using M and D

for one test of [2]

5. CASE OF STOCHASTIC LOADING

When a continuous load collective is used for fatigue design it may be discret-
ized as a histogram and handled as a multi-step load sequence. The smaller the
volume of the basic loading block the better is the agreement of the predicted
number of cycles obtained using M and D and the better is the simulation of the
random nature of the load.
The evaluation of the fatigue results reported in [3] for concrete in compression

with stochastic load simulation gives a very good agreement between predicted
and measured values of s(D) On the contrary, the predicted mean value of D

differs clearly from the mean value derived from the results, probably due to
the interaction of the various levels present in a stochastic load. However, if
the mean value of D at failure could be determined empirically (as Holmen [3]
suggests for the mean value of log M, Fig. 9) then the prediction of D (5%) for
design would be more reliable. The same applies for M.

Since the number of cycles required for 5% probability of failure »predicted using
M and using D,are in very good correspondence (for stochastic load as well) it
follows that the initial hypothesis, Eq. (5) or Eq. (12) influences only the

type of the frequency distribution obtained (in this case log-normal and normal,

respectively) However, with appropriate treatment both lead to the same prediction.

Furthermore, because of the good agreement between P(5%) obtained using M

and D, it follows that the loading sequence (which must be considered in the
derivation of D, but is ignored for M) has a negligible influence on D and M,

provided the basic loading block is small and must be repeated many times before
the value of D or M corresponding to the 5% probability of failure is reached.



316 STATISTICAL INTERPRETATION OF THE MINER NUMBER

THEORETICALLY PREDICTED
(NO INTERACTION ASSUMED)

50% (PREDICTED)

50%(MEASURED)
" 5%(PREDICTED)

5%(MEASURED)
MEASURED

DISTRIBUTIONS OF D AT FAILURE

log£n logN log£n

Fig.9 Variation of m(D) for various
load collectives determined
empirically (adapted from
Holmen [3])

Fig.10 Diagramatic representation of
the shift of the distribution
of D for stochastic loading due
to the interaction between the
load levels

Despite the fact that neither D nor M can take into account the interaction of
the different participant load levels, Eqs. (17) and (20) can still be used for
design on condition that the frequency distribution is suitable adjusted
(empirically) to account for the different mean value.

The difference can be merely considered as a displacement of the distribution of
D from the theoretical positions as shown in Fig. 10. The type of the frequency
distribution function (Gaussian) and the shape (standard deviation) of D remain
the same, and analogous to M.

6. REFLECTIONS ABOUT A POSSIBLE COMPARISON BETWEEN M OR D AND THE ACTUAL DEVELOP¬
MENT OF DAMAGE IN CONCRETE

The good agreement between the physical quantities such as ultrasonic pulse velocity
[4] acoustic emission [5] and longitudinal strain [3] measured during

concrete fatigue tests suggests that they can be identified with actual fatigue
damage. This has sometimes led investigators to compare the development of this
"physical" damage (as a function of the cycle ratio to failure) with the development

of the Miner-number, and to the conclusion that the M-method represents an
unsafe prediction of "damage" at the start and end, and the contrary in the middle

of the fatigue life, Fig. 11. The same can be said for D, where D could be

SPECIMEN

NR
mRV(5%) DRh(57o)

MSk

AT FAILURE

DSk

AT FAILURE

^FR0MG4

W,THi7M 1

^FROMttî
WITH 17D1

4 0 202 0 868 0 091 0 817 0 4 50 0 941
11 0 231 0 868 0 223 0 865 0 965 0 997
5 0 286 0 868 0 203 0 891 0 710 1. 026
1 0 270 0 868 0 363 0 899 1 344 1 036
2 0 253 0 868 0.399 0 913 1 577 1 052
7 0 226 0 868 0 413 0 924 1 827 1 065
3 0 218 0 868 0 583 0 956 2 6 74 1 101
6 0 264 0 868 0 701 0 968 2 655 1 115
9 0 293 0 868 0 644 0 975 2 198 1 123

12 0 209 0 868 0 846 0 993 4 048 1 144
8 0 205 0 868 2 218 1.087 10 820 1 252

10 0.273 0 868 2 417 1 094 8 853 1 262

Fig.11 Comparison between the develop- Table 3 Comparison of various quanti-
ment of M and D and fatigue damage tles for tests of [2]
as measured by longitudinal strain
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regarded as a unsafe estrmate of partial damage over the whole range of cycle
ratios, except close to start. In our opinion such a comparison is based on a

wrong concept. The Miner—number and D represent a measure of the probability of
failure and do not give any indication of the degree of fatigue damage as is
supposed in the above comparisons. The physical quantities measured by the three
authors mentioned above can be considered as actual "damage" but their use in
design requires further information regarding the scatter associated with the
"damage" curve. The statistical analysis of M and D on the other hand shows that
scatter information is an integral part of the Miner- (or D-) methods, which
gives no information about the degree of damage, only the probability of failure.

7. SAFETY FACTOR ANALYSIS AFTER D

Due to the interaction between fatigue strength resistance (Wohler curves) and
the applied load, m order to calculate the fatigue life of a structure, a measure

of the damage must be taken for safety considerations. The probability of
total damage seems to be the most reliable unit of reference for defining the
safety factor.
A process similar to that adopted by Van Leeuwen and Siemes [1] for the calculation

of the safety factor from M can also be applied to D, the only difference
being the Gaussian nature of the latter.
According to the CEB Model Code [6] the condition

sd(VV - wv (21)

must be satisfied, i.e. at any section the action, m general, of the loading
must be less than the corresponding resistance of the structure. In the case of
fatigue, Eq. (21) takes the form
n D *Y < D =D/y (22)

Sd Sk Yf - Rd Rk' 'm

and the safety factor
DRk/Ym ^Rk

n° DSk'Yf °Sk\l ' (23)

where D Value of the Index D, computed at a section for the loading historyRk considered and corresponding to a probability of failure of 5%

(normally less than unity)
Y Reduction factor, which reduces the probability of failure below 5%

m
D Value of the Index D, computed at a section for the characteristic

Sk
loading collective for the structure for the return period considered
Magnification factor, which results m a probability of failure
greater than that corresponding to Dgj,

Y Global factor equal to y *Y_.'Gl m 'f
Hence, two probabilities of failure (represented by two different values of D)

are compared. The first corresponds to 5% (less due to ym), while the second
(increased by yf) depends on the loading collective, the Wohler curve and the
chosen return period.
Given m table 3 are the yGl values necessary to transform Dgk at failure to
DRk(5°o) (Eq. (23) assuming riD 1.0), and the values of yG1 calculated from

m log M) - k 5%) * s log M)

10 (24)
M YGl M(failure)

proposed by Van Leeuwen and Siemes necessary to transform Mgk at failure to
M(5%) (assuming 1.00) for the results for tests of [ 2 J
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As can be seen from table 3 the qualitative agreement between the values of
"YqI (M) and yG^ (D) for each specimen is quite good with the exception of tests 5

and 8 in which the influence of the loading sequence and the use of few loading
blocks to failure can be seen. Quantitatively, however, it is evident that the
range of variation for (M) is disproportionate and shows no correspondence
with the common static safety factor.

8. CONCLUSIONS

A new way of looking at fatigue seems necessary for a consistent limit state
design. The fundamentals of such a new approach are outlined.
A new index for the probability of total damage (failure) D using a logarithmic
scale is introduced.
The assumption of the existence of isodamage lines not only for the Miner-number
M, but also for D, allows the reduction of the multi-step to a one-step loading,
and the prediction of the central values for both.
The two different relationships for the definition of isodamage lines (normal
respectively logarithmic scale) lead to the same qualitative and quantitative
fatigue life predictions in spite of the different distributions which result for
M and D at failure.
A comparison of the probability of failure for stochastic loads using M and D

shows very good accordance and demonstrates the validity of these indices in
fatigue life prediction provided a reliable empirically mean value of M and D at
failure can be determined.

For concrete the isodamage lines coincide with the isoprobabilistic lines
(lines representing equal probability of failure), since the coefficient of
variation v(log N) is constant.

Finally, it is shown that statistical treatment of the Miner-number is necessary
to be used in limit state design.

A detailed description of the proposed method can be found in a report that is
currently being drawn up.
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Notation
M Miner-number
Mi Miner-number calculated in test i at failure (i 1, 2....n)
M(P%) Miner-number corresponding to a probability of failure P%

m(Mi) Mean value of Mi
median(Mi) Median value of Mi
m(log Mi) Mean value (equal to the median value) of log Mi
s(log Mi) Standard deviation of log Mi
D Index of probability of total damage (failure) defined in a

logarithmic scale
Di D calculated in test i at failure (i 1, 2,...n)
m(Di) Mean value of Di
s(Di) Standard deviation of Di
n Number of specimens pertaining to a sample
nj Number of cycles conducted at level I
Enj Total number of cycles 'equivalenced' to level I
Ni Number of cycles to failure in test i (i•= 1, 2,...n)
Nj Representative value for the number of cycles to failure for a

sample at level I, normally given by the median value
(log N) j Representative value of log N for the logarithm of the number of

cycles to failure for a sample at level I, normally taken as the
mean value

m(Ni) Mean value of N^
median(Ni) Median value of Ni
m(log Ni) Mean value of log Ni
s(log Ni) Standard deviation of log N^
v(log Ni) s(log N^)/m(log Ni): Coefficient of variation of log Nj_
median j- (N^) Median value of N^ at level I
mj(log Ni) Mean value of log Ni at level I
Sj(log Ni) Standard deviation of log N^ at level I
vj(log Ni) Coefficient of variation of log Ni at level I
k(P%) one-sided statistical tolerance limit for a given confidence level
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