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Structural Concrete as a Plastic Material
Béton armé comme matériau plastique

Stahlbeton als plastisches Material

M.W. BRAESTRUP

Lic. techn.

Department of Structural Engineering, TU
Copenhagen Lyngby, Denmark

SUMMARY

A rigid, perfectly plastic 3-parameter constitutive model for concrete is presented. The
modified Coulomb failure criterion is adopted as a yield condition with the associated
flow rule. The limited ductility is accounted for by neglecting the tensile strength in
practical applications and replacing the compressive strength by a reduced effective
strength. The dissipation in kinematical discontinuities is calculated, and the
relationship between cracks and yield lines is discussed. References to applications of
the modei are given.

RESUME

Un modéle rigide, parfaitement plastique a 3 paramétres constitutifs est introduit pour
le beton. Le critére de rupture de Coulomb modifié est proposé comme critére de
plasticité avec la régle d'écoulement associée. La ductilité limitée est prise en compte
en négligeant la résistance en tension en applications pratiques et remplagant la
résistance en compression par une résistance effective réduite. La dissipation
plastique dans des discontinuités kinématiques est calculée, et la relation entre
fissures et lignes d'écoulement est discutée. Des références aux applications du
modeéie sont indiquées.

ZUSAMMENFASSUNG

Ein starr-ideal plastisches, 3-parametrisches Materiaimodell fir Beton wird besprochen.
Das modifizierte CGoulombsche Bruchkriterium ist als Fliessbedingung mit dem
zugeordneten Fliessgesetz angenommen. Die begrenzte Duktilitat wird durch
Vernachldssigung der Zugfestigkeit in praktischen Anwendungen und durch Ersatz der
Druckfestigkeit durch eine reduzierte effektive Festigkeit berlicksichtigt. Die
Dissipationsleistung in kinematischen Diskontinuitdten wird berechnet und die Relation
zwischen Rissen und Fliesslinien wird diskutiert. Hinweise auf Anwendungen des
Modelies werden gegeben.



4 STRUCTURAL CONCRETE AS A PLASTIC MATERIAL

1. INTRODUCTION

In order to make realistic predictions about the behaviour of structures under
applied loads, it is neccessary to model the response of the materials from first
loading to failure. However, if attention is restricted to the strength of the
structure, a short-cut can be made by considering the state of collapse only.
This is accomplighed by using the theory of plasticity and applying the theorems

of limit analysis, which are valid under certain idealized constitutive assump-
tions.

The theory of plasticity is a branch of the strength of materials, which can be
traced back to the work of GALILEC [1638], who determined the failure moment of

a beam composed of a material with infinite compressive strength (p 115, op.cit.).
CoULOMB [1776] established a yield (or rather failure) criterion (cf. Section 2
below), and gave an engineering formulation of the upper bound theorem (p 343-
344, op. cit.). The plastic potential was introduced by v. MISES [28.1] who, in

a generalization of earlier work, proved that the work done by a given plastic
strain rate is stationary in the actual state with respect to varying stress
states satisfying the yield criterion. Significant work was carried out in the
Soviet Union in the thirties and forties, cf, GVOZDEV [49.1].

In fact, the theorems of limit analysis were stated by GVOzDEV [38.1], but his
work was not widely known and credited in the West till much later. The commenly
cited formulation is due to DRUCKER, PRAGER, & GREENBERG [52.2] and is based
upon variational theorems proved by HODGE & PRAGER [48.2] and HILL [50.1]. PRa-
GER [55.1] and KOITER [53.2] extended the theorems to bodies with singular yield
surfaces.

The plasticity theory of Gvozdev was formulated with explicit reference to
structural concrete. On the other hand, the school of Prager and Hill was mostly
concerned with metallic bodies, and concrete was long regarded as a brittle ma-
terial, generally unfit for plastic analysis. The implications of applying ri-
gourcus limit analysis to reinforced concrete structures were discussed by
DRUCKER [61.1].

When plasticity is applied to reinforced concrete structures, a main problem is
the formulation of a suitable constitutive description of the concrete. Early ;
investigations of plane elements relied upon the square yield locus for plane
stress (cf. below), which may be generalized into the modified Coulomb yield
condition, used by CHEN & DRUCKER [69.1] to treat a problem of plain concrete.
Within the last decade, this material model has been applied to a number of non-
standard cases, mainly shear in plain and reinforced concrete, by a research
group at the Technical University of Denmark, NIELSEN & al. [78.7], BRAESTRUP &
al. [78.1], JENSEN [77.2]. Similar research has been carried cut at various otherx
institutions, notably the Swiss Institute of Technology, MUELLER [78.6], MARTI
[80.4]. In May 1979 a Colloguium on Plasticity in Reinforced Concrete was orga-
nized in Copenhagen, sponsored by the International Association for Bridge and
Structural Engineering. Most of the results obtained so far are collected in the
conference reports [78.3],{79.5].

The collapse of a structure is characterized by large irreversible deformations.
By comparison, the elastic geometry changes are small, and in the absence of
stability problems they may conveniently be neglected. Also work-hardening ef-
fects are without great importance for the collapse load. Thus the structure is
idealized as a rigid, perfectly plastic body.

The theory of perfect plasticity only involves the rates or increments of plas-
tic strains, and deces not predict the magnitude of the total deformations. How-
ever, when we describe the structure as rigid-plastic, and only consider the

instant of collapse, then the incipient plastic deformations are the first and
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only to occur, and it is immaterial whether they are regarded as increments or
not. Consequently, the use of superposed dots is avoided, and although the term
"rate" is employed, the distinction from conventional "small strains" is merely
academical.

The constitutive equations of plasticity and the validity of the limit analysis
theorems require unlimited ductility, i.e. the materials shall be able to under-
go arbitrarily large deformations at constant stress level. Apparently concrete
cannot be considered to satisfy this requirement to any reasonable degree. An
abstract discussion of this matter is quite complicated and rather futile. In-
stead it is proposed to regard the theory of plasticity as a mathematical tool
by which it is possible to describe the behaviour of concrete structures at col-
lapse. The merits of the approach will then have to be judged by the correspon-
dence between the theoretical predictions and experimental evidence.

2. MODIFIED COULOMB CRITERION
One of the simplest descriptions of the strength of a material is the frictional
hypothésis introduced by courLoMB [1776]}, stating that in a section subjected to
the shear stress T and the nermal stress ¢ failure occurs for

T = ¢ - otany (1)
Thus the strength is defined by two material parameters, the ¢ohesion ¢ and
the angle of internal friction ¢ . For ¢ = 0 , the criterion reduces to

Tresca's condition of maximum shear stress.

For a material obeying equation (1), the uniaxial tensile strength ft and com—
pressive strength fc are:

£f = 28 and £f = 2CVE (2a,b)
LY & :
where k = E;LE#EQ (3)
1 -siny

The Coulomb criterion is used mainly for soils, but it may also be applied to

other granular materials, such as concrete. One drawback of the model is that

for reasonable values of the angle of friction, the ratio between tensile and

compressive strength, implied by equations (2}, is unrealistically high. This

can be amended by introducing Rankine's maximum stress criterion, stating that
tension failure occurs for

g = ft {4)
The combination of equations (1) and (4) is called the modified Coulomb failure
criterion, visualized in Fig. 1.

couroMB [1776], p 348-349, attempted to determine the cohesion of a material by
locading a specimen in pure shear, and found that failure occured for a shear
load approximately equal to that required to break the specimen in direct ten-
sion. This led Coulomb to identify the cohesion ¢ with the tensile strength

£ . As seen from equation (2a), this is in fact correct for a Coulomb material
with k = 4 , correspending to tang= 0.75, which is precisely the value adopted
by Coulomb in his applications, cf. HEYMAN [72.1], p 120-121. However, if the
Coulomb criterion is wvalid, then failure in pure shear will occur at a shear
stress which is less than the tensile strength f£_, cf. Fig. 2. The fact that
the same value was obtained shows that the materidl (a sandstone) ocbeys a modi-
fied Coulomb criterion, where tension failure takes place by separaticn rather
than by sliding. For such materials, the cohesion is substantially higher than
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the uniaxial tensile strength, as
seen in Fig. 2.

The idea of combining the criteria
of maximum shear stress and maximum
normal stress appears to be due to
DCRN [48.1], in the case of cast
iron. For concrete, the combination
of Coulomb sliding failure and
Rankine separation failure was sug-
gested by COWAN [53.1], paunL [61.2], -
and SANDBYE [65.1]. d

Fig. 1 shows the modified Coulomb f T
criterion as the envelope of the L f. fl[

Mohr's circles for the states of A A

stress which can be sustained on

a section in the material, and such

a failure criterion was proposed by Fig. 1 Modified Coulomb failure

mMOoHR [1900G]. Mohr's failure envelcope criterion

is also called the intrinsic curve

of the material, and COWIN [74.1] has shown that the Mohr-Coulomb criterion fol-
lows from a simple constitutive assumption.

Many suggestions have been made for the shape of the failure envelope. Cne of the
earliest is a parabola, cf. LEON [35.1], reflecting the experimental fact that
the angle of friction, i.e. the slope of the curve, decreases with increasing
compressive stress. On the other hand, the parabola is defined by two parameters
only, whereas the modified Coulomb criterion has the attractive feature that the
tensile strength may be varied independently of the compressive strength and the
angle of friction.

The failure envelope of Fig. 1 is open towards the negative direction of the
o-axis, which means that theoretically the material is able to sustain arbitrari-
ly high hydrostatic compression. It is further characteristic for any Mohr-
Coulomb criterion that it does not involve the intermediate principal stress,
which does have some influence, according to modern investigations. To take ac-
count of these defects, various more sophisticated criteria have been formulated,
e.g. MAGNAS & AUDIBERT [71.1],

De GARIEL-THORON [77.1], DRAGON At
& MrOZ [79.3], orrosEn [79.7].

Failure of concrete may also be
defined as the onset of un- Modified Coulomb
stable internal cracking, de-

pending upon the loading path,

KOTSOVOS & NEWMAN [78.4],[79.6], Loulomb
or defined by a limiting volu-

metric strain, CARINO & SLATE

[76.1]. A maximum strain crite-

rion, LOWE [78.5], leads to a

model which is very similar to

the modified Coulomb conditicn.

Surveys of failure criteria for i o
concrete are also given by CHEN " fy j

[78.2] and wasTiELS [79.8].

Y

Fig. 2 Modified and unmodified Coulomb cri-
teria with Mohr's circles of stress
for pure shear and uniaxial tension
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3. CONSTITUTIVE MODEL FOR CONCRETE

To be able to subject structural concrete to plastic analysis, we introduce the
assumption:

Concrete is regarded as a rigid, perfectly plastic material with the
modified Coulomb failure criterion as yield condition and with the
associated flow rule. The compressive strength is f£* , the tensile
strength is fz ; and the angle of friction is ¢ . ¢

When the failure criterion of Fig. 1 is adopted as yield condition, the yield
surface can be determined in the space of principal stresses (¢,,0,,0.) . Fig. 3
shows the yield loci in the cases of plane strain and plane stress. ey are
found from the yield surface by projecting on, respectively intersecting with,
the plane o0, = 0O . Figure 3 also illustrates the associated flow rule, the ge-
neralized strain rates being the principal strain rates (e,,e.,€,) . The slope
of the yield locus corresponding to sliding failure is determined by the para-
meter k , given by equation {3).

The validity of the associated flow rule for granular materials like concrete is
guestionable, It is obvious that concrete dilates at failure, but experimental
evidence seems to indicate that it is not nearly as much as predicted by the
normality condition. However, tests of this kind are difficult to interpret
because they are based upon an assumed uniform state of deformation, and failure
of concrete (and rock) tend to be localized in narrow zones, cf. Section 5 be-
low.

The constitutive description of concrete, introduced above, is very crude in the
sense that it attempts to define the strength properties and the deformations at
failure by means of only three material parameters, viz. £% , £% , and ¢ . It
would have no purpose to pretend that such a primitive modef is particularly rea-
listic, and the approach is open to criticism, BAZANT & TSUBAKI [80.2]. on the
other hand, surprisingly ac-

curate predictions may be Ao, (€5}

obtained, provided some care
is taken in the definition
of the strength parameters.

The stress-strain curve of
concrete in compression is A ale,)
characterized by the total »
absence of a yield plateau
and by a falling branch.
Consequently,the redistribu-
tion of stresses, which is a ;
condition for the validity h““*ﬂg
of the limit analysis theo- )
rems, can only take place at
the expense of losing strength. c
This is taken into account by __///
assuming f¥* , called the ef- plane stress
fective Congrete strength, to
be a certain fraction of the
uniaxial compressive strength . 1+siny
£, estimated by standard D 1-sing
tests (cylinders, prisms,
cubes, etc.). The ratio
v = fk/f is called the FPig. 3 Yield loci for concrete in plane stress
effec%iveness factor, and and plain strain

plane strain \(k,-ﬂ
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since it is primarily a measure of concrete ductility, it decreases with increas-
ing strength level. Empirical investigations have shown that this trend may be
described by assuming the effective strength f* to be proportional to £ .
Incidentally, the same empirical relationship appears to exist between the ten-
sile strength ft and the compressive strength fc :

A theoretical estimate of the effective concrete strength may be cbtained, EXNER
[79.4], by requiring the strain energy (i.e. the area under the stress-strain
curve) for a certain limiting strain € to be identical for the actual and the
idealized materials. Based upon experimgntally determined stress—-strain curves,
the effectiveness factor is then found as a function of the comcpressive strength
f_ , which is very similar toc the square root dependency described above. COLLINS
[79.2] finds that the efifective concrete strength does not only depend upon the
value of the corresponding principal compressive strain, but also on the magnitude
of the co-existing maximum shear strain.

In addition to reflect the ductility, the effectiveness factor must also incorpo-
rate all the effects which are not explicitly accounted for in the theory, e.g.
initial state of stress, stiffness of the materials, size effects, etc. Therefore
the effectiveness factor for a given type of structure will have to be evaluated
by comparing the predictions of plastic analysis with results of tests.

The behaviour of concrete in tension is almost brittle, hence the effective ten-
sile strength ft is very small. If f£f* = 0 is assumed, the lack of ductility
in tension becomés immaterial, and the theorems of limit analysis may be applied
with confidence. Problems arise if the strain rates change from tensile to com-
pressive, but that is not relevant for simple yield pcint analysis. Consequently,
the tensile concrete strength is prudently neglected for all practical purposes,
which means that reinforcement must be provided if tensile stresses cannot be a-
voided. For f* = 0 , the yield locus for plane stress (fig. 3) reduces to the
socalled square yield locus for concrete, cf. Fig. 4.

The angle of internal friction appears

to be fairly independent of the concrete
quality, and ample experimgntal evidence
suggests the value ¢ = 37 , correspond-
ing to tan = 0.75 and k = 4 . This
'value corresponds to the slope of the A
experimental Mohr-Cculomb failure enve-
lope for stress states in the vicinity
of (01,0 ,03) = (0, 0, -£ ). As mention-
ed in Sec%ion 2, the angle of friction

is reduced by the superposition of a
high hydrostatic compression. Sometimes c
substantially higher angles of friction
are quoted, BAZANT & TSUBAKI [79.1], (-f% _£%) ‘55555““‘[81,
[80.2], based upon the shear transfer cr'c

in cracks. However, what is effectively

measured by such tests is the slope of

the modified Coulomb criterion, Fig, 1, Fig. 4 Square yield locus for concrete
at the intersection with the T-axis. in plane stress

€,)

The modified Coulomb criterion with a zero tension cut-off was used by DRUCKER &
PRAGER [52.1] as a yield condition for scil. For concrete, CHEN & DRUCKER [69.1]
introduced a non-zero tensile strength. The yield condition has been discussed
by CHEN [70.1] and JENSEN {77.2].

The square yield locus for concrete in plane stress was applied by NIELSEN [64.1]
to ¢labs, and later to walls, NIELSEN [71.2}, and shear in beams, NIELSEN [67.1].
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.

In the latter context, NIELSEN [69.2] introduced the concept of effective con-
crete strength.
4. CONSTITUTIVE MODEL FOR REINFORCEMENT
For the steel reinforcement, we introduce the assumption:
The reinforcing bars are regarded as rigid, perfectly plastic, and
able to resist forces in their axial direction only. The tensile yield

stress of the steel is fY g

It follows that dowel action of the

bars is neglected. So is usually €« £ s {€s)
the contribution from compressed - — o
reinforcement, because it is small o fy

in comparison with that of the sur-

rounding concrete. The one-dimen-

sional yield locus for steel subject—~ Fig. 5 Yield locus for reinforcing steel
ed to the axial stress o is vi~-

sualized in Fig. 5. For steel without a definite yield point, the yield stress
fy is defined in a suitable manner, e.g. as the 0.2% offset strength.

The reinforcement is assumed to be either concentrated in lines (stringers) or
continuously distributed over the section (smeared). In the latter case, the bars
are assumed to be parallel and sufficiently closely spaced. The tensile strength
of a stringer is the yield force T = Asf . where A_ is the cross-sectiocnal
steel area. The strength of smeared’reinfotcement is characterized by the equi-
valent yield stress rfy , where r is the reinforcement ratio, defined as

o

s
SO . 5
ro= o= {5)
C
Here Ac is the area of the section of concrete perpendicular to the bars of
area AS .

The actions of reinforcement in different directions are assumed to be independ-

ent. Generally, problems with bond and anchorage are neglected. Thus perfect bond
is assumed in upper bound solutions. In lower bound solutions, any stress transfer,
including complete slip, is possible.

5. DISSIPATION IN YIELD LINES

In the derivation of upper bound solutions, it is very convenient to use failure
mechanisms where the deformations are localized in failure surfaces, separating
rigid parts of the body. The angle between the relative displacement rate v

and the surface is termed o , where -n/2 < a < n/2 , cf. Fig. 6b. The inter-
section of the failure surface with the normal plane containing the displacement
vector is called a yield line. The yield line is a kinematical discontinuity
which may be regarded as an idealization ¢f a narrow zone of depth A with high
strain rates, assumed to be homogeneous, cf. Fig. 6a.

In the normal plane, the local components of the strain rates are
= Y sina = 0 = 2 =2 cosa
n T 2 St : e T v @ue T Ve T 2

The transformation formulae (Mohr's circle) then yield the principal strain rates:

—l 3 :—l - g1
€, = A (1 + sina) and 62 0 (1 - sina) (6a,b)
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a) b)

Fig. 6 Yield line in plain concrete
a) Narrow zone with high straining
b) Kinematical discontinuity

The principal directicns of strain rate, which coincide with the principal direc-
tions of stress, are indicated in Figs. 6. The first principal axis bisects the
angle between the deformation wvector and the yield line normal.

In the cases of plane stress (0, = 0) or plane strain (e3 = 0) , the rate of
internal work per unit area of the discontinuity is

= 7

D (6101-+8202) (7)

Referring to equations (6), note that the dissipation is independent of the assumed
depth A of the deforming zone.

The principal stresses (01,02) which are able to produce the principal strain
rates (g4,€p) given by equations (6) are determined by the flow rule and the
yield condition, Fig. 3. The stress regime on the yield locus depends upon the
direction of the strain rate vector, i.e. upon the value of a .

‘'Inserting into equation (7), we find:

1

D =5V fZ(E-m sina) (8)
for ¢ < a < 7/2 (plane stress or strain)
1 ,

D = 3V fz(l-SLna) (9)
for - w/2 <a <9 (plane stress)

Here the parameters £ and m are defined as
= - - ¢ 3 = _ *
s 1 (k- 1) f’;/fc p m 1 (k+ 1) f’:‘:/fC (10a,b)

Note that equations (8) and (9) are identical for o = (¢ . Equation (9) is valid
for plane stress only, because the flow rule and the yield condition exclude
yield lines with o < ¢ in the case of plane strain. To describe such deforma-
tiens, it would be necessary to introduce a more sophisticated constitutive model,
€.g. by assuming a curved failure envelope (cf. Fig. 1) or a non-associated flow
rule.

The derivation of equations (8) and (9) is explained in further detail by JENSEN
[75.1], c£. also [78.6]. General formulae for the dissipation in a modified Cou-
lomb material are given by JENSEN [77.2].



A M.W. BRAESTRUP 11

Suppose a reinforcement stringer intersects a yield

#
line at the angle 8 , where 0 < B <7 and B =0
corresponds to the same direction as o =0 , cf. Fig.
7. The rate of strain = in the stringer is then
g =~ sinBcos (B - a)
s A
The rate of internal work is determined by the flow B
rule and the yield condition, Fig. 5: a
WI = v TY cos (B - o) ' for B-a < m/2 (11) v
WI = 0 for B-a > w/2

Fig. 7 Yield line with
If the yield line is crossed by a band of smeared reinforcing bar
reinforcement, the contribution to the rate of internal
work per unit area of the discontinuity is

D

v rfy cos (B - a)sinB for B-a < m/2 (12)

D=0 for B—ai‘n/Z
The factor sinf takes account of the fact that the reinforcement ratio r is
defined per unit area perpendicular to the reinforcement, cf. equation (5).

6. CRACKS AND YIELD LINES

Cracks in concrete are damages which are always present at the micro-level, and
may occur for a number of reasons, including changes in temperature and humidity.
Under load, visible cracks tend to form perpendicular to the direction of first
principal stress. Thus from Figs. 6 we conclude that a yield line will only co-
incide with the crack direction provided that it is perpendicular to the rela-
tive displacement rate. In that case, the yield line may be termed a collapse
crack, MUELLER [76.2],[78.6].

During a loading history leading to collapse, the principal axes (and the cracks)
are likely to change directions, and at failure the latest formed cracks will ge-
nerally be at an angle to the vield line. This means that shear stresses are
transferred across the discontinuity, presumably by aggregate interlock in old
cracks and by crushing zones between cracks.

The transfer of shear in yield lines is expressed by the rate of work dissipated,
which depends upon the direction o of the deformation, cf. Figs. 6. For o =
m/2 , equation (8) reduces to D =v ¥ , i.e. the resistance of concrete to
cracking is equal to the tensile strength. However, as soon as a tangential de-
formation is introduced (o < m/2) , the resistance increases dramatically, and
the compressive strength becomes dominant.

If the tensile strength is neglected, the stress state in the yield line is given
by the corner ¢ of the yield locus, Fig. 3; for ¢ < o < 1/2 in plane strain

and - /2 < o € /2 in plane stress (- 7/2 < @ <@ in the case of finite
tensile strength). Hence the principal stresses are (o ,02) = (0, - f:) , corre-
sponding to the local stresses in the yield line (cf. Figs. 6):
1 1
= em e - gi = arme lab
o 5 fZ(l sina) ’ Te =3 f: cosa (13a,b)

Note that the shear stress increases to a maximum of half the compressive strength
in the case of pure shearing (a = 0).
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To minimize the rate of internal work, concrete will tend to fail mainly by
cracking, with as little shearing as possible. The efficiency of steel bars as
reinforcement is to a large extent due to the restraint they offer against the
dilation of cracking concrete. The principal merit of the modified Coulomb con-
dition is that it offers a simple and rational description of this behaviour.

The adoption of a zero tensile strength is equivalent with the assumption that
the concrete is potentially cracked in all directions, whether cracks are detect-
ed or not. Still, the concrete behaves as an isotropic material, in the sense
that the cracks in one directicn do not affect the strength in other directions,
unless the cracking is associated with significant strains, cf. Section 3. It
might be feared that.the presence of cracks would reduce the resistance to slid-
ing failure in certain directions. However, experience indicates that the crack
width should be very large (several millimeters) before the shear transfer is
significantly reduced.

A different approach is that of BAZANT & TSUBAKI [79.1],[80.2)}. They regard
cracks as unable to transfer shear without the presence of compressive stresses,
but rather than describe this behaviour by the modified Coulombk criterion with
a zero tensile strength they introduce a so-called slip-free criterion, which is
effectively the Coulomb criterion with zero cohesion (c¢f. BRAESTRUP [80.3]). For
isotropic concrete this implies zero compressive strength, but the criterion is
intended for concrete under predominantly tensile leading, and with large crack
openings. Thus the cracked concrete is assumed to be anisotropic. A constitutive
model for cracked concrete valid for small crack displacements has recently been
proposed by BAZANT & GAMBAROVA [80.1].

7. APPLICATIONS OF THE MODEL

Early applications of plasticity to structural concrete consists of cases where
the strength is mainly governed by the reinforcement, e.g. flexure of beams and
slabs, and for such problems, the use of a plastic approach has become standard.
Prominent examples are the yield hinge method for beams and frames, BAKER L56.1],
and the yield line theory for slabs, JOHANSEN [43.1]. In these cases, the role
of the concrete is merely to provide a suitable compression zone.

Plastic analysis of concrete structures subjected primarily to shear loads repre-
sents a comparatively new development. Such non-classical applications include
in-plane shear in overreinforced (constrained) walls, shear in joints, shear in
slender beams with vertical, inclined or no stirrups, shear in deep beams and
corbels, punching shear and pull-out, concentrated loading, anchorage and bond.

A common feature of these problems is that the strength of the structure is
largely dependent upon the concrete properties, which means that the constitutive
model for the concrete plays a dominant part.

The predictions of the plastic analysis have been compared with experimental evi-
dence, and in most cases a remarkable gqualitative agreement has been found. The
quantitative agreement hinges upon the assumed values of the effective strength
parameters, cf. Section 3. It appears that reasonable strength predictions are
obtained by neglecting the tensile strength f* and adopting an effectiveness
factor v = f’é/fc of the order of v = 0.5 , fc being the cylinder strength.

A detailed account of the individual applications is outside the scope of the

present paper, and the reader is referred to the papers and reports menticned

in Section 1, as well as to a monograph by NIELSEN and a thesis by BRAESTRUP,

both in preparation. A summary of the results will alsc appear as a chapter of
a forthcoming Handbook of Structural Concrete.
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8. DISCUSSION

Mathematical models for material response are tools by which engineers may pre-
dict the strength and deformations of structures. By introducing a sufficiently
large number of constitutive parameters it is possible to describe the behaviour
of the most complex material to any desired degree of accuracy. The computaticnal
difficulties arising from the application of such complicated models can be over-
come by the use of numerical methods adapted for large electronical computers.
However, the machine does not give any indications on how to assign realistic
values to the various material parameters in any particular application.

In the preceeding sections we have introduced a description of concrete at ulti-
mate which is extremely simple, in the sense that it relies upen eonly three para-
meters, which are easily evaluated, the physical significance being straightfor-
ward. If the tensile strength ft is neglected, and the standard value @ = 37

is adopted for the angle of friction, then the only parameter left to characterize
the material is the effective concrete strength f* , which essentially is a con-
servative estimate of the uniaxial compressive streéength.

It is cbvious that such a primitive model cannot furnish any detailed description,
even when attention is restricted to strength properties. Nevertheless, experience
indicates that surprisingly good predictions are obtained concerning the failure
of structures in plain and reinforced concrete.

It appears that the best results are produced for problems invelving plane stress.
For plane strain, and particularly axisymmetric c¢ases, the solutions tend to sig-
nificantly overestimate the load-carrying capacity. This is probably due to the
fact that the yield condition is unconservative in the presence of high hydrosta-
tic compressicon. A refinement of the model should address that problem, e.g. by
substituting a curved failure envelope for the straight line of the Coulomb cri-
terion, cf. Fig. 1.

A reasonable amendment would be to
replace equation (1) by the para-

bola: \\\\ x
T e %fg(l -sing) 2 -¢ £ sin®  (14) .

This failure envelope has the pro- N

perty that the inclination is equal S

to ¢ for the stress state corre- S

sponding to uniaxial compression.

The tension cut-off, equation (4), S

only becomes effective for a ten- A

sile strength ft < % fc(1-sinw)2/

sinp.

The modified failure envelope is Py

shown in Fig. 8 for £, = 0 . Note fe

that in this case the yield locus e o |

for plane stress still is the

sguare yield locus, cf. Fig. 4. Fig. 8 Parabolic failure envelcope with
For plane strain the lines with zero tension cut-off.

slope k (Fig. 3) are replaced by

hyperbolas with asymptotes parallel with the hydrostatic axis. Thus plain strain
yvield lines with deformation inclinations o < become possible, albeit the
resistance against pure shearing (o = 0} is infinite. This should lead to a bet-
ter description of axisymmetric problems without the introduction of additional
parameters.
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A Fracture Mechanics Model for Reinforced Concrete Collapse
Un modéle de mécanique de rupture pour le béton armé.

Ein Bruchmechanikmodell fir das Versagen von Stahibeton.
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Bolegna, ltaly.

SUMMARY _

The Limit Analysis of reinforced concrete beams does not take into consideration the
cracks which usually develop in concrete, and the consequent stiffness variation and
stress concentration. in the present paper such effects will be studied on the basis of
Fracture Mechanics concepts. Thus it will be shown how the stability of the process of
concrete fracture and steel plastic flow depends on the mechanical and geometrical
(scale included) properties of the beam cross-section.

RESUME

L'analyse limite de la section d’'une poutre en béton armé ne tient pas compte des
fissures normalement produites dans le béton et les variations de rigidité et de
concentration des contraintes. Dans cette note, on étudie ces effets sur la base des
principes de la Mécanique de la Rupture. Par conséquent, on montre que la stabilité du
phénoméne de formation des fissures dans le béton et de la:plasticité de 'acier,
dépend des caractéristiques mécaniques et géométriques (y inclus I'échelle) de la
section de la poutre examinée.

ZUSAMMENFASSUNG

Die Traglastberechnung eines Tragerquerschnitts aus Stahlbeton tragt keineswegs
Rechnung met den Rissen, die in der Regel beim Beton auftreten, sowie den damit
zusammenhangenden Steifigkeitsanderungen und Anderungen der
Spannungskonzentration. Genannte Wirkungen werden in diesem Beitrag unter
Zugrundelegung bruchmechanischer Begriffe untersucht. Es wird sich damit zeigen,
inwieweit die stabile Rissausbreitung in Beten und das Fliessen des Stahls von den
mechanischen und geometrischen (einschliesslich der Masstabs-) Eigenschaften des
Querschnitts abhangig sind.
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1. INTRODUCTION.

In the Limit Analysis of the reinforced concrete beam cross-section the stretched part of concrete is
conventionally assumed not to be traction bearing, while a perfectly plastic behaviour of the com-
pressed part is hypothesized {1]. Such analysis doesn't take into consideration the cracks, which
usually develop in concrete and generally cause that more complex crisis phenomenon which is the
collapse of the concrete-steel system. In fact the Limit Analysis approach doesn’t consider the stiff-
ness variation and the stress concentration due to the crack’s presence at all. On the other hand these
two effects can be taken and studied through Fracture Mechanics concepts,

By tradition the problems relating to cracked masonry or concrete constructions are studied on the
basis of empirical pafameters, such as the crack width, i.e. the distance between the crack free surfaces
{2). Such parameters cannot be considered as absolute indications of the crack stability condition, but
only as alarm signals of incipient collapses. In fact the crack width will not be constant, but will gener-
ally increase, moving away from the crack tip. It will however depend on the sizes of the cracked
structure. In the present treatment scale effects will be emphasized in the collapse phenomena of
reinforced concrete beams, as has been already done for plain concrete structures [3]} [4] [5] [6].

Four types of potential collapses will be considered:

1) concrete fracture collapse (K, > K .);

2) concrete ultimate strength collapse (o > f );

3) concrete crushing collapse (0 2 f );

4) steel plastic flow collapse (0 > fy).

The final collapse is generally the definitive and irreversible consequence of the four above mentioned
collapses. Such collapses will occur in a well defined sequence, according to the mechanical and ge-
ometrical (scale included) properties of the beam cross-section. The only collapse, which, even though
very frequent, will not be considered, is the slip between reinforcement and concrete.

Then the stability of the process of concrete fracture and steel plastic flow will be studied, and its
dependence on the mechanical and geometrical (scale included) properties of the beam cross-section
will be shown. A role of primary impartance, besides that of steel percentage A /A [2}, is played by
the non-dimensicnal number fybm/K,c (analogous to the Brittleness Number defined in [4]),
which includes the mechanical properties of the materiais and the sizes of the structure.

2. HYPERSTATIC REACTION OF REINFORCEMENT.

Consider a reinforced concrete beam segment,- with a rectangular cross-section of thickness t and
width b, subjected to a bending moment M. Let the steel reinforcement be distant h from the external
surface, and a through-thickness edge crack of depth a > h is assumed to exist in the stretched part
(Fig. 1). Therefore the cracked concrete beam segment will be in all subjected to the external bending
moment M and to an eccentric axial force F, due to the hyperstatic reaction of the reinforcement.
It is well-known that a bending moment M* induces a stress-intensity factor K, at the crack tip equal

to:
M*

h3/2¢

K, =

Y, (), (1)

where £ = a/b is the relative crack depth and Y, is the function [7]:
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Fig. 1 Cracked reinforced beam segment.
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Fig. 2 Hyperstatic reaction of reinforcement and bending moment of reinforcement plastic flow..

Y,, () =1.99 £2~ 247 £32 + 12,97 £5/2— 23.17 £7/2 + 24.80 £°72, (2)
for £ < 0.6.

in the same way, an axiat tensile force F* induces the stress-intensity factor:

F*
= Ve, (3)

with [7]:
Y. (£)=1.99 EV2—-0.41 £3/2 + 18.70 £°/2 - 38.48 £7/2 + 53.85 £°/2, for § < 0.6. 4)

On the other hand the bending moment M* causes a relative rotation ¢ equal to [8] [9]:

= Ay M*, (5)

with: by =

£
o ]Yﬁ,,(s)df. (6)
b?tE )
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while the axial tensile force F* causes the rotation [8] [9]:

0= Ny F*, (7
.t
with: M= T | Yw (0 Yo (B ot (8)

0
In the case of the considered statically indeterminate system, i.e. the reinforced beam segment {Fig.1),
the global moment acting on the cross-section will be:

b
M*=M-—F(——h), (9)
2
that is, it will be given by the external moment, opening the crack, subtracted by the reinforcement
reaction moment, closing the crack. Then the axial force acting on the cross-section will be:
F*=—F. (10)

Up to the moment of steel yielding, the global rotation, due to the bending moment M* and to the
closing force F*, will be zero:

P=N,,M* +A,  F*=0. (11)

The equation (11) is the congruence condition able to provide the hyperstatic unknown F. Namely,
replacing the expressions (9) and (10) in (11}, the result is:

A [M—F(—;——h)]-?\MFF=O, (12)

and finally it is possible to obtain:

TRTET. (3)
R
where:
£
Y, (8) Y () dE
r() = °$ ; (14)
Y2 (£) d§
[+

The hyperstatic reaction of the reinforcement, against the relative crack depth, for h/b=1/10, 1720,
is reported in the diagram of Figure 2. The decrease of the hyperstatic reaction by increasing the crack
depth is not intuitive, and indeed it may even surprise the reader. However it can be explained by

observing that the compliances A and ?\MF both increase by increasing the crack length, but ?\MF

MM
increases more rapidly than P\MM does. Thus lower and lower axial forces F are needed to annul the

rotation due to the external moment M.
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3. BENDING MOMENT OF REINFORCEMENT PLASTIC FLOW.

As the expression (13) shows, the force F, transmitted by the reinforcement, increases linearly by in-
creasing the external moment M, until the limit force F, = fyAs is reached, being fy the steel yield
strength and A the steel area. From this point onwards a perfectly plastic behaviour of the rein-
forcement will be considered. It means that the infinitesimal reinforcement segment, which is un-
covered, i.e. included between the two crack surfaces, will flow, always transmitting the same force
F, to the cracked concrete segment (Fig. 3).

From (13) it is possible to obtain the moment of plastic flow for the reinforcement:

M,=F,b [(% - %)+ r(E)]. (15)

Such moment against the relative crack depth, for h/b=1/10, 1/20 , is reported in Figure 2. Accord-
ing to the hyperstatic force decrease by increasing the crack depth & (Fig. 2), an increase of the mo-
ment of reinforcement plastic flow M_ occurs by increasing 3

However it is necessary tc observe that, if concrete presents a low crushing strength f_ and steel a
relatively high yield strength f , the concrete crushing collapse can come before the steel plastic flow.
If M_ is the external moment of concrete crushing and a hypothesis of linear stress variation through
the ligament holds (Fig. 4) [2], it results:

h
a-#(2+-3)

c fC
] . . ‘ (16)
F.b A, 6
f —=
YA

The dashed line of Figure 2 represents the diagram of function (16) for f_= 200 kg cm™2, f,= 3600 kg
cm™2, A /A =0.024 and h/b = 1/10. It can be observed that, although values very favourable to the
concrete crushing collapse have been chosen, such collapse in fact comes before the steel plastic flow
only for sufficiently high values of the crack depth (¢ > 0.175). 7

F
FlLo—uo . > f
P d <
: M, M,
|
|
|
:
|
|
0 !
MP M
Fig. 3 Hyperstatic force transmitted by the rein- Fig. 4 Hypothesis of linear stress variation
forcement against the applied moment. through the tigament.

4. RIGID-HARDENING BEHAVIOUR OF THE CRACKED BEAM SEGMENT.

The purpose of the present section is to describe the mechanical behaviour of the cracked reinforced
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A Y

concrete beam segment, once the bending moment M, of steel plastic flow has been exceeded. For
M < M, we have namely ¢ = 0, while for M >M_:

b
0=t M= Fo (1) <2 a7

The M — ¢ diagram for the cracked beam segment is represented in Figure 5. This diagram expresses
the equivalence of the beam segment with a rigid-linear hardening spring. It is interesting to observe
how the hardening line is parallel to the M — ¢ diagram relating to the same cracked beam segment
without reinforcement (broken line).

The hardening coefficient 7\;:‘ against the relative crack depth £ is reported in Figure 5 again. By

increasing the crack depth £, the hardening line becomes more and more inclined, until giving rigid--

-perfectly plastic behaviour. On the other hand, for £ = 0, the hardening line becomes nearly vertical,
until giving a rigid behaviour of the beam segment simulating spring.

Therefore, summarizing, one can conclude that, by increasing £, the moment of steel plastic flow
increases (Fig. 2), while the slope of the hardening line decreases (Fig. 5). Some M — ¢ diagrams, for
h/b = 1/20, are reported in Figure 6, varying £ between 0.05 and 0.50. The moment of steel plastic
flow increases very little by increasing §; on the other hand the slope of the hardening line decreases
sharply. )

n I

0 I 1 i
0.0 01 0.2 03 04 05 06 £

Fig. 5 Hardening coefficient against relative crack depth.

-
vdig

121 ¢_005

010 _

0.50

04}

0.0

-

Fig. 6 Moment-rotation diagrams for different crack depths.
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5. BENDING MOMENT OF CONCRETE FRACTURE.

In the preceding section the behaviour of the cracked beam segment has been considered, for bending
moments higher than the steel plastic flow moment Mp. In the present section the concrete fracture
collapse will be examined, which is consequent to the steel plastic flow collapse, i.e. it occurs for a
bending moment M_ > M.
After the stee! plastic flow, the stress-intensity factor acting at the crack tip will be equal to the al-
gebraical addition of the factors (1) and (3), and the actual icadings will be:

M*=M—FP(-Z~—h), (18)
Fr=—F,. (19)
Thus it will be:
1 b F
= s Y ® [M — FP(; — h)] - bl/:t Y_ (). (20)

Presuming the expression (20) to be equal to the concrete fracture toughness K,c» it is possible to
obtain the fracture moment M.:

o et [YF(EHYM (E)(iw.“_)]_ -
Y (8) Y (8) 2 b
In non-dimensional form:
M. 1 +NP[YF(5) 1 hJ

K, 372t ) Y,, (§) Y,, (8) 2 b

f,0v2 A
where: N,= yK . Ts (22)

Ic

The concrete fracture moment M_ against the relative crack depth £ is reported in Figure 7, varying
the non-dimensional number N, (h/b=1/20).

For N, values close to zero, that is for low reinforced beams (either, for aggregative materials with
high K.,
and then a typical phenomenonof unstable fracture occurs.

or for very small cross-sections), the fracture moment decreases while the crack extends,

For higher NP values, a stable branch follows the unstable one of the curve, which describes the crack
extension against the applied load. Already for N, =1 the minimum of the curve is evident and takes
place for £ =~ 0.35. For higher N_ values, the § value, for which the minimum occurs, is lower, while
the stable branch becomes steeper and steeper. For M = 8.5 the unstable branch completely disap-
pears and only the stable branch remains.

Analogous behaviour has been underlined in the case of a cracked masonry wall, subjected to an
eccentric axial compression force [10]. However in that case the unstable branch and the consequent
stable one appear steeper and the existence of the minimum'is then more evident.

The locus minimorum is represented by a dashed line in Figure 7. This line divides the quadrant of
the diagram into two zones: the upper zone is where the fracturing process is stable, while the lower
one is where the process is unstable. Therefore, it is possible to assert that the fracturing process in
reinforced concrete becomes stable only when the beam is sufficiently reinforced (either, when the
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Fig. 7 Bending moment of concrete fracture against relative crack depth (h/b = 1/20).

fracture toughness K|c is sufficiently low, or when the cross-section is sufficiently large), and when
the crack is sufficiently deep.

If the curve N = constant were perfectly horizontal, a condition of indifferent equilibrium would
occur. In fact none of the curves shows such a regularity. However it is important to cbserve how the
curve relating to N, = 1, which could represent the fracturing phenomenon for very common rein-
forced concrete beams, is only slightly deflected downwards. [n fact the minimum is only about
159% lower than the value of the function for £ =h/b = 0.05.

For h/b = 1/10 curves very similar to those of Figure 7 are obtained. Only two slight differences are
present:

1) the curves go down, i.e. fracture collapse occurs for lower moments, since the reinforcement, being
internal, resists to a lesser extent than in the preceding case;

2) the dashed line goes up, i.e. the stable zone of the diagram shrinks.

Fihally it may be interesting to compute the non-dimensional number N, for three different rein-
forced concrete beams. As a first example, consider the following set of values:

f, = 2400 kg cm™?2, Ko =80kgem 32,

b =30cm , A’/A =0.01,
from which one obtains:

f,b¥2 A 2400 x 30%2
N,= ——+ —=———— x0.01=1.64.
Ke A 80

Thus, it is possible to verify in the diagram of Figure 7, how, for this very commaon reinforced con-
crete beam, the fracturing process is very close to a condition of indifferent equilibrium.
Secondly, examine a low reinforced beam with small cross-section:

f, =2400 kg cm™?2, K,c= 100 kg cm™3/2,

b =20 c¢cm, As/A =0.0024,
from which follows:
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fy bl/2 A, 2400x 2012
Np = -— = ———— x{.0024 = 0.26.
K A 100

ic

In this beam the fracturing process occurs in an unstable manner (Fig. 7).

As a third and last case, examine a high reinforced beam with large cross-section:

f, =3600 kg cm™ 2, K,e =50 kgcm™372,

b =150 cm , As/A =(0.0240
from which it results:
fy b1/2 As 3600 x 15012

N =Y. =="_"_""" 0.0240=21.16.
K. A 50

In this beam the fracturing process occurs in a stable manner (Fig. 7).

6. STABILITY OF THE PROCESS OF CONCRETE FRACTURE AND STEEL PLASTIC FLOW,

In section 5 the stability of reinforced concrete fracturing process has been described on the basis of
the curve representing the crack depth against the applied bending moment. In the present section
such stability will be studied using energetic considerations.

The stress-intensity factor acting on the crack is:

K,= b;zt Y, 8 _M - F(% - h)] — bulzt Y () F, forM< M, (23)
1 i b 1
K,= Loz Yo (E)_M - Fp(;——h)] - 7 Y (E) F,, forM>M . (24)
Replacing expression {13) in {23), it results:
1 M 1 b
AN ba’thM(s) MO 1w (E_h) B
(E - g) +r(§)
1 M 1
- oy Y. 3] —[;_ (i i _h_) o , forMs=< Mp. (25)
2 b
The equations (25) and (24) in non-dimensional form appear as follows:
K,b¥2t v M [ 1 M " 1
Foo MURBL e | Feb T (é— %)4— r(®)

B

for M< M, (26)
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Fig. 8 Stress-intensity factor against relative crack depth, varying the applied moment (h/b = 1/20).

K,b¥2t M /1 h
=Y & — —(— "—)
. F.b 12 b

—Y.{§), for M>M_. (27)

The stress-intensity factor K, against the crack depth £ is reported in Figure 8, varying the loading
parameter M/pr {h/b = 1/20). For M/pr values lower than about 0.7, the stress-intensity factor is
very low for every considered depth h/b < £ < 0.6. As the curve M/F_ b =0.7 clearly shows, the K,
value is positive for small depths &, while it becomes negative for larger depths. This means that, for
0< M/Fpb< 0.8 and sufficiently deep cracks, the assumed model predicts the closing of the crack, as
well as the non-plastic state of steel. The plastic limit, as the diagram of Figure 2 suggests, is very near
the curve M/F_ b = 0.7 reported in Figure 8. . More precisely it is included between the two curves
M/F b =0.60 and M/F b =0.75.

For M/F_ b > 0.8 the K' factor is positive for every investigated depth £. For M/pr 2 0.9 the K
factor monotonicly increases as a function of the crack depth §. For M/F b < 0.9 the function K (§)
presents a positive maximum. This means that, for sufficiently low bending moments and sufficiently
deep cracks, the fracturing process is stable. In fact, from an energetic point of view, one can assert
that the generalized crack extension force ¥ = Kf /E has the same course of K, for M/F b > 0.8.
Thus for 0.8 < M/F b < 0.9 and for sufficiently high £, it results:

3%, a2V
1 9%

<0, (28)

where V is the total potential energy of the concrete-steel system. That is, for those particular values
of the bending moment and the crack depth, the total potential energy V can present, as a stationary
point (K, =K, ), only a minimum and therefore a stable equilibrium condition.
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7. FRACTURE SENSITIVITY INCREASE DUE TO REINFORCEMENT.

Up to now the only fact that has been ciarified is that the concrete fracture collapse follows the rein-
forcement plastic collapse, and that, between the two mentioned collapses, the mechanical hehaviour
of the cracked beam segment is linear hardening. However no indication of how much the fracture mo-
ment M_ is higher than the plastic flow moment M, has been given yet.

From (15) and (21) it follows:

Lot ralv
Mp=2 > r(€)] Yy, (€) 9)

1 h
¥ i +Y (8} + Y, (§) (‘2*“5)

P

P

Fig. 9 Ratio between the moment of steel plastic flow and the moment of concrete fracture against
the non-dimensional number N_, varying the relative crack depth & (h/b = 1/20).

In Figure 9 the ratio M /M_ against the non-dimehsional number N is represented, varying the crack
depth ¢ (h/b = 1/20). From this diagram one deduces that, the higher the number N and the deeper
the crack, the closer the fracture collapse is to the plastic one. It means that the fracture collapse
can be obtained immediately after the plastic one, particularly by varying two parameters:

1) by increasing the beam size b;

2) by increasing the steel percentage ASIA.

Of the four potential collapses mentioned in the Introduction, only three have been explicitly con-
sidered up to now. In section 3 it has been said that the concrete crushing collapse tends to precede
the others for high steel percentages AS/A, as equation (16) shows. Once such collapse has been
avoided, the other three are to be considered. The steel plastic collapse is certainly the first to be
reached, while the ultimate strength collapse and the fracture collapse of concrete follow with a prior-

ity which is difficult to estimate.

8. SYNTHESIS AND CONCLUDING REMARKS.

In Figure 10 the diagrams moment-rotation M{p) are reported for h/b = 1/20, £ = 0.1 and for five
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different values of number N,: 0.0, 0.1, 0.3, 0.7, 3.0.
Once the cross-section sizes and the mechanical pro-
perties of the material have been defined, they represent
five different steel areas.

Rigid behaviour (0 < M < Mp) is followed by linear
hardening behaviour (M, < M < M_). The latter stops
when the concrete fracture collapse occurs, If the fra-
cture phenomenon is unstable (section 5), function
M(p) presents a discontinuity and drops from the value
M_ to the value £ b with a negative jump (Figs. 10-a, b,
¢, d). In fact in this case a complete and instantaneous
disconnection of the concrete cross-section occurs.
While the rotation ¢ is constant, the new moment Fob
can be estimated according to the scheme of Figure 11,
where each beam segment is subjected to the traction
F, of the reinforcement and to the contact compression
Fo.
Then, increasing the rotation @ and lacking any phenom-

i.e. altogether, to the moment F {b — h) = F_b.

enon of instability, the bending moment decreases
with a non-linear law (Fig. 11):

®
M=F,bcos—. (30)

On the other hand, if the fracture phenomenon is stable,
function M(yp) doesn’t present any discontinuity and
describes hardening behaviour (Fig. 10-e¢) analogous
to that of Figure 6.

In Figure 10-a the case N, = 0 is considered, i.e. the
beam without reinforcement. The plastic flow moment
M, is naturally equal to zero, as well as the moment
pr, which occurs immediately after the complete
disconnection of concrete.

In figure 10-b the case N, = 0.1 is described, i.e. a low
reinforced beam. By the diagram of Figure 2 it is pos-
sible to obtain the ratio M_/F b, while by the diagram
of Figure 9 the ratio M_/M_. The slope of the hardening
line doesn’t vary with respect to the preceding case,
since it depends only on the crack length, besides the
concrete elastic modulus and the cross-section Sizes
(Fig. 5).

In Figure 10-c the case N, = 0.3 is considered, which is
analogous to the previous one, except for the fact that
the ratio M_/M_ is higher. On the other hand the ratio
M, /F,b, which is independent of N (Fig. 2), remains
unchanged.
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Fig. 11 Statical scheme after the complete disconnection of concrete.

In Figure 10-d the case N, =0.7 is reported. For this value it is M_ = F_b, and then the discontinuity
vanishes.

Finally in Figure 10-e the case N, = 3 is described. In this case the fracture moment M_ is only
slightly higher than the plastic moment M, and the moment F b would be obtainable only with a
positive jump of the function. On the other hand, from Figure 7 it is known that the fracturing
process, for N, = 3 and £ > 0.14, is stable, and thus a complete and instantaneous disconnection
of concrete can not occur (Fig. 11).

it is observed that, as for N, < 0.7 it is F_ b < M_, and then a discontinuity appears in the diagram
M(p) (Figs. 10-a, b, ¢, d}, so for N, < 0.7 the curves of Figure 7 lie completely in the unstable zone.
Therefore it is possible to conclude that, by increasing the steel percentage AS/A. or, in the same way,
by increasing the beam size b, the concrete fracturing process becomes stable. in the meantime, as

has been shown in section 7, the fracture sensitivity of the system increases.
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SUMMARY

A nonlinear three dimensional material model for plain concrete is proposed. This
model consists of a plasticity-based constitutive relation for the quasiductile behavior
of concrete; a principal-stress and a principal-strain-based criterion to monitor the
initiation of cracks in tension dominated regions as well as cracking due to the poisson
effect; a relative-strain-based concept to gauge the cross-crack stress and stiffness
transfer; and a strain-based crushing criterion to indicate the local failure of concrete.
Some numerical examples to test the proposed model are also included.

RESUME

Ce modéle consiste en une relation constitutive pour le comportement guasiductile du
béton qui est basée sur la théorie de la plasticité; a I'aide d’'un critére exprimé en
fonction des contraintes et dilatations principales on peut contrdler le début de la
fissuration dle a la traction ou aux effets de Poisson; un concept basé sur les
dilatations relatives permet d'estimer le transfert de contraintes et de rigidité a travers
les fissures tandis que la rupture locale du béton est déterminée en fonction d’'un
écrasement limite. On vérifie le modéle & I'aide de quelques exemples numériques.

ZUSAMMENFASSUNG

Fdr den Beton wird ein nichtlineares, dreidimensionales Materialmodell vorgeschlagen,
welches auf der Plastizitdtstheorie basiert. Mit diesem Stoffgesetz wird das quasiduktile
Verhalten von Beton beschrieben; ein Hauptspannungs- und ein
Hauptdehnungskriterium wird bendtzt, um den Rissbeginn in Zugzonen, als auch infolge
des Poisson-Effekts zu erfassen; ein Konzept, welches auf Relativdehnungen beruht,
erlaubt die Abschéatzung der Spannungs- und Steifigkeitsiibertragung durch Risse
hindurch: und ein auf Stauchungen gegrindetes Bruchkriterium beschreibt das ortliche
Versagen des Betons. Anhand einiger numerischer Beispiele wird das vorgeschlagene
Modell Uberprift.
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1, INTRODUCTION

Reinforced concrete is by far one of the most commonly used comstruction
materials. This composite material demonstrates a highly nonlinear behavior
caused by cracking, crushing, aggregate interlock, bond slip, dowel action,
shrinkage and creep, etc. Because reinforced concrete involves so many
nonlinear phenomena interacting with one another, the formulation of =a
"complete" analytical model is very difficult., Consequently, most of the
research related to behavior of reinforced concrete structures has been of an
experimental nature. Within the past several years there has emerged however
an attempt to supplement the experimental effort with numerical analysis.
Activity has grown quite rapidly in this endeavor and much progress has been
reported [3, 4, 16, 17]. Among the various analytical tools available the
computer based finite element method has been accepted as the most powerful
one. However, even with the large scale general purpose computer programs
accessible today, it 1is felt that the incompleteness of material models for
reinforced concrete is still the biggest limiting factor to the current
capacity of structural analysis. The focus of this paper is cast on the three
dimensional nonlinear constitutive relations and failure criterion for plain
concrete subjected to short term monoteonic loading.

2. MATERIAL CHARACTERISTICS AND IDEALIZATION

Concrete exhibits an intrinsic brittleness (low tensile strength) through the
formation of «cracks. Microcracks exist even before any mechanical load is
applied. Both the strength and stiffness of concrete are largely determined
by the details of the microcracking process [7, 9]. Concrete, when subjected
to multiaxial compression, will exhibit an increasing "pseudo-plastic"
behavior as the hydrostatic pressure increases. This 'pseudo-plastic”
behavior phenomenologically resembles the plastic response experienced by
ductile metals. The difference between the two types of materials is that in
ductile metals plastic flow is caused by lattice dislocation due to material
imperfection, while in concrete it is the result of microcracking.

Based on experimental observations, the general response of concrete can be
classified into two stages. A ‘"quasi-ductile" stage characterized by
"pseudo-plastic” behavior, followed by a brittle failure herein referred to as
"erushing"”. Microcracking plays an important role in the first stage. The
growth and the later bridgement of microcracks into a continuous pattern
directly 1leads to the final crushing of concrete. Depending on the loading,
the length of the first, the quasi-ductile, stage will vary. With
unreinforced concrete if the loading involves a dominant or significant
tension the material is considered failed as soon as cracking occurs.

Because concrete resembles partly the ductile metal behavior and partly the
brittle ceramic behavior, an elastic plastic fracture material idealization is
adopted in this study to delineate the observed (phenomelogical) time
independent behavior of concrete.
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3. MATHEMATICAL PRELIMINARIES

In general, the stress tensor defining the state of stress at a point can be
depicted as a point in a nine dimensional Eculidean stress space. This stress
tensor can be decomposed into two parts; the hydrostatic stress part, ¢_, and
the deviatoric stress part, sij’ as follows: n

oij = Sij + o, ° 6ij (1)

=15 . = -0 8 i i 8 3
::ii:,d 30kk’ and Sij oij m Ui in which ij is the Kronecker

Because the stress tensor is real and symmetrical (in the absence of body and
surface couples), a set of three orthogonal principal stress directions exist.
These directiong can be used as a reference frame to describe the same stress
point in that space but now involving only three coordinates. A convenient
alternative to this principal stress reference is the Haigh-Westergard
coordinate system. The geometric representation of these two systems in three
dimensional Euclidean stress space is given in Fig. 1 where

I
- 1
£ = |oN| = =
Y3
p = lﬁl = V2J2
1 -1 o
6, =3 cos "(y), 0<86, <60 (2)
1 -1 ¥ o
6, =3 cos (-y), 0 <6, <60
Y oy
2 3/2
I
Il = Ok 30m
1 .
Jy =35 545 7 544
-1 . .
J3 =5 845 7 Sy 7 S

In these equations is the projection of the stress tensor on the hydrostatic
axis, n =1/3(1,1,1); p 1is the projection of the stress tensor on the
deviatoric plane {(rm -plane); 9 y» and 6, are Lode angles (angles of
similarity) with 6, + 6, = 60%;, “ 1. is ghe first invariant of the stress
tensor; and J,, and J, are the second and third invariants of the deviatoric
stress temsor.” The sign convention used throughout this study is tension (+),
compression (-).
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4. PLASTICITY IN CONCRETE

In order to apply the traditional incremental theory of plasticity to concrete
four things have to be defined apriori: (1) the ultimate strength condition
which sets the upper bound of the attainable stresses; (2) the initial vyield
condition which marks the beginning of plastic flow; (3) the flow rule which
relates the plastic strain increments to stress increments; (4) the hardening
law which dictates the evaluation of the subsequent yield conditions.
Geometrically, the initial and subsequent yield conditions can be represented
as different surfaces in stress space analogous to the aforementioned ultimate
strength condition (Fig. 2). The initial yield surface is a surface that can
only be reached by elastic action., If the straining is continued beyond the
current yield surface, a new subsequent yield surface will be developed
resulting in some additional plastic flow (microcrack growth in concrete).
Upon unloading then reloading, no irrecoverable deformation will occur wuntil
this new subsequent yield surface is reached.

Test results indicate that the maximum attainable stresses constitute a convex
surface in stress space. The shape of this surface resembles that of a
Mohr-Coulomb surface. 1In the principal stress space this wultimate strength
surface follows closely that of a smooth six—fold symmetric conical shape with
convexly curved meridians which do not intersect the negative hydrostatic
axis, This six—fold symmetry supports the macroscopic isotropy assumption for
concrete. Because of the symmetry only a 60° spanned region bounded by the
tensile meridian, p _, and the compressive meridian, ¢ , is essential in
defining the ultimate stremgth surface. 1f (o,, 0,, 0,) are principal
stresses in descending order, then the tensile meridian, Prs corresponds to
the stress condition that o > 0, =033 while the compressive meridian, p_,
corresponds to that of ¢, =0, > 0,. Once these two bounding meridians are
defined, intermediate meridians, p , which correspond to wvarious stress
combinations can be interpolated using the Lode angle.

Based on test results [2, 8, 14] and least square fitting [12], the tensile
and compressive meridians can be expressed as functions of the hydrostatic
parameter, f:

o}

rt

|

= -6.4899 + 2.9458 v5.0343 - E/[£]]

h

(3)

°
0 "

= -3.6199 + 2.9458 V1.6907 - E7|£]]

Fh
0 -

in which f is the uniaxial compressive strength of concrete (Fig. 3). Both

the tengile and compressive meridians intersect the positive hydrostatic axis

at &£/ f % —-0.18064. It means that concrete cracks under hydrostatic temsion
c

when ¢/ £, = -0.18064.

By fitting hyperbolas to the corners of the Mohr-Coulomb type failure locus on
the deviatoric plane (Fig. 4), the ultimate strength surface can be expressed
as

2

f(oij) = >/2J2 - [(1—szei) oy + S ei pz] =90 (4)

where
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S = ~ji; (or %0
60
. . _ e 2 Z 2. 2
.- (1+m) Py cosel. /?l+2m) p.sin 61 cot a+m p,cos Bl
1 {coszel - sinzel . cotza}
. 7 2. 23 7, 72
. (1+m) e cosez—v/(l+2m) p.-sin 92 cot B+m p.cos 62
2 {cosze2 - sinze . cotzB}
2
in which
p
R:—..E
P Dc
2
coto, = ~— (R - 0.5)
5 P
cotf = 2 (g; - 0.5)
Y3 Tp

When applied to the biaxial case, the proposed ultimate strength criterion in
Eq. 4 correlates well with the standard test results of Kupfer et al. [8]
(Fig. 5).

It is convenient to assume that the initial and subsequent yield conditions
have the same functional form as the ultimate strength criterion defined in
Eq. &4
£(oy,5w) = V23, - w[(1-s%02) p, + 8702 p,1 = 0 (5)

where w is now added as the hardening parameter to monitor the change of the
yield condition. For concrete the initial value for w, which corresponds to
the initial yielding, varies in the range of 0.3 to 0.5. The ultimate value
for w which corresponds to the ultimate strength is 1. The values in between
the initial and the ultimate cases correspond to various intermediate yield
conditions.

In this study it was found that with the selected surface arn associated flow
rule (Fig. 6) does mnot hold for the whole spectrum of the response of
concrete. An equivalent nonassociated flow rule is thus gradually mobilized
as the stress level increases. The equivalent nonassociated flow rule is
proposed through the use of a piecewise continuocus yield surface together with
its associated flow rule (Fig. 7). By properly adjusting the angle as
yielding progresses, in other words tuning the inclination of each
infinitesimal piece on the yield surface, an overstiffening effect can be
assuaged while maintaining symmetry in the e}astic-plastic constitutive
relations. The modified ¢ angle designated by ¢ is defined as

6" = ¢ - [(-5%D) + (s%6D " 4] (6)

in which
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-1 ,3f 1
$ = tan © (57) and ¢, =¢_ - [1- ——]
9g E W 1 +_§;
with h
=&
o = gr + 0.18064
c
and
o, = 1, when 0 < w W,
L
=1 - , whenw_ < w<1
1—wc c— " —

where w_ is the hardening parameter at which an overstiffening effect becomes
significant. Generally this corresponds to the onset of mortar cracking at
v, = 0.7 to 0.8.

Based on the modified ¢ angle, the outward normals of the hypothesized
piecewise continuous yield surface can be written as

aJ dJ
* d f 2 £
= (tan ¢) - (dcg ) + ;3 ) (dc ) * ;3 ) (d0'3

) %)
3
ij 2 ij 3 ij

Because this paper is concerned only with short-term monotonic loading, an
isotropic hardening law is used.

If we assume elastic unloading behavior of concrete together with the
associated flow rule and the consistency condition (neglecting the viscosity
effect) [10], the incremental elastic plastic constitutive relation can be
expressed as

- -

Dijgg %0 Ars Drskl] : &

dogs = Py = Y+a_ - D ‘a k1
mn mnrs rs (8)
= pP .
Dysk1 Y€k
where D. » are elastic constitutive coeff1c1ents,
are elagklc—pigmg1c rggﬁstl?uflve coef }CI%ntS' a ., are the outwir&
normals to the yield surface; and Y = - a wi?ﬁ dx TEhe instantaneous

constant of proportionality used in the flow rule.

5. CRACK MODELING IN CONCRETE

In this study the smeared crack approach is adopted. The advantage of wusing
this approach 1lies in the fact that it avoids the constant changing of
structure topology. The smeared crack representation, which corresponds to an
averaging (smoothing) procedure of local discontinuities, allows an equivalent
continuum treatment with localized material amnisotropy. It simplifies the
solution algorithms substantially. Also, it fits well into the approximate
nature of the finite element method with C -continuity of displacement and
bounded nonsingular strain and stress felds. However, it should be noted
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that the smeared crack representation tends to diffuse the cracking system.
Consequently, no single crack can dominate the behavior.

Experimental observation from different sources all indicate that maximum
tensile deformation measured by the maximum tensile strain component is a
dominant parameter in predicting brittle fracture of concrete [1]. The
Poisson effect may cause some inconsistency when this so called "principal
strain criterion" is subjected to multiaxial stress conditioms [13].
Nevertheless, the simplicity of this criterion and the fact that it is used
only for crack initiation in completely intact concrete make its use feasible.
Consequently, it is assumed that the plane of cracking in concrete is normal
to the direction of maximum tensile strain component.

Because an orthogonal set of opening cracks ‘is enforced in this study, the
direction for any subsequent crack formed in the uncracked subspace following
an initial crack is thus fixed. A stress-based new crack initiation criterion
is wused. This stress-based criterion is very similar to the commonly used
"principal stress criterion”, except that the direction of this potential
crack is pre—defined. ‘

6. RELATIVE STRAIN ACROSS THE CRACK

In the framework of continuum mechanics, a crack may be looked upoen as a
separation of two mneighboring material particles. Upon cracking certain
components of displacements will become discontinuous, which implies "relative
movement" between the two sides of the crack surface. Because displacements
and strains are related through kinematic equations, it is conceivable within
a continuum treatment to assume that a set of relative strains exist which
represents the relative movement across the crack. As a matter of fact, these
"relative strain" quantities are what have been measured across a crack in the
experiments through the use of mechanical strain gauges.

In the equivalent continuum treatment of cracked concrete (smeared crack
approach), the "relative strain" can be defined as the elastic portion of the
corresponding total strain. Before cracking occurs a complete bonding exists
between two neighboring particles. It is this bonding that allows them to
deform or to be strained together. Once cracking starts, a separation which
implies relative movements between these two neighboring particles will occur.
These relative movements can be interpreted as a relaxation of the deformation
(straining) of one particle with respect to the other., Since the plastic
portion of deformation (straining) is nonrecoverable, it is logical to assume
that the elastic portion must account for the relaxation and hence the
corresponding relative movements. This "relative strain" is more a
mathematical than physical parameter. It is used to gauge the local
cross~crack stress and stiffness transfer [5].
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7. CROSS-CRACK CONSTITUTIVE RELATIONS

Let n, s and t be a set of righthanded orthogonal coordinate directions with n
normal and s, t tangentisgl to the cracked surface.

The 3-D cross—c¢rack constitutive relations in terms of stress and relative
strain components across the crack, can be described in a matrix form as
follows

[ ' N
% knn k'ns knt €a
o = k k £ { , 9
s sn ss kst 1 s (9
o -~
t Eey  Bew e ¢
| ) . ; J
in which X__ is the cross-crack normal stiffness coefficient; Kss, K are
the cross—-crack shear stiffness coefficients; Ksn’ Ktn are the cross—-crack
coupled shear stiffness coefficients; K , K & are the cross—crack

K are the cross—crack

dilatant-contractant stiffness coefficients;"°and gl Do

cross—shear stiffness coefficients,

Upon replacing the stress and relative strain components in Eq. 9 by the
corresponding stress and relative strain increments a set of incremental
cross—crack constitutive relations are thus obtained. The assumption in doing
so 1is that the interface stiffness coefficients are path independent in the
sense that they are functions only of the current total stresses and the
accumulated relative strains.

The stiffness coefficients in Eq. 9 are generally unsymmetrical. Because a
symmetric matrix is always desirable from a programming point of view, Eq. 9
is modified so that a symmetric constitutive matrix is achieved as shown in
Eq. 10.

" S 3
Ao K L +x )y Lk 4k ) (A;
n nn 2 ' ns sn 2 nt tn
po Vo= | Ex +k ) K Lk 4k ) A (10)
1 s 2*"ns “sn ss 2 st ts 1 1
Ac Lo +k ) Lk 4k ) k Ae
| t 2 nt tn 2 st ts tt

In the following section, the cross—~crack constitutive relations defined here
are referred to as the "CSST Model."

8. POST-CRACKING MODEL FOR CONCRETE

Once cracking occurs, the material coordinate system is locally fixed due to
the crack introduced anisotropy. Cracks in orthogonal directions can occur
simultaneously or subsequently whenever the crack initiation criterion is met
in an intact subspace of concrete. This allows concrete to have
multi-directional cracking. Upon cracking, Eq. 8 written in the current
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principal strain directions (material coordinate directions) needs to be
modified to account for the existence of <cracks and to simulate the
post—cracking behavior of concrete. For this purpose, the CSST model is used,
while the constitutive relations for the intact concrete are still enforced in
the unracked subspace of concrete,

In this study a gradual stress releasing is implemented through the gradual-

activation of the CSST model after cracking occurs. This is done by using
stress—level-dependent activating factors for the CSST stiffness coefficients
when averaging them with those coefficients in Eq. 8 to obtain the final
elastic-plastic-fracture stiffness. Letting the numbers 1, 2, 3 represent the
current material coordinate directions, the fracture constitutive relations
can be written as follows

| ( 1 [:,]
‘11 €11
912 wl‘(§§221) 0 o €12
13 g13
%21 €51
{ %2 1%= 0 Wy (ool ) 0 %22 | (11)
%23 €23
731 £3
732 0 0 W3°(§§321) )
933 Il %33

The activating factors, Wi, i=1,2, are defined as follows: Wi= 0 if there
is no active crack normal to the i direction; otherwise

W, = __1___. (12)
i qg?

where w is the current hardening parameter; and n is a curve fitting
parameter. @ Multiplying the stiffness coefficients in the CSST model with a
factor of(s../&i.)where € ,. and €., are accumulated relative strains and
total strain® regpectively. Equati&ﬂ 11 can be written in tensor notation as

f
Gij =W . Dijkl S (13)
From Eq. 13 the '"path independent" incremental fracture constitutive relations

can be written as
f
= 14)
Aoij W . Dijkl . Aakl (

Combining Eqs. 8 and 14 under the current local material coordinate system, we
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get
-1 .rpeP .of ; = pePf . 15
8s = Tow o DPiger * ¥ 0igkad A€ T Dijia e (15)
where Digil are the current elastic-plastic—-fracture stiffness coefficients.

In general the D?Ef are not symmetric, because the fracture destroys the
continuity origiﬁﬂ*ly existing in the intact material. However, in this study
an equivalent continuum mechanics approach is wused which approximates the
fracture effect by changing the material properties. Hence it is proposed to
symmetrize the elastic-plastic-fracture stiffness coefficients by letting

epf

epf =

- nepf D =D@f

epf -
1kl jikl 131k klij

D + pePf , pepf DePfj)/a

11kl jikl 1i1k k1i
(16)
In order to be consistent with other parts of the structure, Depf have to be

y : » . ijk .
transformed from their local material coordinate system into thd %redetermlned
structural coordinate system.

9. STRAIN-BASED FAILURE CRITERION

The failure criterion prescribes the stress and/or strain condition at which
the concrete loses all of its stiffness as well as load carrying capacity. In
this study a strain-based failure criterion is adopted. Concrete 1is
considered crushed when

B CHU (17)
€ =g
0
in which ¢ is the equivalent uniaxial strain defined in Eq. 18; ¢  is

defined in“Rq. 22; and R_ is defined in Eq. 21 (Fig. 8).

10. EQUIVALENT UNIAXTAL STRESS AND STRAIN

In order to evaluate the parameter Y in Eq. 8 as plastification occurs, the
plastic hardening modulus, H, has to be calibrated apriori. A commonly used
approach in calculating H is to deduce from the multidimensional condition a
pair of quantities, the equivalent uniaxial stress, ¢ s, and the strain ¢ .
By doing so the well documented uniaxial test results®3in be generalized “3nd
extrapolated. In this study it was found that concrete behavior is very
sengitive to the use of an equivalent uniaxial strain once cracks have
occurred. This is because the fracture introduced softening effect damages
the consistency and integrity of the equivalent wuniaxial stress-strain
approach used in the plasticity theory. With this drawback in mind, the
following definition for the equivalent uniaxial strain is used in this study.
It is made up of an elastic part, Eeq.’ and a plastic part, eeq.'

m.lfél

€ = ge +- sp = + Ep (18)

eq. eq. eq. E edq. .
where w is the current hardening parameter defined as w =(5eq / lcol; fc and
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E are the uniaxial compressive strength and the initial modulus of elasticity

respectively; and ¢? is the accumulated equivalent uniaxial plastic

strain
defined in Eq. 23. €q-

In this study the generalized uniaxial compressive stress-strain relationship
of Saenz is used [15], Fig. 8.

E - Ee
o = L (19)
€q. S e 2 E:eq 3
1 +(R+R_-2) (—=4=) - (2R-1) (34 4 R(—1Y)
E € £ €
0 0 0
The equivalent uniaxial tangent modulus is
£ e

i E -[1+(2r-1) 2957 - 2R(-2-9-‘—)3]

i eq. _ 0 0 (20)
Et de

€ € €
U [ RiRD) (51 - (2r-1) (219% r(-2297
€ € €
0 0 0
in which ¢ and €, are the peak strength and corresponding strain under the

current stress c¢ombination, and ¢ and o are the maximum strain and
corresponding stress under the current stress combination. The

remaining
terms in Eqs. 19 and 20 are defined by the following equations:
_ 20
ES B €5
Re ” %,
ES
R =0 (21)
o o
f
R ==
£ %o
Ry (R -1) 1
R & e
(Re—l) R,

In order to find o, € 05 and Eg under the current stress combination, the

following algorithm is use

1) Extend & line from the origin in the stress space through the current

strese point until it penetrates the ultimate strength surface. Then
calculate its length.
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2) Find the ratio, r, between the 1ength' just calculated and the length
corresponding to the uniaxial compression case.

_ 1
3) 0p = T - fc

4) ¢

If

Ec-[r-Tw(T-l)], if v > 1;
(22)

= c_-[-1.6 £ 42,2502 4 0.35r], if r < 1

where T is taken to be three in this study; and €. 1s the measured
uniaxial compressive strain at fc'

5) o °0/Ro

6) 5=R'€0

Due to the lack of strain data the empirical formula proposed by Darwin and
Pecknold is wused to find g . IDarwin, Pecknold, 1974). Because it is
impossible to define Og and ¢_. on any rigorous experimental basis. it is
assumed that R = 4 &nd R _="4 realizing that R and R_ do not have to be the
same. Since ¢_and t©_are calculated differently, the secant modulus, Es’ is
not a constant value but a function of the current stress combination.

If the strain hardening hypothesis is used then w = w(ez ), where sz is the
accumulated equivalent uniaxial plastic strain defined 88° a-
1/2
P = p = . P, P = . . " 23
€ fae eq. fmp (ds:_Lj deij) fmp dA (aij aij) (23)
where dsz- are the incremental plastic strain; and m_ is the equivalent
uniaxial ﬂlastic strain scaling factor. P

8

m = — (24)
s§+2
in which
I/ I
St T tan(e+é®)
8 = cos_l(v2/3)
*
It is noted that for hydrostatic insensitive materials ¢ = ¢ =0 and

P

If elastic unloading is assumed, then the plastic hardening modulus, H, can be
related to the initial and tangent moduli as follows

H - eq' t (25)
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From Eqs. 18, 23 and 25 the parameter Y in Eq. 8 can be determined as

-—__..__.°.d_m=_—a—f_-- H . » . 26
T=-3% @ b Togl T (ay; = 235 (26)

11. NUMERICAL STUDY

The proposed constitutive relations are used to simulate the responses of
concrete subjected to wuniaxial, biaxial, and triaxial compressive loadings.
The test and simulated results are shown in Figs. 9-17.

It was found during the study of triaxial loadings, that the phenomenon which
is termed yielding in this study existed even under pure hydrostatic stress.
This is due to the inelastic compaction of concrete. In order to obtain
reasonable results therefore this presence of "yielding" under hydrostatic
stress had to be considered. "Classical"™ plasticity theory, however, does not
allow such nonlinear behavior when the material is in a pure hydrostatic
stress state, This finding suggests then that a more general approach when
using a plasticity theory for concrete in the future may be one that possesses
two yield functions, one for volumetric and one for deviatoric response.
These two analytical models should be able to interact with each other, so
that the shear dilatation and compaction phenomena observed in experiments can
be considered.

12. CONCLUSIONS

The smeared crack representation with material sampling points at the
integration points proves to be reliable. This statement is valid if the
sampling points are not toc far away from each other. Consequently, local
irregularities will not be overlooked due to the inherent averaging process.
Based on this argument, reduced integration should be wused with care.
Depending on the real stress distribution, sometimes more integration points
are needed simply to describe the crack pattern and hence to monitor the
nonlinearized material properties with higher precision.

Having been verified on many occasions, the equivalent uniaxial stress—strain
approach in a plasticity theory works well with ductile materials. As for
concrete, this approach requires further tuning and generalization in order to
better reflect the cracking effect.

The equivalent nonassociated flow rule, using a piecewise continuous yield
surface to maintain a symmetrical elastic—plastic constitutive matrix, gives a
better uniaxial compressive response of concrete than the associated flow rule
would.

The “relative strain" parametrization in handling the cross—crack stress and
stiffness transfers 1is a reasonable approach within the realm of continuum
mechanics. Besides being a mathematical quantity the "relative strain" also
has its practical implication in the mechanical strain gauge measurement
across a crack.
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Analytical Model for Deformed Bar Bond under Generalized Excitations
Modele analytique pour I'adhérence de barres nervurées sous sollicitations répéiées

Analytisches Modell fiir den Verbund von Rippenstdhlen unter beliebigen
Beanspruchungen

V. CIAMPI, R. ELIGEHAUSEN V. BERTERO, E. POPOV
Visiting scholars Professor

University of California University of California
Berkeley, USA Berkeley, USA
SUMMARY

A mathematical model is presented to predict the behavior of a deformed bar,
embedded in weill-confined concrete, and subjected to generalized cyclic excitations in
the range of the low cycle fatigue. It includes the formulation of a simplified model for
the local bond stress-slip relationship, based on the elaboration of the result of an
extensive experimental study carried out recently at Berkeley; use of a simple but
sufficiently accurate model for the stress-strain relationship of reinforcing steel and the
numerical solution of the differential equation of bond. An example is presented and
commented.

RESUME

Un modéle mathématique décrivant le comportement d'une barre crénelée dans un
béton bien confiné et soumis a un chargement cyclique quelconque de haute intensité
est présenté. il comprend: 1) la formulation d'un modéle simplifié pour décrire la
relation contrainte-glissement en adhérence basé sur les résultats d'un vaste
programme expérimental mené récemment a Berkeley, 2) l'utilisation d’'un modéle
simple mais suffisamment exact pour décrire la relation contrainte-déformation dans la
barre d’armature et 3) une solution numérique de I'équation différentielle décrivant
l'adhérence. Un exemple est présenté et commenté.

ZUSAMMENFASSUNG

Ein mathematisches Modell zur Berechnung des Verhaltens eines Rippenstabes,
verankert in eng verbugeltem Beton und beansprucht durch beliebige zyklische
Belastungen hoher Intensitéat, wird erlautert. Es umfasst die Formulierung eines
vereinfachten Modells fir die Beziehung zwischen ortlicher Verbundspannung und
ortlichem Schlupf, das aus umfangreichen, in Berkeley durchgefiibrten Versuchen
abgeleitet wurde; die Benutzung eines einfachen, jedoch ausreichend genauen Modelis
fur das Spannungs-Dehnungs Gesetz des Bewehrungsstahles und die numerische
Losung der Differentialgleichung des Verbundes. Ein Beispiel ist dargestellt und
erlautert.
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1. INTRODUCTION

Under severe seismic excitations, the hysteretic behavior of reinforced concrete
structures 1s highly dependent on the interaction between steel and concrete
(bond stress-slip relationship) [l]. Tests show that developing displacement
ductility ratios of four or more, fixed end rotations caused by slip of the main
steel bars along their embedment length in beam~column joints, may contribute up
to 50 percent of the total beam deflections [2-4]. These effects must be in-
cluded in the analyses. However, 1n spite of recent integrated experimental and
analytical studies devoted to finding such a relationship [5], no reliable bond
stress-~slip laws for generalized excitations are available [61].

In this paper a mathematical model is presented to predict the behavior of a
deformed bar, embedded in well-confined concrete, and subjected to generalized
cyclic excitations. The local bond stress-slip model, the model for the stress-
strain relationship of reinforcing steel, and the technique for solving the dif-
ferential equation of bond, are discussed and an example is presented.

2. LOCAL BOND STRESS-SLIP MODEL
2.1 Tests

The constitutive relations for bond between deformed bars and normal weight con-

crete were derived from results of an extensive experimental study carried out

at Berkeley during the last year {7}. Altogether some 120 specimens were tested;
only those results which are relevant to the formulation of the proposed analyti-
cal model are briefly discussed herein.

The test specimens (Fig. 1) represented the confined region of a beamcolumn
joint. Only a short length (5dy) of a grade 60 deformed bar (#8 , dp v 25 mm)
was embedded in concrete (fé = 30 N/mmz). Because cracking might influence the
bond stress-slip behavior, the resistance against splitting was simulated as
closely as possible to that which might exist in a real structure. Therefore a
thin plastic sheet was placed in the plane of the longitudinal axis of the bar
(Fig. 1) which limited the concrete splitting area to the desired value. 1In

Fig. 1 Test Specimen Fig. 2 Foto illustrating test setup
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this way the influence of different bar spacings could be modeled as well. In
the tests described here, the assumed spacing was 4 dp. The test specimen was
installed in a specially designed testing frame (Fig. 2) and was loaded by a
hydraulic servo controlied universal testing machine having a capacity #* 1350 kN,
which allowed the application of prescribed tension and compression forces, or
displacements,te the embedded bars. The tests were run under displacement con-
trol by subjecting the threaded loading end of the bar to the required force
needed to induce the desired slip, which was measured at the unloaded bar end
(using a linear variable differential transformer, (Fig. 2) and was controlled
at a rate of 1.7 mm/min.

The influence of various slip histories on the bond stress—-slip behavior was
examined. The main parameters were: the peak value of the slip (0.1 mm < sp.x
< 15 mm}; the difference between the peak values of slip (As = smax — Spin »
see Fig. 3a) between which the specimen was cyclically loaded (As = 0.05 mm,

! spax and 2 syax); and the number of cycles (1 to 10). In the majority of
tests, after the specimens were subjected either to 1 or alternatively to 10
cycles up to the selected peak values of slip, the slip was increased monoton-
ically to fajilure. In a few tests the bar was subjected to a series of cycles
at different values of slip. Usually 2 or 3 identical tests were carried out.

In all tests conducted the failures were caused by pulling out of the bars at
steel stresses well below yield stress. Prior to failure, splitting cracks
developed in the plane of the longitudinal axis of the bars but their growth
was controlled by the confining reinforcement (see Fig. l).

Typical test results are shown in Fig. 3 and summarized below:

(a) The bond stress-slip relationship for monotonic loading in tension was
almost identical to that in compression. This could be expected [8] since the
specimens were cast with the bars in a horizontal position. The descending
branch of the bond stress~slip curve levelled off at a slip approximately equal
to the clear distance between protruding lugs of the bar.

(b) 1If the peak bond stress in temnsion and compression during cycling’did not
exceed 70-80 percent of the monotonic Tpay, the ensuing bond stress-slip re-
lationshipsat slip values larger than the one at which the specimen was cycled,
was not significantly affected by up to 10 cycles (Fig. 3a). The bond stress

at peak slip deteriorated moderately with increasing number of cycles. These
results agree well with earlier findings [9-12]. Although many factors related
to early concrete damage (microcracking and microcrushing due to high local
stresses at the protruding lugs) may be involved in this bond-resistance
deterioration it is believed that the main cause is a relaxation of the concrete

between the lugs [12].

(¢) When the bar was loaded monotonically to an arbitrary slip value and then
cycled up to 10 times between this slip value and a slip value corresponding to
a load equal to zero (As = 0.05 mm), the monotonic envelope was, for all practi-
cal purposes, reached again. From then on the behavior was the same as that
obtained in a monotonic test. This agrees well with earlier results ([8,11].

(d) Loading to slip values inducing a 7T larger than 80 percent of the mono-
tonically obtained T .. in either direction led to a degradation in the bond
stress-slip behavior T2 the reversed direction (Figs. 3b and 3c). The bond
stress-slip relationship at slip values larger than the peak value during pre-
vious cyclesswith As = spay Or As = 2 spyay , was significantly different from
the virgin monotonic envelope. There was a deterioration of the bond resistance
and the degree of deterioration increased with increasing peak slip spax »
increasing As , and increasing number of cycles (Fig. 3b and 3c). The largest
deterioration was observed for full reversals of slip (As = 2 spay)-
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The observed behavior can be explained by assuming that in a well-confined re-
inforced concrete the maximum bond resistance is controlled by the initiation of
a shear failure in a part of the concrete between the protruding lugs of the bar.
The larger is the value of the slip with respect to Sqpax, 1.e. slip at Tpay »
the larger is the area of concrete between the lugs that is affected by the shear
failure, and the smaller is the bond resistance. If the bar is cycled between
constant peak values of s and Spjn » the main damage is done in the first
cycle. During successive cycles, the concrete at the cylindrical surface where
shear failure occurred, is mainly grounded off, decreasing its interlocking and

frictional resistance.

(e) The frictionmal bond resistance, Tg , during cycling was dependent upon the
value of the peak slip spgyx . With repeated cycles Tsy deteriorated rapidly
(see Figs. 3a-d), approximately at the same rate as the bond resistance at the
peak slip value s & but at a faster rate than the ultimate frictional bond
resistance T3(N) ?gee Fig. 3c) of the corresponding reduced envelope curve.

The mechanism and value of frictional bond resistance are not well described and

predicted by existing proposals i6].

2.2 Analytical Local Bond Stress—-Slip Model

The assumed bond model is illustrated in Fig. 4. Although it simplifies the
observed real behavior, it takes into account the significant parameters that
appear to contrcl the behavior observed in the experiments. This model, in spite
of being simpler than the one proposed in [5], is believed to be more general.
The model's main characteristics, illustrated by following a typical cycle

(Fig. 4), are described below.

When loading the first time, the assumed bond stress-slip relationship fcllows
a curve valid for monotonically increasing slip, which is called herein "mono-
tonic envelope" (paths OABCD or OAjBjCDy). Imposing a slip reversal at an

Fig. 4 Proposed Analytical Model for Local Bond Stress~Slip Relationship.
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arbitrary slip value, a stiff "unloading branch'" is followed up to the point
where the frictional bond resistance T¢ 1is reached (path EFG). Further slip-
rage in negative direction takes place without increase in T up to the inter-
section of the "friction branch" with the curve OA! (path GHI). If more slip in
negative direction is imposed a bond stress-slip relationship similar to the
virgin monotonic curve is followed, but with values of T reduced as illustrated
by the paths IA}J. This curve (0 A} B} C] D]) is called '"reduced envelope".
When reversing the slip again at J, first the unloading branch and then the
frictional branch with T = Tf are followed up to point N, which lies on the
unloading branch EFG (path JLN). At N the "reloading branch" (same stiffness
as the unloading branch) is followed up to the intersection with the reduced
envelope O A'B'C'D' (path NE'), which is followed thereafter (path E'B'S). If
instead of increasing the slip beyond point N more cycles between the slip
values corresponding to the points N and K are imposed, the bond stress-slip
relationship is like that of a rigid plastic model, the only difference being
that frictional bond resistance decreases with increasing number of cycles. A
similar behavior as described is followed if the slip is reversed again at point
S (path STU). To complete the illustration of the model details about the dif-
ferent branches referred to in the above overall description are given in the
following.

a) Monotonic Envelope

The simplified monotonic envelope simulates the experimentally obtained curve
under monotonically increasing slip. It consists of an initial nonlinear rela-
tionship T = T1 (s/s1)% wvalid for s < 8y, followed by a plateau T = T1: for
sy <s <s8,. For 8 > s, , T decreases linearly to the value of the ultimate
frictional bond resistance T; at a slip value of s3 . This value s3 1is
assumed to be equal to the clear distance between the lugs of the deformed bars.
The same bond stress-slip law is assumed regardless of whether the bar is pulled

or pushed.

At present, the values s,,s8,,T,,T, and o are choosen to match the experi-
mentally obtained monotonic envelope curve. Studies are in progress to formu-
late reliable rules to predict such a curve for conditions different from those
in the tests.

b) Reduced envelopes

Reduced envelopes are obtained from the monotonic envelope by reducing the char-
acteristic bond stresses T; and T, through reduction factors, which are
formulated as a function of one parameter, called herein the "damage parameter
d". For no damage, d=0, the reloading branch reaches the monotonic envelope.
For full damage, d=1, bond is completly destroyed (T = 0).

The rationale for this assumption is given by Fig. 5, which shows that reloading
curves for similar specimens,subjected to different loading histories,appear to
form a parametric family of curves.

The deterioration of the monotonic envelope seems to depend on the damage exper-
ienced by the concrete, particularly the length of the concrete between the lugs
of the bar that has sheared off. This in turn is a function of the magnitude of
the slip induced in the bar in both directions, the larger the sp,, and the
difference between peak slip values, the larger the damage. Another influence
factor is the number of cycles. These parameters can be related tc the energy
dissipated during the loading and unloading processes. Therefore it was assumed
that the damage parameter d 1s a function of the total dissipated energy only.
However, it has also been taken into account that only a fraction of the energy
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Damage parameter d as a function of the dimensionless
energy dissipation.

Fig. 6

dissipated during subsequent cycles between fixed peak slip values appear to
cause damage, while the other part appears to be used to overcome the frictional
resistance and is transformed into heat.

Fig. 6 1llustrates the correlation between the measured damage factor d, for
tests with full reversal of slip as a function of the computed dimensionless
dissipated energy factor E/Eo. The proposed function for d is shown as well. In
the computation of E only 507 of the energy dissipated by friction is taken into
account. The normalizing energy E, corresponds to the absorbed energy under
monotonically increasing slip up to the value s,. Although there is some scat-
ter, the agreement between the analytical and experimental results seems accept-
able.
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No reduction of the current enve- TN /T (N)

lope (monotonic or reduced) is 125 | o

assumed for unloading and reloading [ o FIRST SLIP REVERSAL

only (e.g., paths EGE or JLJ in - % AETER N ® j9CuslES e

Fig. 4). 1If a cycle is not com- 1.0 b = o
pleted to the current values of | Ay

Smax ©T Spin (e.g., path GHM) | \«,\“
the damage parameter is inter- | b ]
polated between the values valid - LEY T, S
for the last slip reversal and for -~ S

the completed cycle (point E and .

point P in this example).

It should be observed that the .

proposal for calculating the damage . d
parameter as a function of the . .

total dissipated energy is 11 ! L ! -
theoretically correct only in the 05 P LD ]
range of the low cycle fatigue, Smaxfes

that is when a small number of Fig. 7 Relationship between the fric-
cycles at relatively large slip tional bond resistance Tg(N)
values is carried out. In fact if and the corresponding ultimate
a high number of cycles at small frictional bond resistance T4(N).

slip values is performed, the

energy dissipated can be relatively large but no significant damage is produced
and the reloading branch reaches the monotonic envelope again (12]. On the
other hand, when limiting our attention to a small number of cycles ( < 30), as
in the present study, the energy dissipated for cycles between small slip
values 1s rather small and the calculated damage, as a consequence, insignifi-
cant.

¢) TFrictional resistance

The frictional bond resistance after first unlcading (TE in Fig. 4) depends
upon the peak value of slip, sp., , and is related to the value of the ultimate
frictional bond resistance of the corresponding reduced envelope (T§ in Fig. 4).
The relationship found in the tests is shown in Fig. 7. However, if cycling is
done between fixed values of slip (e.g., between sp,y and spy, in Fig. 4),

T is reduced more rapidly than the ultimate T3 of the corresponding re-
duced envelope (see Figs. 3 and 7). Therefore the analytical function oabc in
Fig. 7 is used only for the calculation of the frictional resistance for the
first slip reversal. For subsequent cycles T¢ (e.g., Tf+ in Fig. 4) is de-
duced from this initial value by multiplying it with an additional reduction fac-
tor which depends on the energy dissipated by friction alone.

If unloading is done from a larger slip value than the peak slip in the previ-
ous cycle (path STU) the new frictional bond resistance (Tgy) is interpolated
between two values. The first value is related to TS of the corresponding
new reduced envelope using the analytical function given in Fig. 7 and the
second value is the Ty reached in the last cycle (T? in Fig. 4). This inter-
polation is done in order to have a smooth transition in the values of Tg.

Note that the concept of relating damage to one scalar quantity,like the nor-
malized dissipated energy,has provided a basis for the relatively easy general-
ization of the bond behavior for random excitations. The bond model selected
can easily be extended to cover bond of bars under conditions different from
those reported herein, such as different bar diameter, pattern of deformation
{(lugs), concrete strength, degree of confinement, effect of transverse pressure,
etc. This requires that the pertinent experimental data necessary for computing
the different parameters, in particular the monotonic envelope, be obtained.
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2.3 Comparison of Analytical Predictions of Local Bond Stress-Slip Relationships
with Experimental: Results

The local bond stress-slip relationships, obtained using the model described
above, are compared in Fig. 3 with the experimental results obtained in some of
the Berkeley tests. As can be seen, except for the reloading curves mear the
values of the peak slip between which the specimen was cycled, the agreement is
quite good. In general the model was successful in reproducing most of the
experimental results.

3. APPLICATION OF LOCAL BOND STRESS-SLIP MODEL IN PREDICTING BOND BEHAVIOR OF
REINFORCING BARS

As noted in the introductiion, prediction of response of concrete structures to
severe seismic excitations requires the prediction of the slippage of the main
longitudinal reinforcing bars in their joints. The above formulation of the
local bond stress-slip relationship for well-confined concrete allows determin-
ation of slippage of the bar in the part of concrete that is well-confined.

This is discussed in Chapter 3.2. Since, in general, the anchorage offered to
the bars is sufficient to develop the yield strength of the reinforcing steel,
it is necessary to have a reliable mechanical model for reinfercing steel cover—
ing its inelastic behavior.

3.1 Reinforcing Steel Model

For the uniaxial 0-¢ relationship of the reinforcing steel, the expression
proposed in [13] and generalized in [14] was used because of its advantages in
the present application with respect to the classic Rambergnﬁsgood formulation,
that has been used in [4,5]. The equation

(i1-b) e/eO

0 0 1+ (a/eo) R]l/R

where 0Oy , €, are the stress and , (y,;mm?)

strain at first yielding respect~ go0 —r———1—1—T1—T — 7T
ively, expresses stress O as a
function of strain € and ac- - -
counts for strain hardening ===}k,
through the slope parameter b. It = -
also allows an accurate representa-

tion of the reversal curves through

the parameter R, which wvaries de- E.

pending on the magnitude of the °

maximum excursion € into the g //// R
plastic range (see Fig. 8).

E,s 2.04 x 10° N/mm®

The simple set of additional rules

185 €
proposed in [15] was used to avoid L R =20~ 550015 - ey~
the storage of parameters of all b zE /Eg= 0.017
reversal curves in the case of a .goo L1 ib [ W — 5 S NS U k -

general strain history. Using a

proper set of numerical values for

the parameters describing the model, Fig. 8 Analytically predicted uniaxial

the calculated response of a re- stress—-strain relationship for

inforcing bar subjected to a a #8 Grade 60 reinforcing steel
bar.

L€ [%o(
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particular history of strains, Fig. 8, agrees sufficiently well with test results
published in [5].

3.2 Technique for Solving the Differential Equation of Bond

The actual behavior of a bar of finite length embedded in a concrete block can
be idealized as a one-dimensional problem and modeled using the ordinary non-
linear differential equation

dN(x)/dx + q(x) = 0 where q(x) = Tdy T(x) and N(x) = A o(x)

which connects the axial force in‘the bar, N, to the resultant per unit length
of the bond stresses on the perimeter of the bar, q. This equation has to be
coupled with the constitutive laws for steel and bond, which can be expressed
as

G=0 (e(x)) = O (gfz) and T = T (s(x)).

Note that here the influence of the deformation of concrete on slip has been
considered negligible, as commonly assumed, and, as a consequence, the strain
in the steel € has been put equal to ds/dx.

Boundary values are specified at the two end points of the bar. Typically, for

a pull-push displacement controlled test, the two displacements at the two ends

are assigned; for a pull only test the boundary conditions are the value of the
displacement at the pulled end and a null value of the axial force at the other

end.

Different techniques can be used in principle for solving this nonlinear, two
points boundary value problem: finite differences, finite elements, and
shooting techniques. A finite element approach has been tried, for example,
with some success in [5], using constant stress elements for the steel and
concentrating bond forces (nonlinear springs)at the joints.

In this study a shooting technique has been preferred. It comsists of trans-
forming the boundary value problem into an initial value problem, in which the
unknown boundary condition at one end has to be guessed, in order to produce,
through integration along the length, the values of the normal force and the
displacement at the other end. The given boundary condition at that end has
now to be matched and this defines a nonlinear equation in the unknown boundary
condition at the first end. This nonlinear equation is solved in this case
using a modified secant method while the integration along the length is carried
out using the trapezoidal scheme. The method has proved itself efficient and
suitable for the problem at hand.

3.3 Behavior of Anchorages

Fig. 9 shows the calculated response of a main reinforcing bar (#8, d, ~ 25 mm)
passing through a well-confined concrete (f! = 30 N/mm?) of a column—geam joint
having an anchorage length of 15 dy. It is loaded at one end only and subjected
to reversed slip with increasing amplitude (Fig. 9a). The main aspects of this
response, which are summarized below, agree well with those obtained in the
experiments reported in [5].

(a) The reduction in stiffness, characterized by pinched hysteretic loops, with
increasing amplitude of displacement and number of cycles (Fig. 9¢).

(b) The reduction of strength at fixed amplitude of displacement as a function
of the number of cycles (Fig. 9¢).
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(¢) The reduction of maximum strength and of deformability at maximum strength
(ductility) compared to monotonic loading (Fig. 9b,c).

(d) The penetration of yield and the corresponding degradation of bond into
the anchorage length with increasing peak displacement(see Figs. 9b,d).

However, the quantitative agreement between observed and calculated response
needs improvement. Possible reasons for this discrepancy are given below:

(a) In the present study it is assumed that the local bond stress-slip laws for
tension and compression loading are equal and do not vary along the anchor-
age length. However, three different regions with significantly different
bond stress-slip behaviors can be identified in a joint [5]: unconfined
concrete in tension, confined concrete, and unconfined concrete in compres-
sion.

(b) After yielding, the diameter of a bar in tension is significantly reduced
due to the Poisson effect. This may reduce the bond resistance. The op-
posite is true for a bar yielding in compression. These effects were not
taken into account.

(c) The presented local bond stress-slip model might be over simplified in
modeling the envelope curves (virgin and reduced) and particularly the
ascending branches of the reloading curves near the peak slip, during and
after cycling.

It is expected that after completing the next step of this current study in
which the above mentioned effects will be taken into account, it should be pos-
sible to reproduce the experimental results with sufficient accuracy for prac-
tical applications.

4, CONCLUSIONS

From the results obtained in this study the following main observations can be
made:

(1) During cycling loading the degradation of bond strength and bond stiffness
depends primarily on the maximum value of peak slip in either direction reached
previously. Other significant parameters are the number of cycles and the dif-
ference between the peak values of the slip between which the bar is cyclically
loaded, i.e., As = sp,v - Spin-

(2) Cycling up to 10 times between slip values corresponding to bond stresses
smaller than approximately 80 percent of the maximum bond resistance, Tp,v»
attained under monotonically increasing slip, reduces moderately the bond re-
sistance at the peak slip value as the number of cycles increase, but does not
significantly affect the bond stress-slip behavior at larger slip values.

(3) Cycling between slip limits larger than that corresponding to a bond stress
of 80 percent of Ty, produces a pronounced deterioration of the bond stiffness
at slip values smaller than the peak slip value and has a distinct effect on the
bond stress-slip behavior at larger slip values.

(4) The proposed model for the local bond stress-slip law is very simple com-
pared with the real behavior but provides a satisfactory agreement with experi-
mental results under various slip histories.
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(5) While the calculated response of long anchorages of reinforcing bars agrees
qualitatively well with experimental results, the quantification of the main
parameters needs improvement. Reasons for the quantitative disagreement are given
and are under study. It is expected that after introducing different locai bond
stress—-slip relationships along the anchorage length, it will be possible to

reproduce the experimental results with sufficient accuracy for practical appli-
cations.
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SUMMARY

Ditferent models for the damping behavior of normally reinforced, uncracked and
cracked concrete beams and constructions under dominating bending stress are
presented. By comparison with experimental results it can be shown that the results of
the theoretical damping models are in good agreement with those of the experiments.

RESUME

On présente des modéles qui permettent de concevoir 'amortissement de poutres et
constructions en béton non-fissurés et fissurés, soumis surtout a des sollicitations de
flexion. Par comparaison avec des résultats déterminés a l'aide d'essais on montre,
que I'emploi des modéles présentés donne des résultats concordants avec ceux des
essais.

ZUSAMMENFASSUNG

Es werden verschiedene Modelle fiir das Damfungsverhalten von schwingenden
Stahibetontragern und -konstruktionen im ungerissenen und gerissenen Zustand,
welche vorwiegend auf Biegung beansprucht werden, dargestelit. Anhand von
Vergleichen mit experimentellen Resultaten wird die Anwendbarkeit der prasentierten
Modelle aufgezeigt,
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1. INTRODUCTION

Recently, the dynamic analysis of reinforced concrete structures has greatly in-
creased in significance. Yet important knowledge in several areas is still lack-
ing especially information concerning damping, which can decidedly influence a
dynamic calculation.

The damping of reinforced concrete structures is based upon various and at times
little-known physical causes, and depends upon numerous influencing perameters.
It is therefore not surprising that in experiments the fixed values for the damp-

ing scatter within a broad range. The two chief causes for this scatter are as
foliows:

~ The material damping of reinforced concrete building components and reinforced
concrete constructions is influenced not only by the damping properties of the
material used, but alsoc strongly by the crack condition. For uncracked struc-
tures, especially fully prestressed uncracked structures, the damping proper-—
ties in many cases can be described with closely agreeing values.For normally-
reinforced and partly-prestressed structures, however, there exists in the lit-
erature a large variation both qualitatively and quantitatively with regard to
the influence of the crack condition. Normally it is accepted that reinforced
concrete structures in the cracked condition show in addition to low eigenfre-
quencies a considerable increase in damping in comparison tc those in the un-
cracked condition.

- In general, the damping of an entire reinforced concrete construction is in-
fluenced not only by the material damping but also by the system damping, that
is by the damping properties of the surroundings (building site, development
of statical system, etc.). Since the fraction of the system damping on the to-
tal damping can be considerable, it is possible that analogous structures in
different surroundings will show very different damping behaviors.

In order to check this behavior and to determine the influence of important con-
struction parameters on the material damping properties of reinforced concrete,
systematic experiments on seven normally-reinforced concrete and light-weight
concrete beams were conducted at the Institute of Structural Engineering at the
Swiss Federal Institute of Technology Zurich. These experiments and the achieved
results are described in [1] and [2]. They provide the experimental groundwork
for the theoretical work performed in [3]. The most important results of this
work are put forth in the following report.

2. OBJECTIVES

The objectives of the described research project are as follows:

1. The determination of the influence of the crack condition, of the stress level
and of the amount of reinforcement on the damping properties of normally-rein-
forced concrete and light-weight concrete beams.

2. The development of physically plausible and mathematically simple models which
can not only explain the experimentally recorded damping phenomena on the test
beams, but also can predict the material damping properties of more complex
concrete and light-weight concrete constructions.

3. TESTS ON NORMALLY-REINFORCED CONCRETE BEAMS

In the experiments mentioned in the introduction, vibration and rescnance tests
were performed on seven concrete and light-weight concrete beams of varying lon-
gitudinal reinforcement. All beams had identical dimensions (length L = 8.40 m,
width B = 0.40 m, depth H = 0.24 m), and atter cracking all had their first ei-
genfrequency in the range from 2 to 7 Hz. Briefly repeated here will be several
results which give information on the established damping properties and which
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are necessary for the disposition and understanding of the following report.

In Fig. 1, the established curve of the
damping ratio as a function of the rela-
tive steel stress Oeg,rel in the middle
of the beam is schematically shown for
all test beams.

Concrete

The index "rel" (= relative) signifies
that the stress refers to the difference
between the values measured in the dyna-
mic test and in the at-rest state.

Light -Weight
Concrete

The established damping properties can
be described as follows, with the num-
bering scheme referring to the numbering
scheme of Fig. 1l:

Initial Stressing and Cracking Phase

e e e e e e T i e e U e o

(test phase 1)

G, rel 1. The damping for all beams increased
during cracking (crack formation and
spreading) following the increasing
steel stress.

Fig. 1 Damping Ratio £ as a Function
of the Steel Stress COg,rel
(schematic)

2. Approximately as soon as all bending
cracks had formed, a condition was
reached for which the damping ceased
to increase further.

3. With the further increase in stress, respectively steel stress, the damping
decreased. As the steel stresses neared the yield point, very small damping
values were measured (£ < 1%), especially for heavily-reinforced beams.

After Conclusion of Cracking and with Repeat of Testing

{test phase 2)

During the repeated execution of the total test program the following damping
behavior for each of the beams could be observed:

4. A very high damping was established for small steel stresses, in contrast to
test phase l. For increasing steel stress, however, the damping again de-
creased.

5. somewhat smaller values for the damping than in test phase 1 were measured for

large steel stresses.

6. A lower damping was found for increasing amounts of reinforcement.

7. The light-weight concrete beams showed a lower damping ability over the entire

stress range as the corresponding concrete beams.

The described results show that, contrary to the usual assumptions, the damping
ratio as a result of cracking can sink to a very small value after an initial
growth. Although this phenomenon appears surprising, it can nevertheless be ex-—
plained in a physically plausible manner by the still-to-be-described damping
models.
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4. EXPERIMENTS ON UNREINFORCED CONCRETE TEST BODIES

Numercus experiments for the determination of damping of unreinforced concrete
test bodies are described in the literature ([4], [5], [e6]l, [7]., [8]). The fol-
-lowing influence factors with regard to the damping of unreinforced concrete are
considered:

- Water content of the concrete

- Age of the concrete 3

- Cement content of the concrete

- Frequency

- Level of stress

Many experimental investigaticns have shown that the cement content and the fre-
quency have an insignificant influence on the damping. In addition it can be
established that for small stresses (0 < Bw/2), the stress level has practical-
ly no influence on the damping properties. However, the water content and, cou-
pled with it, the age of the concrete play a major role in the damping. Greater
water contents lead in general to larger damping. In [9], a damping ratio for
water saturated specimen of £ = 0.6 to 2.0%, for partially saturated specimen of
£ = 0.9 to 1.8%, and for dry specimen of £ = 0.2 to 0.4% are indicated. With in-
creasing age of the concrete the damping in general initially decreases, possib-
ly due to progressive drying. After three to four weeks drying time, however,
the influence of the age of the concrete ceases to be significant.

5. THEORETICAL FOUNDATICNS

For the description of the damping properties of a material respectively a con-
struction, two characteristic values can be appropriately defined ([107, [11Dy:

- The damping energy dissipated per vibration cycle.
- The relationship between the damping energy and the maximal strain energy.

The total damping energy Do is the energy which is dissipated in the entire test
body respectively the entire construction during one vibration cycle [Nm/cycle].
The total damping energy Dg can be calculated from the specific damping energy
D by integration over the volume V of the test body

b = fprav . (1)
v

. The specific damping energy D is that energy which is dissipated within a volume
element respectively a volume at a definite point in the test body during a vib-
ration cycle [Nm/cycle]. Under a linear (uniaxial) stress condition, D can in
general be determined from the equation :

g.n

D = d.(é- (2)
P
where d = specific damping coefficient [N/mmz]
0 = the maximal stress upon the volume element during the vibration
Bp = cylinder strength of the concrete
n = damping exponent.

Empirically, the value of n for low stresses lies between 1.0 and 3.0. For high
stresses, however, n can be substantially greater than 3.0. It can be shown that
the familiar models for the representation of the damping behavior are contained
in this equation. For example, the value n = 2 corresponds to viscous damping
and the value n = 1 corresponds to friction damping with constant frictional
force (see [3]).

The specific damping energy D is the most fundamental of all the known used
damping values since it is dependent only on the material studied and is not in-
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fluenced by the form and the volume of the body or the existing stress distri-
bution.

The maximal strain energy W respectively W, of a volume element respectively of
an elastic body under a linear (uniaxial) stress condition can be calculated
from the eguation

2 2

1.0 1 g
- =t 3 + = — & — 3
W= 3tg av , respectively Wo=3 ‘f = av (3)
v
where 0 = maximum stress upon the volume element during the vibration
E = modulus of elasticity.

From the relationship of the damping energy D respectively Dy to the maximum
strain energy W respectively Wy, the damping ratio § of the material respectively
of a volume element and the damping ratio Eo of the entire test body can be cal-
culated from

D

D ; . o
£ = i respectively Eo = 4'“'Wo (4)

The damping ratio corresponds to the percent total of the maximum strain energy
respectively vibration energy which is dissipated through damping during every
vibration period. In general the relationship

g 2 B

is true because the damping energy Dg is determined not only by the material pro-
perties but also by the form of the test body and the stress condition.

For the calculation of a vibrator with one degree of freedom and nonlinear damp-
ing properties (no viscous damping), the so-called equivalent viscous damping is
very frequently introduced. This makes it possible to simplify for calculation
the damping properties of such a vibrator by a linear vibrator with viscous
damping. The enexgy dissipation of the nonlinear vibrator is replaced by the
eguivalent viscous damping of the linear vibrator, with the equivalent viscous
damping ratio Eéq of the linear vibrator so chosen that both vibrators dissipate
the same energy Dy per vibrator period. For known damping energy D, and strain
energy W,, the equivalent viscous damping ratio geq can be calculated from Equa-
tion (4).

The use of the damping ratio £ for dynamic calculations has the following advan-
tages:

- £ can be gquickly established by simple tests.

- The damping is not dependent on the frequency of vibration (experimentally con-
firmed).

~ The solution of the differential equation of vibration becomes especially sim-
ple.

6. PROCEDURE FOR THE DEVELOPMENT OF A DAMPING MODEL FOR A REINFORCED CONCRETE
BEAM

Most uncracked and cracked zones for a reinforced concrete beam can appear dur-
ing service condition. Therefore, since the crack condition of the beam has a
very strong influence on its damping properties, the procedure for the develop-
ment of a damping model was chosen according to the following basic ideas:

- First only small pieces of the beam, each consisting of either a cracked or an
uncracked bending element, were considered. A damping model for each of these
bending elements was defined.
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- A complete reinforced concrete beam is built-~up from a number of both cracked
and uncracked bending elements, the exact number of each depending on the crack
condition (see Fig. 5). Thus, the damping model for the complete beam can be
found through suitable superposition of the damping properties of the separate
bending elements.

This procedure has the following advantages:

- The influence of the different stresses along the length of the beam can be
considered.

- The bond properties, which are important for the damping, can be included.

- By summation of the damping enerqgy for the single bending elements, the damp-
ing energy for a totally uncracked, partially cracked or totally cracked beam
can be determined.

Using the damping model for a bending beam, the experimentally determined results
of [1] must be able to be explained. As a foundation for the damping model for

an entire beam, the damping models for a bending element must be able to show

the causes of the influence of

- crack growing
~ amplitude respectively stress level
- reinforcement content

on the damping of normally-~reinforced and also, if possible, prestressed concrete
and light-weight concrete beams.

7. DAMPING MODEL FOR AN UNCRACKED BENDING ELEMENT

Fig. 2 shows the damping model for an uncracked bending element., It consists of
one damping element with
linear viscous damping,
[Unmmd BendingElememJ which contains the energy
dissipated in the concrete
bending compression zone as
well as in the concrete
i ) bending tension zone. The
energy dissipated in the re-
inforcement through stress
under the yield level is
comparatively small and is
there neglected. The main
reason for the use of the
viscous damping model was
that, in agreement with the
conducted tests on the un-
reinforced concrete test
Fig. 2 Damping Mcdel for an Uncracked Bending bodies as well as those on
Element fully-prestressed uncracked
concrete beams, a damping
ratio independent of the height of the stress can be obtained (n = 2, £ = const.;
see Eg. (4)).

Bending Element Model

Comnpression

Viscous E?Ee

Damping

+ Tension
Zone

It is accepted in the following that an egual amount of energy is dissipated by
equal-sized tension and compression stregses, so that both tension zone and com-—
pression zone contribute the same amount to the energy dissipated in a symmetri-
cally reinforced beam. From Egs. (1) and {(2) with n = 2, the energy D%%VD dissi-
pated in an uncracked bending element {(length s, width B, height H) through vis-
cous damping (VB) can be calculated by integration over the entire volume of the
bending element. After the calculation of the maximum strain energy wgl collected
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in the bending element, the damping ratio E%% of the uncracked bending element
corresponding to Eq. (4) can be calculated from

Eel = __:‘:_E.:L...__ (5)
vD - 2T C .B 2
c p i
h 3 B
with CO =1 + 3'n-EJ(u+u )'(ﬂ?i"**)
" 2
n o= -2 .
"

The damping ratio Esé is independent from the level of the stress and is deter-
mined besides the modulus of elasticity Ey and the cylinder strength Bp of the
concrete mainly through the specific damping coefficient d. This ccoefficient de-
pends on the material and must therefore be experimentally determinded. The re-
inforcement ratio U respectively U' is considered in the coefficient Cq. Its
influence on the damping ratio E%% is relatively negligible.

8. DAMPING MODEL FOR A CRACKED BENDING ELEMENT

Fig. 3 shows the damping model for a cracked bending element, It is a combined

damping mechanism, consist-
ing of two damping elements
Cracked Bending E!ement} connected in parallel to a
spring element. With the
Bending Element Model linear viscous damping of
the first damping element,

. the portion of the damping
Viscous

Damping -[ which was established in
e all tests to be independent

L_Jk aﬁLN of the level of stress can
el be considered (see Fig. 1).
The friction damping cf the
second element carxies that
portion established to be
dependent on the level of
the amplitude respectively
the stress and the rein-
forcement ratio. Of the
current models used for the
consideration of damping, only the friction damping model is capable of explain-
ing the reduction of the damping ratio for growing stress (n =1, £ v 1/0, see
Eg. (4)).

|

T
Compression
Zone

Fig. 3 Damping Model for a Cracked Bending Element

In the following it shall be shown that the assumptions of energy dissipation
through friction damping for a cracked beam are fulfilled, in particular the ex-
istence of a normal force respectively a friction force and a corresponding dis-
placement. '

In the literature, a supposed friction damping is frequently explained by fric-
tion between the edges of the cracks. This statement is, however, too super-—
ficial. As long as the edges of the crack move in a direction perpendicular to
the crack (opening and closing of the crack), no friction force can exist in the
crack. The friction damping can exist, however, at the bond respectively the con-
tact area between the concrete of the tension zone and the tension reinforcement.

8.1 Bond Between Reinforcement and Concrete

The bond relationship for ribbed reinforcement has been thoroughly described,
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exemples being [12], [13] and [14]. It has been successfully established that
the transfer of the tension forces from the reinforcement to the concrete has
two results. First, there are radial stresses ¢, working perpendicular to the
reinforcement axis and causing a tension ring stress Opz in the concrete. Second,
the reinforcement experiences a displacement v relative to the concrete.

Fig. 4 shows how the rib force Pr of the reinforcement is taken up by the con-
crete through compressicn and tension forces (corresponding to Oy and Oyz).

..Secondary Crack.

;
Concretfe
Compression Force

\
Cancrete
Tension Ring

As a result of the load by
the rib force PR, cracks
(secondary cracks) are de-
veloped in the surrounding
concrete near to every rib.
These cracks determine the
inclination of the compres-—
sion force D and consequent-
ly the size of the radial
stress Or. The cracks are in
general not visible on the
surface of the concrete.

_.‘_L\

The bond stress Ty, is a hy-
pothetical value with which
the effective existing forces
between the reinforcement rib
and the concrete as well as
the friction forces between
the steel and the covering
concrete can be simplified
and included. In [12] are
given theoretical relation-
ships as well as a relationship experimentally determined for small bodies con-
cerning the bond stress T,, and the displacement v of the reinforcement relative
to the concrete {(bond law). Using these relationships, the distribution of the
bond stress T,, can be calculated, and therefore also the radial stress Oy and

the relatiye displacement v along the reinforcement axis. Using the now assumed-
to-be-known distribution of the bond stress T_, respectively the radial stress Oy
and the relative displacement v along the reinforcement axis, the friction force
Fpp on the bending element and the corresponding relative displacement v and

from these the energy dissipated through friction damping can be calculated.

Fig. 4 spreading of the Bond Stresses Ty, resp.
Ribbing Forces Pg

8.2 Energy Dissipation through Viscous Damping

In contrast to the uncracked bending element (see Fig. 2), only the bending com-
pression zone shall dissipate energy appropriate to the wviscous damping model.
The energy dissipated through viscous damping in the bending tension zone and
the reinforcement shall be neglected, since the contribution of the bending ten-
sion zone to the damping energy, due to its comparatively smaller stresses, is
significantly smaller than the contribution of the bending compression zone (see
Eg. (2)). The damping energy DS}VD can now be calculated from Eg. (1) by integra-~
tion over the volume of the bending compression zone. After determination of the
strain energy ng, the damping ratio E%D as a result of viscous damping becomes
, LrBeXyatse0p . & (6)
C.] .B.xNa's.okz)-B; 2'7T'C1'B;

el _ 6'Eb
vD 3-4-'”'
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(h-x_ )2 (x, ~h")
. Na Na
with C, = 1+3*n*Utht——s— + 3*nU'*he—g—— .

Na *Na

A comparison of Egs. (5) and (6) shows that the expressions for viscous damping
for an uncracked and a cracked bending element differ only in regard to C5, and C

8.3 Energy Dissipation through Friction Damping

el
In order to be able to calculate the energy Do, ¥p dissipated by friction damping
in a cracked bending element,

- the coefficient of sliding friction in,t),
- the normal force N(x,t) respectively the radial stress 0,(x,t),
- the relative displacement v(x,t)

between the concrete and the reinforcing steel must be known for all times and
locations. However, by using the following assumptions and simplifications, the
damping energy DS%FD can be easily calculated.

- Coefficient of sliding friction )} constant over time and location.
- Linear relationship between bond stress Ty(x,t) and radial stress Op(x,t):
Or({x,t) = A'Tv(x,t) (7)
with A = proporticnality factor

- Linear relationship in the cracked cross section between the relative displace-
ment vpay(t) (between the reinforcement and the concrete) and the steel stress

Oo,max (€}

- Independence of the bond stress Ty respectively the radial stress 0, from the
level of the steel stress respectively the stress (T, = const.).

With these simplifications, whose justification is thoroughly discusses in [31,
the friction force FS% for a cracked bending element with j reinforcement bars
of diameter ¢ becomes

Fel = W"p'j'a‘A‘Tv'S (8)

The damping enerqgy Dg}FD dissipated through friction damping for a harmonically
vibrating bending element can be calculated from

el el
DO,FD = 4'FFD'Vm . (9)

where v_ = the average relative displacement over the length of the
bending element.

Using this equation, the damping ratic Sgé as a result of friction damping be-

comes el
el 4'FFD.vm e ,max
_— - 5 ke = s BT -
Eep = Trren constant®— (10)
o e,max

Since the average relative displacement corresponding to the stated simplifica-
tion increases linearly with the steel stress, the damping ratio Egl is in-
versely proportional to the steel stress. It can be shown that the crack inter-
val s (that is the length of the bending element) has only a small influence on
the damping ratio Eg%
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8.4 Combination of Viscous Damping and Friction Damping

The damping ratio for a cracked bending element corresponds to the sum of the

damping energies for viscous damping and friction damping, and is composed of
the sum of the damping ratio for viscous damping and friction damping:

el el el

E7 =8 i (Lh
- - 2. ‘_l .'l a
gel ) 4 Eb . 6°n Eb UsA*i0 Tv.ym(oe,max)
Z'W'Cq'Bé C2'B'h Gé,max
x 3 x_ -h'
; Na Na 2
— + . - Ve e %
with C2 Tehe (hox_ )2 n*y + n*u'e( hex )
Na ) Na

9. DAMPING MODEL FOR A REINFORCED CONCRETE BEAM

Fig. 5 shows a partially cracked, simply-supported reinforced concrete beam.

With the shown bending mo-

tpu) ment, the cracks due to
bending will appear first in
'Tﬁ'TTTTlTj + 454 the center of the beam.
l “l These cracks can be repre-

]
L]

sented by a corresponding

L l|ﬂq[l|l[tﬂl bl | I

a + number of uncracked {(g) and

zl) B
x i:; e cracked (p) bending elements
|

! . [ which depend upon the crack
M< Mg M>Mg condition of the beam. The
) :[:t;\\\\\\\\\Ji_H__J%L_—’f;H damping properties of each
alie=""a" el uncracked and cracked bend-
L : ing element can be deter-
Tger "ger "unger mined with help of the pre-
vious section. The damping
model for the entire beam
is then obtained by a suit-
able summation of the damp-
ing properties of each bending element. Following as an example the damping pro-
perties of a simply-supported beam (see Fig. 5) are calculated.

g

A

|2

Tunger

—

k
1 1

Fig. 5 Partially-Cracked Reinforced Concrete Beam

The damping ratio & for a perfectly cracked beam (r =% /2) can be calculated from

=8t Emp , —
a*Ey 24sn ‘U'A‘j‘¢'Eb'TV vm(Ge,d)
= i g T Teh*B*C g 2 L
T p 2 e,d
where Ue a= maximum steel stress in the middle of the beam.
1

Fig. 6 shows the damping ratio £ as a function of the amplitude z respectively
the steel stress O, 3. The first term is independent of the level of the steel
stress respectively stress. The second term is inversely proportional to this
steel stress due to. the linear relationship between the relative displacement v
and the steel stress Oy. For small dynamic amplitudes respectively stresses, the
damping ratio will be relatively large. For growing amlitudes respectively stres-
ses, the damping ratioc £ will approach the damping ratio gVD due to the viscous
damping.
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An uncracked beam (r = 0) dissipates energy
only through viscous damping, which makes the
damping ratio &yp relatively small. Raising
the bending stress over the crack moment Mg
results in a very quick formation of numerous
cracks, beginning in the beam middle. Every
increase in the number of cracked bending
elements results in a increase in the number
of elements with friction damping. This effect
causes initially a sharp increase in the damp-
ing ratio £ = Eyp + Epp. The growth of the
cracked zone slows with further increasing
stresses. If the friction force Fpp for in-

Fig. 6 Damping Ratio & as a

creasing stress continues to slowly increase,
the damping ratio Epp will fall after reach-
ing a maximum value. This effect appears since
the influence of the amplitude-dependent fric-
tion damping (see Eg. 10)) overweighs the in-
fluence of the growing friction force.

Function of the Stress
for a Fully~-Cracked
Reinforced Concrete Beam

10. NUMERICAL VALUES AND COMPARISON WITH EXPERIMENTAL RESULTS
It shall now be shown that the described damping model for uncracked and cracked
bending elements respectively an entire reinforced concrete beam can be correct-

ly applied to show the real relationships in experimentally tested beams.

10.1 Basic Parameters

The analysis of numerous reinforced concrete beams and concrete specimens brought
the result that the damping ratio E%% for concrete and light-weight concrete can
be established in practically all cases as follows:

Normal concrete : gVD = 0.006

. . . (13)
Light-weight concrete with
aggregates of expanded clays : EVD = 0.005

In these statements, the influence factors for the damping relationships of unre-
inforced concrete respectively light-weight concrete, namely

- the water content

~ the age .

although described as important, are not taken into account. This simplification
may be made in designed construction, which includes nearly all structures for
which a dynamic analysis must be made, for the following two reasons. First,

most concretes respectively light-weight concretes used have similar water-ce-
ment ratios (0.45 to 0.50). Second, the age of the concrete noticably influences
the damping properties only in the first weeks following placement.

b) Friction Damping

e e ———— e e o

A large degree of uncertainty exists concerning the size of the coefficient of
sliding friction | and the proportionality coefficient A (see Eg. (7})). The pro-
duct 1*A for the test beams described in [10] can be determined with help of

Eg. (8). The value for the product T*A varies for all test beams within the small

range of _
0.01 < ysa < 0.03 . (14>
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This means that the friction force Fpp produced by the steel used in these ex-
periments {Torstahl) amounts to between 1% and 3% of the average force trans-
ferred from the steel to the concrete due to the bond stress. Additionally it can
be established that the product [[*A would become smaller for increasing test dur-
ation. It appears that the coefficient of sliding friction T decreases with time
due to the large number of lcad changes and the high stress changes.

10.2 Comparison of the Results of the Damping Model with the Experimental Results

As an example, the damping properties of beam B3 (see [1]) due to the desecribed
damping model will be compared to the corresponding test results. The detailed
procedure and the derivation of the theoretical results are described in [3].

For &yp = 0.006 and Hea = 0.015, the amplitude-dependent damping ratio & becomes
1

= + = 0.006 + 0.0572+ 15
E =8 * Eap z (15}
The resulting course of £ as a function
&= h&ptéep of the amplitude z, obtained from Eg. (15)
iy ig shown in Fig. 7.
\\
s The comparison of these results with the
experimental results (also shown in Fig.7}
- Test Resuits shows a good agreement between experiment
001N , _ and theory.
N ‘m-mwwhcut Caiculation
: L;D with Damping Model
o A Fig. 8 shows in solid lines the resonance
% 1o 5 20 25 [mm) curves developed during a stress level
| . Seret with rising and falling applied frequen-
| 20 40 60 80 100 [N/mm?] cies.
Fig. 7 Test Beam B3, Damping Ratio £
as a Function of Amplitude Z,
[mid 2 | 83, Test Prose 2|
50* [kn] APy
20 e
40 e
| Test with Increasing 104 /
Applied Load Freguency -50 ~ z
Test with Decreasing 5] : e
30+ Applied Load Frequency // 50 fmm}
e L -0
) . -20
20+ Theoretical Calculation o

with Damping Model

Fig. 8 Test Beam B3, Comparison of a Theoretically
Calculated Resonance Curve (FFD = const.,
indicated Load-Deflection Diagram) with
Test Results
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B3, Test Phase 2

Test

— — — Galeulated (ﬁ__D= constant}

Number of Periods
I izl

T
50 60 m

Fig. 2 Test Beam B3, Amplitudes for various Free
Vibration Tests, Test Results and Theoretically
Calculated Results (FFD = constant)
Fig. 9 shows through sclid lines the amplitudes established by numerous tests.
On the abscissa is the number of vibration periods m, and on the ordinate is the
logarithm of the maximum amplitude z achieved by free vibration test after m
periods.

Also shown in Figs. B8 and 9 through dashed lines are the amplitudes calculated
for a constant friction force Fpp (see Eg. (8)).

A comparison cf the corresponding lines shows that the calculated amplitudes
agree very well with the experimental results.

It is shown in [3] that by using the effective course of the bond stress T, cal-
culated due to the differential equation of bond, that is by using Fpp # const.,
a still better agreement between the experimental and the theoretical results
can be achieved.

11. LIMITS OF APPLICATION

The previously described damping model may not be used in the dynamic analysis
of the following cases without further testing:

a) For very high stresses of the concrete (i.e. 0Oy > BW/Z) and the reinforcement-
steel (i.e. Oy > 0.7‘0e'2_0), an important portion of the total damping energy
is dissipated by hysteretical damping (energy dissipation through nonlinear
material relationships) which is not considered by the damping model. The
damping can amount to a multiple of the damping for small stresses.

b) The damping model was developed for use with normally reinforced concrete
beams, but is also persumed allowable for use with partially-prestressed and
cracked concrete beams. The experimental justification is not considerable,
however.

c) Depending on the statical system, the type of supports and the building site,
the not included system damping can have an important or even a dominating
effect on the total damping of a structure. Most significantly, very stiff
structures with fixed supports can have a very large system damping. On the
contrary, it appears that thin structures with hinged supports and low-fric-
tion rollers or sliding supports show almost no material damping.

d) For a concrete structure which is predominately stressed by shear and torsion,
a damping relationship analogous to that for bending stress is expected. It
is also supposed for the case that the total material damping will be composed
partly of viscous damping and partly from friction damping. The friction damp-
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ing can again be limited mainly to the friction between the stirrups respectively
the longitudinal reinforcement and the surrounding concrete. However, a displace-
ment in the direction of the shear crack appears in addition to the movement per-
pendicular to the crack edges. Due to the interlocking of the crack edges, the
shear resistance can on the one hand be increased. On the other hand, it is also
now possible that due to the relative displacement of the interlocked and nc
ionger stress-free crack edges, energy can be dissipated by friction damping.
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The Damping Behaviour of R/C Cantilever Elements
Le comportement d'amortissement des éléments en porte a faux en béton armé

Das Dampfungsverhalten von Stahlbeton-Kragtragerelementen
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Vienna, Austria

SUMMARY

Based on recent works of the author mathematical models for the calculation of the
energy dissipated during one cycle of loading by SDOF-systems, consisting of elasto-
dissipative R/C members and a mass, are presented. Material damping as well as
hysteretic slip damping between steel and concrete is taken into account. The energy
dissipated during one cycle of vibration is calculated and equated to that of an
equivalent viscous damping mechanism in order to evaluate an equivalent damping
ratio.

RESUME

Basé sur des travaux antérieurs 'auteur présente des modéles mathématiques pour la
détermination de I'énhergie d’amortissement pour une période de vibration. Ce cas est
traité en utilisant un modéle trés simple composé d’'une masse concentrée et une
poutre en encorbellement en béton armé. On tient compte non seulement de
I'amortissement interne mais aussi du frottement entre béton et acier. A I'aide du bilan
d’énergie on obtient des formules de coefficient d’amortissement visqueux equivalent.

ZUSAMMENFASSUNG

Basierend auf vorangegangenen Arbeiten des Autors werden mathematische Modelle
zur Berechnung der Damfungsarbeit pro Schwingungsperiode fur Einmassenschwinger,
die aus einem Stahlbeton-Kragtrager und einer Masse bestehen, aufgestellt. Es werden
hierbei die Materialddmpfung sowie die Dampfung zufolge Reibung zwischen Stah! und
Beton berlcksichtigt. Nach Aufstellung der Energiebilanz erhdlt man Gleichungen fur
aquivalente viskose Dampfungszahlen.
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1. INTRODUCTION

During the last years from a lot of dynamic insitu testis equivalent vis-
cous damping ratios of R/C structures were obtained. Moreover, R/C mem-
bers were tested by cyclic loading tests or resonance tests e.g. [7,8,12]:
giving in some cases empirical formulas for the energy dissipated e.g.

[7, 8]« In the aunthor's opinion too less attempts have been made to mo-
del damping mechanism. The stresses in a member (magnitude and distribu-
tion) are important parameters of damping, which was mentioned earlier by
Lazan [5] and Newmark [9]. Recently several demping mechanism active in
R/C members (mainly in R/C tension-compression members) were considered
in [10,11].

In the case of uncracked members material damping and hysteretic damping
due to slip and counterslip in the lead-in areas at the ends of the member
were taken into account. For cracked members an additional hysteretic dam-
ping mechanism due to slipping in the lead-in areas at both sides of each
main crack (total concrete area cracked) was considered. Material damping
was modelled by the formulas of Lazan [6]. For the hysteretic damping
four different slip models were developed by the author. The basic idea
is, that at least a great part of bomnd is due to slip, which was found by
several authors D,2,3,4], therefore during reloading counterslip must
take place, resulting in hysteretic damping. Formulas for twe of these
slip mechanism are given in capter 2.

In the case of smooth bars bond is nearly completely due to slip, there-
fore the mathematical slip models work very well. In practice only de-
formed steels are used, arising the question how far the models can be
still used. In éhe authors opinien the models can be adapted by some
additional coefficients. Some estimations about this problem can be found
in [10,11]. Dynamic tests are planned by the author to improve the models.
The problems are discussed in capter 3 together with restrictions resul-
ting from differenceg prototype ~ mathematical model,

In capter 4 the concept is applied to SDOF-systems consisting of an ela-
sto-dissipative R/C cantilever member and a mass, The bending stiffness
is assumed to be linear. For any nonlinear bending stiffness the probhlem
could be linearized by the use of the secant stiffness as it was done for
the R/C tension-compression members in [10,11]. The system is excited

by sinusoidal forces with the maximum force amplitude p, at resonance fre-
quency (for a nonlinear system at the resonance frequency of the equiva-
lent linear system). The energydissipated during one cycle of vibration
is calculated and equated to that of an equivalent viscous damping mecha-
mism in order to evaluate an equivalent damping ratio (fraction of criti-
cal damping). Formulas for ¢ are given for uncracked as well as cracked
members. In the second case a simple cracking mechanism is used giving
the number of cracks as a function of the maximum force amplitude p, .

In capter 5 the results of calculations are discussed.

2. SLIP MECHANISM

Model 4 and Model 3 BO,Ii] are shortly discussed in what follows. For
each of them the energy dissipated during one load cycle with F_ , = F
and Fo;,, = r.F (for 1> r = - 1) is evaluated where F is the total
spring force ., These models are used to simulate the damping in the lead-
in areas at the ends of the member as well as at every main crack.
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2.1 Model 1, used for B/C tension-compression members

The configuration of the model is similar to that of Panovko, Golzev and
Strakhov [6]. The bond stress T is assumed to be constant over the lead-
in length and independent of the load amplitude over the whole load cycle.
The steel force after the lead-in length is given by kFg, and the concrete
force by (1-k)Fa, where Q is the loading parameter (12a=2r). The energy
dissipated during one cycle of loading is given by

_ (k) (1or) g
T GrrdTE £

where d is the sum of all steel diameters, f, the sum of all steel areas
and E; the E-modulus of steel.

= h,F’ (1)

b,

2.2, Model 3, used for R/C tension-compression members

Based on an investigation of the test results of Kuuskoski [j] model 3
was developed. The bond stress T is assumed to be uniformly distributed
over the lead-in length and to depend on the load parameter Q. Depending
on the parameter ¢ of the bondstress - load relationship one can obtain
closed as well as open hysteresis loops. Open hysteresis loops will be
used in a forthcoming paper. The expression for the energy dissipated
during one cycle of loading for arbitrary values of c¢c and r is quite

lengthy and can be found in [10]. For elosed loops and r = -1 D, is of
the form
-2 3
_(1-k) ©0,9096 .2 _x F
D, " ndE, f, (a+DbF) o= b Gm (a)

and for r = 0
e
C(1-k) 00,1792 _» *»'F

Dv = 148, 1, (asbF) | = B Gomp) (3)

where a and b are coefficients of the bond stress - load relationship.

3. APPLICABILITY OF THE SLIP MODELS TG DEFORMED BALS

In the case of deformed bars only a part of the force is transmitted by
slip. Thus, the guestion arises, whether it is possible to separate the
two force transmission mechanism slip and normal siresses at Lhe ribs
especially during unloading and reloading. Counterslipping could be
largely influenced by the ribs. Furthermore local separalion of steel
and concrete surfaces due to the action of the ribs (mainly at the ends
of the bars) take place, which was reported e.g. by Hahn [3] and Lutz [4].
Moreover, local shear cracking of concrete at a cylinder surface with a
diameter corresponding to the maximum diameter of the bar (inlcuding the
rib height) will produce slipping or sliding between concrete surfaces.
The influence of these facts on the damping mechanism must be studied
more detailed.

A first investipgation of theapplicability of the models te deformed bars
was presented in [11], using the test results of Kuuskoski [1]. From two
tension-tension loaded samples with 1he same E-modulus of concrete and
smooth steel in the first and deformed steel in the second case the maxi-
mum concrete force in the second case is found to be about twice as much
as in the first case. Assuming that about half of the force is transmit-
ted by slipping in the case of the deformed bars, it was found that the
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permanent steel stresses at the end of each load cycle { A= 0) reported
in [I] fit the results obtained with model 3 very well. Later, a more de-
tailed investigation of the available data was carried out by the author
and was presented in [10] . It is concluded that bond due to slip lies
within 30 - 40 % of the total bond. As a first approximation it is assu-
med that the models can be used for deformed bars. The coefficient 1-k

as well as the bond stress T is reduced by the factor ry (0,3s ry =0,4).
%grgeems that 74 will be lower for ribbed bars and higher for torsteel

When using the formulas derived in capter 4 the following facts should be
considered for smooth bars as well as for deformed bars:

- the equations for T give probably too high values. In the slip model

a free front end of the bar is assumed. In practise there are hooks, bent
up's or at least embedments, This fact tends to reduce the hysteretic
loops coefficient r from r = -1 to r = Q.

- the coefficient (1-k) as well as the bond stress T decreaseswith increa-
sing number of load cycles. If the decrease ratio of (1-k) squared is

less than the decrease ratio of T then the energy dissipated will decreas
se with increasing number of load cycles. A decrease of T was considered
in model 4 EO,l] . Results of calculations with an improved model will

be shown in a forthcoming paper.

- the influence of stirrups on slip and counterslip must be investigated,
- it seems probable that the contribution of slip mechanism to the total
damping will decrease if the yield point of steel is approached.

4, DAMPING OF R/C CANT1LVER MEMBERS

The concept of [10,11] is now applied to the system shown in Fig. 1.
Possible influences of curvature on slip and counterslip are neglected.
The equations are derived for symmetrical longitudinal reinforcement. It
is assumed that no slip will occur at the fixed end.

4.1. Damping without cracks

The total force in the compression- and the tension area of cross section

E-E is given by
h &
l:t 2‘5 - h')"H'J
A

oF = Pel i h - & _Eii?_ (4)
- 45 4&"}-“' hx)z— » - cl
B "~ 2H
6 * h
The steel force is of the form
2(3 < w)ay, ta
G'Fs = hcz (5)

The parameters h', #i, h and Lfare defined in Fig. 1.
It is assumed that F; is transmitted from concrete to steel by bond
stress acting over the length 1 and that bond due to slip is within 30 -

40 % of the total bond (0,35-1}k5 0,4). The bond stress T now follows as
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i _
2(§—hwnﬁmga

T = T = bFa (6)

For model 3 in Ei} T was of the form
T= a + bFa (7)

Therefore now model_3 is used witha=0. As force is transmitted from con-
“crete to steel, (1—k) is given by

23 - wW)m

Foa he, (8)

h X\
2(5 - h )ntfrd
£

b = hdlo t9)

In equ. (2) E; is now replaced by the E-modulus of concrete, E., and f,
by ohf. Then equ. (4), equ. (8) and equ. (9) are inserted in equ. (2).
Two mechanism, each equivalent to the half of the slip damping of R/C
tension-compression members take place simultaneously {(in the compression
and the tension area of the member). Thus, the energy dissipated during
one cycle of load by slip damping is given by

3,6984 (& - 0 )wfe, pl Try ]
= : = E— = * 2
D, TR DE, h°4gl h, M (10)

where M is the bending moment p,1l. In another approach the total force in
cross section B-E is obtained using the net section of concrete.qF is
given by

;. Spol :
o F T (1)
It is assumed that a part of this force is transmitted to steel by slip
resulting in the some expression for (1-k) than given by equ. {8). Assu-
ming a linear bending stiffness K = SEGI/I3 with I = bh3/12,without ma-
terial damping the equivalent damping ration is given by

h Xy
0,4548 (5 - h )ip’e, hry
g = e, (12)
Material damping of concrete is modelled by the formulas of Lazan [5],
It is assumed that material damping of steel can be neglected below the
yield point. The energy dissipated during one cycle of load is of the
form

Ta,J k P
Ly h.F" (13)

D, = [bh (1-p)™" = s
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where J and n are material constants which must be evaluated from tests.
In this paper only rough estimations of these parameters can e used. The
coefficient @, ( «, < 1) depends on the stress distribution in the member
and is defined by Lazan [5]. Due to the uncertainties of J and n Q.= 1
is assumed. The total energy dissipated during one cycle of loading is
given by

D, = D, + D (14)

T

The total energy dissipated is equated to that of an equivalent viscous
damping mechanism. Thus, the damping ratio is given by

3
v 8l "t 4hs ,cal " _nd
g - thcbh'z\g + hé (2CL ) Po =0 (15)

The coefficient n will be within 2=n<3. Fop 2<n<3 equ. (15) has to be sol-
ved by an iterative procedure.

4.2. Damping with cracks

The situation is more complex than in the case of R/C tension - compres-
sion members [10,1i] . Therefore some simplifications are necessary. Té
show the contribution of cracks to total damping only this mechanism is
taken into account in what follows. In Fig. 2 a simple cracking mecha~-
nism and the coefficients used are shown. When the concrete force F.,

in cross section E-E has the value

- Dol _pox
Fc,e = 4c, = Fe (18)

in E-E the first crack will occur. FC; is the cracking temsile force of
concrete which is given by

x fcc bh
Fop, =25 (17)

where B, is the bending tension strength of concrete. Using slip model 3
at the instant of cracking the bond stress is of the form

T = BFg = bRaigad | 4bE,, c,& (18)

<,

Thus, tgfhi is given by
tgh =  4bF,, dme,a (19)

tghis of the form

X
c,.c

tgh = —3 (20)

The locations of the following cracks are now obtained under the simpli-
fying assumption, that on one hand T is constant and is given by equ.
(18) with & = 1 and on the other hand the lead-in length is constant.
The lead in length is given by

1 ;
lea = Fabe,l+a (21)
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The length 1: is of the form

¥ 1
L' = 4mdbe, (22)

The i-th crack will occur at the location x; if the concrete force approa-

ches the value F;, in x;. x; is given by
x; =1 - (i-1)1) (23)

The fictive concrete force in cross-section E-E is given by
X
Fee .1

Feo = I1-(i-1)1F (24)

The lead-in length is of the form

1 .

; = — 2
Le 41, dbe, + 4 (25)
where 1; is given by
1, = 1-(i-1)1." (26)

The maximum concrete strain for a cracked section is given by

—_-1 _
£, = ngs’ a(y-h")(h-20") + b7 (h-h" %)] &}%ﬂx (27)
[+
The steel tension force of the cracked section is given by

Fﬂﬂ €. (h-v-h")
s = —
b

For the i1-th crack the steel force is obtained from
T ) ¥
Fg, = u1[1-(1—1)1e] Po = Uy Py {29)

where i is an integer number within 0<ifn_. n.is the actual number of
cracks.The uncraclted region starts at the location x,

E £, = u M(x) (28)

*
x, = 1-(n. -1)1g - leg, (30)
At this point the steel force is of the form
X\
@2 - m ; ,
Es,ﬂ.r = hcz wl""(nr -‘1)16 - le'n'r po = u3p0 ((31)
The concrete force transmitted by slip is obtained from
| (T) r ¥ ]
R o R 1e,nr_J S (32)
Further, for the region between two cracks the steel force is given by
h X\ %
T (@) 2(5 - h)AY (— _ " 1L¥
l's,i = hcz I__ 1"‘(1"1)1e - -‘—-2 o = W50 D, (33)

and the concrete force transmitted by slip

_ (1) rd & iF
o P -, : e _ c.c
[c,i = ic, E—(L.l)le -5 D = ub,c P _ (34)
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with 0<1E(nr-1) Equ. {33) and (34) are only valid for F‘(ﬂ< co/g The

energy dissipated during one cycle of load at each crack is now calcula-
ted by equ. (3) with a = 0, It is assumed that all cracks will close
exactly at the instant 0 = 0., Thus,the energy dissipated due to slip at
the i-th crack is of the form

< W(E.‘Z‘ )2’
0 _ ) .0,1792 Ky —* 2 u (35)

v aE, f, br, = ki hylsy

For the point x, = 1—(nr-1)1¢ - lenr the coefficient Ezr is given by

N P (1)
k* . e T, _ b, (36)

e 31
nr I(S.n,- llanf

—*
For the region between two cracks the coefficient k is obtained from
— (I

~—% F. : i 3 F,
k=t - D~ for B ‘< _92*9— (37)
S,L lll.
and from ko= —-ﬂﬁ—k' S N for F > Fog (38)
S 2F T T 2u,,p, o c 2 |

During a step by step analysis one could check for each point whether
equ. %37) or (38) has to be used. To simplify the procedure the following
mean values are used:

5 x
ET _ 2ug P + Feg (39)
' ELW O
X
and il - 2uﬁ4(. _Po + FOLC A0
k; = (40)
4“L¢+4 Po

The total energy dissipated during one cycle of loading is given by

Ne-t Nt )Z,
P S PR UI)Z —xd (R o (T
3D, =2 (uw ) hF o s Hki LR AP Z:g. b, F ips (1)
1 = i=

From the equations (29), (39), (40) and (41) the following equation is
obtained

n.-_ Ne-{
; z
%DV.E = pol:(2uq Euﬁb )h:l Foo by zu +
L X2
+(E£:l)l££,_ﬂa= t v, v. = R__ o Do Vy + v

1 Po + PV, + V, = 4§ v, 2§ 3 (42)

Thus, from the energy balance the following equation for the equivalent
damping ratio £ is obtained

-1

. _ T Z
T (Polt o '
- ET @\ EE ] w s w

where K is the stiffness, K = 3 EI/1%and I = bk’ /12,
Equation (43) is now solved for increasing n,. starting with n. = 0 until
the following equation is valid '

.1
sgc1< Fe, i (44)
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where Fcﬂ+4 is given by equ. (24).

5. RESULTS

Results of calculations for cracked as well as uncracked members with
deformed hars arggiven in what follows.First a set of basic dimensions
is chosen.The single parameters are varied in Fig,3-8 for uncracked mem-
bers and in Fig.9-17 for cracked wembers,In some cases is given as a
function of twn parameters.As in the case of uncracked members it is
assumed that force is transmitted from concrete to steel and vice versa
in the case of cracked members,the tendencies are different.

uncraclked members:

-damping decreases slightly with increasing dimensions h and b of the
cross section.The decrease is less when also mat, damping is considered.
~damping increases slightly with increasing steel area

-thps,combining the first two statements,damping increases slightly
with increasing percentage of reinforcement

-damping decreases slightly with increasing E-modulus of concrete

-E is a linear function of the coefficient ry

-the coefficient J was evaluated from Lazan [5] and means only a rough
assumption

-the coefficient n has a strong influence on damping.In the case of un-
cracked members it seems that n will be within 2en=<2,2

-the influence of h‘on damping can be neglected

-Ppo and 1 have only an influence on material damping(small for 2<n=<2.2)
It is concluded thatg is within 0.012¥<0,02 for uncracked members.
cracked members:{slip damping only)

-damping increases strongly with increasing h and b

-damping decreases strongly with increasing steel area

~thus,damping decreases strongly with increasing perc.of reinforcement
The same tendency was observed by Dieterle [12]

~damping increases with increasing E-modulus of concrete

-ry within 0.3<1,<0.4 has only a small influence on the results

-the influence of 8. ,b,h"and 1 on damping can be neglected

-the influence of §i; is shown in Fig.13.The results show a max. for
low force levels which was also observed by Dieterle [1J] .In [12] also a
strong decrease of {for inereasing displacement is reported.This could
be due to the decrease of ktwith the number of load cycles.In a fothcom-
ing paper an attempt will be made to simulate this behaviour.

It seems that the values for obtained by equ.(43) are too high in some
cases but that Fig.9-17 show very well the tendencies.

6. CONCLUSIONS

In this paper the concept of [}0,1ﬂ is applied to SDOF-systems consi-
sting of a R/C cantilever element and a mass. As the situation is mere
complex than in the case of R/C tension-compression members, additional
simplifications are necessary. In the auvthor's opinion the slip models
can be adapted for ribbed bars and torsteel bars. First estimations are
discussed in capter 3. The author plans tests to improve the modelling
for deformed bars as well as to get the parameters of material damping.
In capter 4 equations for equivalent viscous damping ratios are deri-
ved. If these equations are used, the limitations discussed in capter 3
should be considered. In a forthcoming paper the decrease of bond and
of the coefficient (1-k) will be taken into account as a function of the
number of lcad cycles,
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On Aggregate Interlock Mechanism in Reinforced Concrete Plates with
Extensive Cracking

Sur la transmission des contraintes au moyen de I'engrénement des faces des fissures
dans les plagues en béton armé

Uber die Querkraftubertragung durch Verzahnung der Rissufer in ebenen gerissenen
Stahibetonscheiben

PIETRO G. GAMBAROVA

Professor

Institute of Structural Engineering (ISTC), Politecnico di Milano
Milan, Italy

SUMMARY

After a review of the characteristics of the so-called Rough Crack Model (recently
introduced by Bazant and by the author /13/) for the analysis of stress transmission
via aggregate interlock across cracks in reinforced contrete ptanar elements, the paper
deals with two basic aspects of cracks: how cracks (already formed) start opening and
slip when the first load is applied, and to what extent the crack shear stiffness is
increased because of the apparent extra stiffness of the reinforcement, caused by the
bar-to-concrete adhesion (tension stiffening of the reinforcement).

RESUME

Aprés une illustration des caractéristiques du modéle appelé "Modéle des Fissures
Rugueuses” (Rough Crack Model) pour l'analyse de la transmission des contraintes au
moyen de I'engrénement des faces des fissures dans une plague en béton armé
(Aggregate Interlock), cette étude considére deux aspects basiques du comportement
des fissures, c’est a dire la loi selon laquelle les faces des fissures (déja développées
dans la plaque) se déplacent (ouverture et glissement des fissures) au moment ou les
charges sont appliquées, et 'accroissement de la rigidité au cisaillement des fissures,
déterminé par I'adhérence des aciers d’armature au béton (en effect cette adhérence
augmente la rigidité "efficace” des barres, parce que le béton limite la déformation
moyenne de 'acier).

ZUSAMMENFASSUNG

Es werden zundchst die Eigenschaften des sogenannten "Modells mit rauhen
Rissufern” zur Untersuchung der Schubspannungsibertragung (liber die Verzahnung
der Rissufer durch grobe Zuschlage) in gerissenen Stahlbetonscheiben beschrieben;
die Arbeit behandelt dann zwei grundlegende Aspekte des Rissverhaltens: an erster
Stelle das Gesetz, wonach sich die als schon entwickelt gedachten Risse 6ffnen und
bei Erstbelastung gleiten, an zweiter Stelle die Bedeutung der Rissschersteifigkeit, die
dem versteifenden Effekt zuzuschreiben ist, den der Beton dank dem
Stahlbetonverbund auf die Bewehrung ausibt (Mitwirkung des Betons).
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1. NATURE OF THE PROBLEM

It is generally recognized that aggregate interlock along the cracked sur-
faces of a reinforced concrete element is a viable means to resist shear
stresses. As a consequence, aggregate interlock mechanism is particularly re
levant in reinforced-concrete bidimensional elements (such as plates and
shells), which are very often subjected to large in-plane shear forces,being
at the same time more or less extensively cracked due to poor tensile strength
of the concrete.

A particularly demanding case is represented by the secondary containment
structures of nuclear reactors, for which the actual trend is to adopt rein-
forced concrete, with or without prestressing. In the first case a high level
of cracking must be expected, as a result of the internal overpressure due

to a possible explosion; as a consequence, if an earthquake occurs when the
overpressure is still present, the earthquake-induced shear must be carried
by an already cracked structure,-with open cracks, which certainly give to
the concrete markedly different strength and stiffness characteristics from
those of thé "solid" concrete.

As a matter of fact, each crack is a discontinuity in the reinforced concrete
element under examination (either plate or shell) so that many local contact
problems arise at the crack interface such as stress concentrations in both
reinforcement and concrete, finite displacements (crack slip and opening),
nonlinear behaviour of the contiguous ''solid™ concrete.For the above-mentioned
reasons the analysis of stress transmission via aggregate interlock in crack
ed,reinforced/gonérete is a challenging problem, which is still open to new
contributiofis both in the experimental field and in the theoretical formula-
tion.

Traditionally, shear transfer in cracked reinforced concrete has been studied
without resorting to concepts of Fracture Mechanics on the assumption that
the cracks are already formed, spanning across the stress field.

Speaking of shear or stress transmission in cracked reinforced concrete, one
must bear in mind that there are at least three different transfer mechanisms:
aggregate interlock (called also interface shear transfer) due to the mutual
engagement of the crack faces, which are rough; dowel action due to the fle-
xural stiffness of the bars crossing the cracks, and to the local bar reorien
tation - kinking - when the cracks undergo major displacements (opening and
slip); internal (axial) forces of the bars related to bar axial stiffness,
these forces having a shear component in the crack plane and a normal (tensile
or compressive) component at right angles to the crack plane.

In what follows most attention will be devoted to stress transfer via aggre
gate interlock, with particular emphasis on the "allowable paths" in the di-~
splacement field (8§ _,8 ) when the crack starts opening. Three combinations
of internal forces across the cracks are analysed: shear and normal temsile
force (which tends to open the cracks), shear, shear and normal compressive
force (which tends to keep the cracks closed), the allowable paths resulting
in second or third order parabolas.

Then the effects of steel—-to—concrete bond (which tends to limit steel de-
formations) are analyzed in order to modify the reinforcement stiffness ma-
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trix, by introducing tension stiffening, which makes the embedded reinforce-
ment apparently much more stiff than the external reinforcement. Stress/strain
relations for the embedded steel are worked out, should bond be partially due
to themical adhesion and to friction and interlock, or to friction and inter
lock only. The theoretical results compare favourably with the latest test
results.

2, EXPERIMENTAL EVIDENCE AND THEORETICAL FORMULATIONS

Many tests carried out mostly in the last fifteen years definitely show that
aggregate interlock mechanism is characterized by four main pgrameters (Fig.,
1): crack opening 8§ , crack slip 8§ , interface shear stress o , interface
confinement stress of, (always compressive). Under the applig loads, the
crack tends to open and to slip, making it possible to transmit stress through
interface engagement. However, this engagement actually occurs only if the
confinement action, due to the reinforcement crossing the crack or to the
boundary constraints, limits the crack tendency to open (crack dilatancy due
to the overriding of the aggregate particles at the crack interface).

The strict connection between shear transmission by aggregate interlock and
concrete dilatancy has not become fully understood until recently, so that
too much experimental work gives no information about the interaction between
confinement and interface shear.

Other physical parameters contribute to shear transfer via aggregate inter-
lock, but their effects are mostly quantitative, and do not modify the nature
of the mechanism. Among these parameters, the following must be remembered:
average size of aggregate particles, cement matrix strength and aggregate
strength, aggregate type (natural or crushed), concrete compressive strength,
nature of the loads (monotonic, cyclic-either pulsating or alternate). Also
the strength of the steel-to-concrete bond is important, but its effects re~
gard mostly the reinforcement and to a lesser extent the crack interface,

so that bond may be better related to steel than to cracks.

As a reminder of the large amount of experimental work done in this field,
the following select bibliography can be quoted: Fenwick /1/, Paulay and Loe
ber /2/, Taylor /3/, Houde and Mirza /4/ (tests on plain concrete specimens
with preformed cracks, for different values of aggregate size and type, con
crete strength, crack opening); Laible White and Gergely /5/, White and
others /6/ (tests on reinforced concrete precracked specimens, subjected to
alternate loads, with either external or embedded rebars); Mattock and others
/7/ [/8/ (tests on the ultimate shear strength of cracked reinforced concrete
specimens under either monotonic or cyclic loads); Walraven and Reinhardt

/9/ (tests for different values of: steel ratios, bar diameter and orienta-
tion, concrete strength, aggregate type and size, steel-to-concrete bond
length, monotomnic or pulsating loads), Hamadi and Regan /10/ (push—off tests,
with either external or embedded rebars, with natural aggregates or expanded
clay). In Fig. 2 some experimental curves of Paulay and Loeber are shown.

The relatively large amount of experimental data made it possible (very re-
cently) to formulate analytical models, which are useful for a better under-
standing of the experimental behaviour, as well as for the implementation of
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the computer programs aimed at the analysis of reinforced concrete structures.

According to Fardis and Buyukozturk /11/ the crack faces behave like two rigid sur
faces having at least two contact points (if the problem is plane) and from

this assumption the relations between interface stresses and crack displace-
ments can be worked out.

According to Walraven /12/ concrete may be considered as a biphase material
(perfectly plastic cement matrix and perfectly rigid aggregate particles) with
perfectly spherical inclusions (aggregate particles). Through the evaluation
of the contact surfaces between the two phases, the stress~to-displacement re-
lations can be worked out.

A different approach has been adopted by Bazant and by the present author /13,
14,15/: the relations between the interface stresses and the crack displace-
ments are mostly empirical, but agree with some general properties which must
be satisfied because of the very nature of aggregate interlock. This analyti-
cal formulation is called the Rough Crack Model, and is based on the assumption
that crack properties may be considered as a material property, in the case

of densely cracked plates.

------- GENERAL ROUGHNESS
/o’ LOCAL ROUGHNESS
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3. ROUGH CRACK MODEL

With reference to Figs. 1 and 3, a crack may be considered plamar but locally
rough. As an average, over a large area with many parallel and close cracks,
the relations among Onn’ c , Sn, 8§ may be considered to be a material pro-
perty, similar to stress-—strain relations for solid concrete, and may be
generally assumed in the form:

c
dUnn Brm Bl’lt dan

é = . (l)
dcnt Btn Btt ddt

where the matrix E_is the crack stiffness magrix gnd the stiffness coeffi-

cients B , B , B , B depend on § 4§, ¢ ¢ and possibly on other state
nn nt tn tt n t nn nt

parameters.

Due to the scarcity of test data, only a path-independent, total stress-total
displacement formulation seems possible:

c c
Onn N fn(ﬁn’at) ’ ont = ft(Gn’Gt) (2)
so that Bnn = Bfn/aén, Bnt = Bfnladt, Btn = aft/asn, Btt = Bft/BGt.

Certain properties of eqs. (2) may be defined by mere speculation on the phy-
sical behaviour of a crack: these properties /13/ are mainly based on the fact
that interface engagement (i.e. aggregate interlock) increases with crack
slip, and decreases with crack opening, so that in the first case the absolute
values of the interface stresses increase, and in the second case these values
decrease (this is no longer true for very large values of the slip-to-opening
ratio, when crack strain softening occurs).

Based on the previous properties and on the available experimental test data
{(mostly those of Paulay and Loeber /2/) - Fig. 2 - it is possible to give an
empirical formulation to the relations (2), which turns out to be primarily
dependent on the ratio r = Gt/6n:

a

- confinement stress Gﬁn = - Ei-(az[czt[)p (3)
c 33 * 24 |r| ’
~ interface shear stress o =T T (4)
ut u 4
1 +a,r
4
a 0.231
where r =6 _/6_, T =1 , P =1.30 {1 -
L N B 140.185 & _+5.638°
o] n a n n

with a_ = 0.1111 a; = 0.534 ° 107 N/mm
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These expressions do not include crack strain softening, because of lack of
experimental test data.

A tentatéve intreduction of strain softening could be performed by multi-
plying dnt - eq.(4) - by a function like aS/(a5 + rq) with q > 0, so that for
r tending to infinite, the stresses o and Gct tend to zero.

n

In eq. (4), T, represents the maximum shear stress which can be transferred
at constant & : of course,T must vanish when 6 tends to infinite, because
crack opening exceeds the hgight of the face humps and the contact between
the crack faces is lost (the maximum height of the humps has the same magni-
tude as the maximum aggregate size Da).

. . . =l . ey e
The crack stiffness matrix B can be inverted: F=138 is the crack flexibi-
lity matrix.

By assuming that the plate is sufficiently large compared to crack spacing
and bar spacing, and that the internal forces vary gradually and smoothly
(so that they are almost uniform over a distance of several bar and crack

spacings), the crack displacements may be '"smeared" over a length equal to
crack spacing:

CR ) - - ¢ C 3
dsnn an/s 0 Fnt/s dcnn
CR ¢ CR CR G
- de =D do
dett g 0 0 0] . 4 ddtt or ag & 1C
CR C
dy F_ /s 0 F_ /s do
nt J L tn tt _ g nt y

CR il \
The matrix D is the cracked concrete flexibility matrix.

PR . SC
By adding the solid concrete flexibility matrix D = to the cracked concrete
flexibility matrix QFR, the concrete flexibility matrix QF is obtained:

Ec—l '\)Ec-l 0
C sc CR sc _ _ o
D =D +D where D =|- vg 1 E 1 0
c c
0 0 ¢ 7t

The moduli E, and G, may be given the values of the elastic behaviour as a
first approximation. Otherwise, the values given by any approach based on
isotropic non linearly elastic behaviour could be introduced.

(°) The numerical results shown in this paper were obtained with To/fé=0.3l.
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. . . . 5 .
By addln(% the reinforcement stiffness matrix C to the concrete stiffness
matrix C~ = EC—l , the equations relating the applied stresses to the strains
can be written as follows: dg = C de

C S S SC CR S C
where dg = do + do- de = de =de  + de C=¢C +¢C (5)

; S ; , . :
The matrix € (see /13/) takes into consideration the steel ratios, the bar
orientation, the stress—-strain curve of the steel and also (see Sec. 5) the
tension stiffening of the reinforcement due to steel-~to-concrete bond.

Formulation (5) makes possible the incremental evaluation of the static
response of a (cracked + solid) reinforced concrete element of unit length

in the direction parallel to the cracks, when the strains are imposed. If the
load history is imposed through the orientation o of the principal direction
1 and the ratio m = 01/02 of the principal stresses, system (5) has to be re-
arranged - see system (6) -:

nn

a ‘
Cet = |c*| - D L de  (8) m @, £, f .1
© nn DATA € & 4
d 7 P,sP_s8 ,s5 , ¢
Ynt i
where: * kl’kz
1
i=1,n
(e_).=(c ), +he - T T T
C n i nn i-1 nn I
11 T '
o ] C11*¢21*% 5 i=1 |
o 1 + k, + k |
1 2
§°, 6° Ad LAS 4‘
c +C -C n t n t
11 21 31 !""——'—r_'_—""E no
1+ k]_ - kz Bnn Bnt

B B J
tn tt t nt

1
] B9
GG

] 7 63
t

Bc , he , Ae
nn tt nt

v

[ R
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evaluation |-strains AG:’:“Gt I
of : -int.forces '
l&€n -’ I
Fig. 4 - Flow chart of the (°) vpdates [B]
computer program for the eva (°°)Updates [cs]and
luation of response curves. introduces steel
tension stiffening
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and
p— g
-1
1 " Cy = Gy
. (14m) - (Q-m) cos 2a
[C*] ) L _S127%92%%3 €13%C93%Cas kI = Tvm) + (I°m) cos 2a
1 +k1 + kz 1+kl+k2 ;
b= (1-m)sen 2 &
L _9127%227%2  ©13%C937%3 2~ (T+my+(1-m) cos 2a
L Lo ey, = Ky Like, =k,

At each load step (i.e. at each increment of the strain Enn) the matrix gf
and the vector D must be updated according to the values of Gn and Gt obtai-
ned in the previous step. In the flow chart of Fig. 4 the numerical procedure
adopted for the evaluation of response curves is shown.

4. KINEMATICS OF THE CRACK AT VERY SMALL VALUES OF CRACK OPENING

When the crack opening is zero there is full continuity in the concrete and
no slip is possible along the crack. However, the state §_ = 0O, 6n =0 re-
presents a singularity for relations (3) and (4) and this singularity may be
overcome through the analysis of the "allowable paths'" in the displacement
field (Fig. 5), near the origin (Gn, 6t + 0). The knowledge of the relation
dt (dn) at the origin of the displacement field makes it possible to work out
the initial values for ét and 6n’ which are to be introduced into the first
step of the numerical procedure shown in Fig. 4.

Let us consider again the eqs.(2), that may be turned into the following form:

C c

c i
c_), 6=2051(8,0 ) @"
nt nn t t n nn
In order to achieve a given final state (Gn,St), the work done by the interface
stresses for the crack displacements is as follows:

C
- Ont(ﬁn’

8 Gt

L =f P o¢ a8+ f o a8 (2"

0 nn n 0 nt t
and, by differentiating the egs.(2'} :
) 8
n c t ¢ c c
- o db +f 0 (36 /36 d&+ 36 /30" do g
L -l; nn n 0 nt( t/ n n t/ nn d nn) ( )

Now, near the origin of the displacement field, for &, tending to zero, the first
integral in the RHSide of eq.(2"') tends to zero, while the second intggraltends
to zero only on condition that both the derivatives 38 /3§ and 96 /30  tend to

zero, which means that only the paths having the follo&ingnequatiog are admissi-
ble (Fig.5): i
a
6t= c 6n (n 3¢
where ¢ is a constant, and a must
be larger than unity.
Due to the condition BGt/86n= 0,

Fig.5
® allowable paths
onot-allowabie paths
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the first displacement of the crack must be normal (pure opening mode, Fig.6
a) and only later can slip occur.

The constants ¢ and a can be evaluated through a careful analysis of what
happens when the crack starts to open. Near the origin, since 38 /36 =0,
also the value of the ratior = § / 6 tends to zero; as a consequence, eqs.
(3) and (4) can be simplified:

a a,a

¢ 1L 23 c ; p
o = > T O ¢ = 23T (3%, (4")
n

With reference to a crack of unit length, the internal forces and the steel
forces have the following expressions:

[ 1
P 8
Toe =5 01[ (1+m) + (1-m) cos2al (8)
_ _ o _(1+m)- (1-m)cos20 -
4 Utt - [(1+m) a m)cosZu] (1+m)+(1-m)cos20t nn klonn
- 1 . {1-m) sinZa
o] == 0. {l-m) sin2® = o] =k, O
t
" &L [ (1+m)+(1-m)cos2y) ™% o
"
s _ 4 . 4
Onn Es E:nn(chos e+py31n )
J {9)
6 <E_ e sin ® cosB (- 28vp sinB
ot L B s P, COS P, sin )
where € = & /s, if the solid concrete deformations are disregarded, and

Pygs> P ,ne are the steel ratios of the reinforcing net, and the net orienta-
tion.”"In eqs. (8) the principal stress o, may be considered always positive
(because of the nature of the problem, which would be meaningless in the case
of prevailing compression); as a consequence, the sign of the expression
[(1+m)+(1-m)cos2alturns out to be very important because the case [...1 > 0
means that the internal normal force ¢ tends to open the crack; the case
[...] = 0 means that the internal forges in the plane parallel to the crack
are only shear, which neither helps nor opposes crack opening; the case

[...]J < O means that the internal normal force op, 1s compressive, i.e. tends
to keep the crack closed (but the presence of an internal shear force induces
crack dilatancy and then the crack opens anyway).

Three different cases must be examined:

CASE A: [(1+m) + (l-m)cos20] > 0, i.e. o >0

nn
When the crack starts to open, due to the pure opening mode (Gn.z 0, § =0)
there is no confinement stress, and aggregate interlock cooperates with the
reinforcement in the transmission of shear: lﬁn
Ont o
c s c s Gnn __Gnne0)

Ont

Q
j=)
=]
]
Q
+
qQ
=}
=3
it
<
]
=}
Q
=}
+
It
=
rT
1
Q
j=]
T
b
Y
0
B
2
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From eqs. (3')(4')(8)(9) the relation between dt and 6 can be worked out:
n

ES 2

(pxcos46+pysin40) . (Fl-Fz) 6n (10)

8y = ayt,

., 2
(1~m)sin2a -sinecose(pxcosze—py51n e)

where Fl = [(1+n0+(1-m)c052u]= kys

¥ =
2 —~7
(pxcosae + pysin )

Depending on the sign of (F -F_), the crack slip has the same sign as the
internal force g her OF opposlte sign, this fact being a somewhat unexpected
characteristic of the crack kinematics (Fig.6b,c).

Note that F1 depends only on the assigned load history (m and o), while F2
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depends only on the steel characteristics (Px’ p_, 8).

s
y
When the sign of the crack slip does not agree with the sign of the applied
shear, the reinforcement must carry not only the applied shear op¢, but also

. c . . .
the interface shear Unt, which has the same sign as the crack slip.

The reversal of the slip sign occurs after the reinforcement has started to
yield, as can be seen in Fig. 7, for m = -1.0, 0.0. As a general rule, should
the reinforcement be strongly non—aligned with crack axes (8 > 35° + 45°) and
should the internal normal force o prevail over the internal shear force o ,
the signs of 6t and o . will be oggosite, until the reinforcement partly nt
yields, compelling the aggregate interlock mechanism to help in the transmis
sion of the applied shear (this help is possible only if the sign of the

slip aggrees with the sign of the applied shear).

CASE B: [(1+m)+(1-m)cos2e]l =0, i.e. © =0, ¢ #0
A nn nt

In this case, which includes algo the case of internal forces reduced to pure
. s
shear, the confinement stress On must balance the normal stress o in the
n nn

reinforcement:
s c c s
o] =0 +a =0->0 == g
nn nn nn nn nn

From eqs. (3')(9) the relation between ét and 6n can be worked out:
E
]

4 . 4 3
= ————. (p_cos B+p_sin 0) F,8° (11) Ont
t alaZaBToS X y 3 n

- (1-m)sin2o ; S
3 T(l-m)sin2aj

where F

The sign of 5t must always agree with the sign of ¢ e
n

In Fig. 8, for various crack spacings and rebars at right angles to the crack,
the shear modulus GCR of the (solid+cracked) reinforced concrete is plotted
versus crack slip, when the crack opens and slips (note that the value of

cCR are 1/3 to 1/6 of the solid concrete shear modulus GSC).

CASE C: [(1+m)+(l-m)cos2e] < 0, i.e. © n <0
T n

By introducing the relations (3')(47)(8)(9) into the equilibrium equations

S ] c

c
g =g + =
nn nn 0nn’ Gnt Gnt ¥ Gnt v“"
3 - Ont e
the following relation (8t,6n) can be worked out: S
E F_-F Onn Opn(<0)
5 s 1 - -—

- 2 4 L Ay o3 >
- ats F (p cos 9+pysln 038 (12) W Oyt ;
The crack slip must always have the same sign as op: otherwise, when the

value of the slip goes back to zero, the internal force o , ought to be-
come positive (i.e. tensile), because in this situation (&, = 0,8, > 0)

AT
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there is no interface confinement stress and the internal normal force g5

is carried only by the reinforcement, which is in tension due to crack dila
1 = s S _—
tancy (the three relations Onn Onn# o, i >0, Oan < 0 cannot be verified

at the same time).

It follows that the states with 8./ |8¢| # o,¢/|0,¢| are impossible and for
the corresponding values of m and o the crack does not open.

In Fig. 9 different allowable paths (near the origin Sp = &, = 0) are shown

for different load histories, and for the three cases just examined.

Eqs. (10)(11)(12) give the initial value of &, which has to be introduced
into the first step of the numerical procedure shown in Fig. 4. As initial
value of §,, the simplest guess is:

(6n); = (depy)y * s,
where (Aann)l‘s is the,actual crack opening if the solid concrete deforma-

tions are disregarded.

The above guess for(Sn may cause numerical troubles because the value of
ogn may be too high - see eq.(3). Then the assumption of a non-zeroc ini-
tial crack opening (e,,),-s must be adopted; as a consequence, the opening

in the first step becomes as follows:

(5n)1 - |:(/:\'E-nn)1+(€nn)o]- .

where the value (e,,), = 0.0005 seems satisfactory.
_ . R
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2 .. .
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sy
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45°), crack spacing s =100 mm , f;= 31 N/mmz).
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5. INTERACTION BETWEEN AGGREGATE INTERLOCK AND TENSION STIFFENING IN THE
REINFORCEMENT >

The results shown in the two previous sections have been obtained on the as-
sumption that the reinforcement is "external', or in other words that there
is no bond between each bar and concrete. As a matter of fact this assump-
tion is never satisfied in practice, with reference to reinforced concrete
structures, and consequently the effects of bond must be introduced.

As a general rule, the solid concrete between two contiguous cracks limits
the steel deformations through the bar-to-concrete bond, and this phenomenon
is enhanced by the presence of compressive stresses (confinement stresses)
in the solid concrete. The limitation of steel deformations makes the steel
behaviour more stiff (tension stiffening /16,17/).Although related to concrete,
tension stiffening may be considered as an exclusive reinforcement property,
because it modifies the stress—strain constitutive law of the steel. Tension
stiffening makes cracked concrete behaviour less dependent on the steel ra-
tio, because other parameters are involved, such as bar diameter, bond
strength, steel and concrete stresses. For these reasons tension stiffening
cannot be ignored, especially if the comparison between theoretical and ex-
perimental results is at stake.

With reference to a bar (Fig. 10) embedded in a solid concrete element and
subjected to a monotonically increasing pull-out force, the bar—to-concrete
bond is at first assured by chemical adhesion, then by -friction (which is
related to the interlock between bar asperities - ribs excluded - and sur-
rounding concrete) and by interlock (between the bar ribs and the concrete,
with local concrete crushing and microcracks spreading from the tops of the
ribs). The second and third mechanisms are by far the most effective, so

that bond stress due to chemical adhesion may be disregarded. After chemical
adhesion as been destroyed along part of the bar, friction and interlock
assure bar—to-concrete bond with a finite slip at the interface, so that the
bar gets "unstuck” from the concrete. At increasing load levels, the bar gets
more and more unstuck from the concrete, or in other terms the length of the
bar over which bond is assured by friction and interlock increases until this
length (lx = interlock length, Fig. 11) becomes equal to half the bar length
between two contiguous cracks. From this load level on, bar-to-concrete bond
is assured only by friction and interlock.

Now assume that: bond stress Ta due to friction and interlock is constant;
bond stress due to chemical adhesion is zero; concrete stresses (Fig. 12)
in the direction of the bars are compressive, uniformly distributed and de-
creasing with the distance from the crack face; concrete behaviour is ela-
stic; steel behaviour is elastic-perfectly plastic; microcracking and cru-
shing are localized in a thin layer of concrete close to the bar. It then
becomes possible to evaluate the stresses in the bars and in the concrete
at each section, starting from the crack face.

Writing the equilibrium equations in the direction of the bars gives

4t T. Mo
s - -5 _ _a c _ C
B =0 m =, L (B) =0l Sk
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Fig.10-Basic assumptions for the
bond stress distribution along an

embedded bar, subjected to a pull-~

-out force.
L = bond length
A = interlock length (bond by

friction and interlock)

L-A = no-slip length (bond by
chemical adhesion)

T = bond stress
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5 ¢
where ¢, 0 are the stresses along the crack face (£ = 0)
X X

T is the bond stress due to friction and interlock
a

¢ is the bar diameter
b, Ay are the plate thickness and the x-bar spacing.
The interlock length X can be evaluated through a simple compatibility condi

tion (for ¢ = A , EC(E - e® (&):
x’ x x

S C ]
L o ¢ 1 n crxlcx iz
X 41 1l +np
a X

where n is the ratio between the Young moduli ES and Ec.

Eq. (13) shows that the better the bond characteristics (high values of T,
and p , small values of ¢), the smaller the interlock length and the larger
the tension stiffening effects.

Since the crack spacing is a reference distance for the strains (for instance,
the strains due to cracking have been obtained by smearing the crack displa-

cements over the crack spacing), it is convenient to introduce the "average"
s

steel strain over the bar length between two contiguous cracks, eX:
s/2cosf . AX s s/2cos8 <
2f ef®) at 2f e2(e) dE ¢ 2[ €8 dt
0 X 0 A
_ X
EX— = + =
s/cosf s/cosB s/cosb
A /2cosb . A s
s
Zf X £ (£) d4& Zfs e (&) dg zf X e (&) dg
x X x
0 A 0
X K5
— + -
s/cosB s/cosb s/cosH

where concrete and steel strains have been disregarded in the zone with
chemical adhesion (see Figs. 10, 11, 12).

Then the following stress/strain relation is obtained:

g ZAX cosB s ZTa
T T s E (o - 'y A ; - (14)

With refereqce to Ax (which can never exceed s/2 cosf) two different cases
have to be considered:

ci ¢ 1-n 0;/02
1y A= < s/2cosb
X
4T 1 +np
a X
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The bars are only partially unstuck from the surroundingcconcrete.
Substituting Eq. (13) into Eq. (14) and disregarding n o with respect to
o° leads to:

X

s s €,
o =%x2(1 + n p_) T E (15)
X X a’'s
¢ cosB 1 + 2npx
s
do PE| E_ (s/¢ cesd) (L +np)
E; _ X _ a 5 X (16)
de® s g2 {1 +2np )
x ‘J;a Es X X
¢ cosf 1 + 2r1px

where 1  has to be kept positive if e, is positive, and viceversa;
5 a ., . - . 5 . .y

also the sign + hoids when ex 18 positive;

* ;

E  1is the effective steel modulus.
s

2y » = s/2cosb
x

The bars are completely unstuck from the surrounding concrete.
Substituting the value of Ax into Eq. (14), gives:

s _ _a s *
’x ¢ cosH TP A By = Eg (17) (18)

The relations (15) and (17) may be considered as the constitutive laws of the
steel when tension stiffening is introduced. These laws are plotted in Figs.
133 and b: in the former case (Fig.13a) the interlock length reaches the ma-
ximum value (s/2cos0) before the reinforcement yields, while in the latter
case (Fig.13b) the yielding of the reinforcement comes before the complete
destruction of the chemical adhesion. The behaviour shown in Fig.13a refers
to moderate bond characteristics, while the behaviour shown in Fig.13bis ty
pical of very good bond characteristics.

With reference to the numerical procedure described in Sec. 3 (see also Fig.
4), the stiffness matrix of the reinforcement is updated at each step, in
the x and y directions, according to the constitutive laws (15) and (17).

At each step the interlock lengths Ax and A are evaluated - see Eq. (13)
where X must be replaced by y in order to eZaluate A« If A < s/2cosé,

A_ < 8/2sing, the effective moduli E*, E* are given gy Eq. ¥16) - replace x
a%d cosf to get E* —; if A > s/2co§6, > 8/2sing, » and 3 must be
given the values 572cose and s/2sing respgctlvely, and Xaccord¥ng to Eq.(18),
the effective moduli c01nc1de with the elastic modulus ES. The evolution of
the effective modulus E and of the interlock length A with the crack dis-
placements is shown in Flgs 14 and 15, for various bar diameters. The steel
effective modulus may be many times larger than E . Note that the better the
bond characteristics (which are improved by small diameters), the smoother
the decrease of E; and the increase of Ax
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The importance of tension stiffening is shown by the curves of Fig.1l6 , at
constant crack spacing (Fig.16a) and at variable crack spacing (Fig.16b),for
various bar diameters and for a given value of the steel ratios (p_. = p =

= 0.112). Tension stiffening is more effective when the bond characteristics
are good (which may be obtained by adopting smaller bar diameters - Fig.l6a)
or when the crack spacing is large (which occurs for the largest bar diame-
ters — Fig.16b).

The aforesaid approach to the analysis of tengion stiffening, although sim-
ple, seems effective and sound, as shown by the agreement between the nume-
rical results and the experimental results (Fig.l7) , obtained with the same
input data. Of course, crack tension softening is not allowed for in the
Rough Crack Model (in the actual form) — as mentioned in Sec. 3 - and some
improvements are also necessary in the case of very small steel ratios.

For the lowest steel ratio (p = 0.0056) two curves are shown: the full line
represents the results obtained by means of eqs. (3) and (4), while the dot—
ted line represents the results obtained with an improved formulation of eq.
(3), which tentatively introduces both crack stiffening effects due to the
local deterioration of concrete produced by the bars crossing the crack inter
face, and crack strain softening. Crack strain softening is mostly related

to the ratio between the crack displacements §  and Gn, and is here introdu-
ced through the formulation suggested in Section 3 (see also /19/).

Finally, when comparing theoretical and experimental results (Fig.l17), it should
be remembered that the bond length is generally larger in a precracked test
specimen and so tension stiffening effects are enhanced, while in a real con
crete plate the bond length is smaller because it coinciaes with the crack
spacing, provided that the rebars are at right angles to the cracks. It fol-
lows that the tests tend to overestimate the crack shear stiffness when the
crack is nearly closed and the displacements are small, while for large inter
face displacements the same tests tend to underestimate the crack shear stiff-
ness, because in this case the earlier yielding of the reinforcement forces
the cracks to open earlier, with a decrease in the ultimate shear strength.

6. CONCLUDING REMARKS

As mentioned in the introduction, aggregate interlock mechanism is so impor-
tant in certain structural cases, that a complete analytical description is
necessary. Not only does aggregate interlock (together with dowel action and
axial forces in the reinforcement) provide a good level of strength and
stiffness to cracked confined concrete, but also cracked concrete ductility
is assured by aggregate interlock mechanism, which through crack dilatancy
and slip allows the structure to absorb large amounts of energy. The Rough
Crack Model seems sufficiently simple and adequate, at least for planmar
cracks, but further basic phenomena such as crack softening and steel-induced
crack deterioration have to be introduced. This introduction could be facili-
ted by further experimental work, but also the general approach of the tests
must be somewhat improved. As a matter of fact, it seems that all the pre-
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cracked concrete specimens with a single crack tested so far have a weak
point, namely an excessive bond length compared to the actual bond length

of a densely cracked plate, in which bond length and crack spacing coincide.
As a consequence, most of the tests are too much affected by tension stiffe-
ning and overestimate aggregate interlock stiffness for the smallest values
of crack opening.

With reference to concrete deterioration at the crack interface due to the
bars crossing the crack, some studies /12/ suggest that the deteriorated
concrete forms compressive struts at an angle to the crack interface; as a
consequence, crack shear stiffness is somewhat improved, this improvement
being particularly remarkable for small steel ratios, while crack normal
stiffness should not be affected by concrete deterioration (°).

Also dowel action plays a non negligible role, but just how important it
is remains a problem still open to discussion: for limited crack displace-
ments this role is certainly minor.
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SUMMARY

The paper shows the results of a series of tests aimed at the analysis of the
reinforcement-concrete bond, for very small relative displacements (under 0.1 mm).
Several pull-out tests were carried out on cubic specimens, having a single bar with
only two ribs embedded in the concrete.

The bond stiffness was analysed for different positions of the ribs, for cyclic loads with
or without sign reversal. The effects of the concrete hardness at the interface with the
reinforcement are discussed and the bond mechanism is examined in terms of
microcracking and concrete crushing.

RESUME

Dans cette étude on montre les résultats d'une série d’'essais expérimentaux pour la
détermination de ta loi d'adhérence acier-béton, pour des déplacements relativement
petits (inférieurs a 0,1 mm).

Plusieures épreuves de puli-out ont été faites sur des cubes d'essai avec une barre
ayant seulement deux nervures faisant prise dans le béton.

On a étudié l'influence sur I'adhérence des diverses positions des nervures dans les
cubes pour des charges répétées avec ou sans inversion de signe.

On analyse I'influence de la résistance du béton en contact avec I'acier et on discute
le mécanisme de microfissuration et d’écrasement prés des nervures.

ZUSAMMENFASSUNG

Der Beitrag zeigt die Ergebnisse einer Versuchsreihe zum Verbundverhalten von
Rippenstéhien im Beton mit sehr kleinen Relativverschiebungen (< 0,1 mm). Mehrere
Ausziehversuche wurden an Wirfeln ausgefiihrt, in die Einzelstdbe mit zwei Rippen
einbetoniert waren.

Die Verbundsteifigkeit wurde untersucht fir verschiedene Rippenlagen und fur
Wechselbelastung und Schwingbelastung. Der Einfluss der Betonhdrte in Stabndhe auf
des Verbundverhalten wurde mithiife von Mikrorissbildung und Betondruckversagen
erldutert.
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1. INTRODUCTION

The bond between reinforcing bars and concrete is a very important factor
not only in anchorage but also in cracking.

In /1/ it was shown that the deformations in r.c.beams,at the beginningof the
second stage (when the main cracks begin and extend progressively), are lar
gely condi tioned by the bond which affects also the so-called tension stiffe
ning in the advanced second stage. According to the model proposed in /1/,
and with reference to beams in bending, in the first stage the micro-cracks
begin to propagate starting from the extreme tensile fiber until reaching
the reinforcement. Their progressive opening up is compatible with the ela-
stic strains in the concrete between the microcracks, and there is no slip
at the interface between reinforcement and concrete (chemical adhesion phase).

(*)

After this phase, the chemical adhesion is progressively destroyed, starting
from(t?e flexural cracks, and in this same zone the bar-to-concrete slip be-
gins .

This gradual loss of chemical adhesion progresses until it involves t?f)en—
tire surface of the reinforcement between two main consecutive cracks P
thus setting up different static conditions for the steel in which bond de-
creases in importance. ‘

All of this justifies a thorough study of the bond-slip law, particularly for
small displacements. In fact, very little work has so far been done in this
fietal"),

2. PURPOSE OF THE RESEARCH

The researchwork, which this paper refers to, is focused on the local bond
behaviour, with reference to the bond law of a single rib within the range
of very small slip values.

The tests are limited to one type of deformed bar with a nominal diameter of
14 mm (Fig.2)(")and consist of load cycles, with maximum slip less than one
tenth of a millimeter; after the last cycle (generally the third cycle), the
loads were monotonically increased up to failure with much larger displace-

(*) with a maximum amplitude of only some thousandths of a millimeter, and
so visible only through a microscope.

(~) The bar length, over which the slip occurs, plays an important role alsc
with reference to other problems, such as for example fracture mechanics
of reinforced concrete and shear transmission through aggregate interlock.

(+) The main cracks (which generally develop from micro-cracks) form and ad-
vance progressively, all at the same time, up to the end of stage II (as
shown by many tests, including those of Leonhardt in Stuttgart).

(") Even the most recent literature, though abounding in experimental and
theoretical work én bond, is generally directed towards large strains and

displacements.
(") The kind of reinforcing bar chosen for the tests,with slanting ribs (see
Fig.2) is becoming more and more widely used in practice.
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*
ments.( )

During the tests useful information was also gathered on various phenomena
that occur in the vicinity of the ribs. Though these phenomena have aiready
been discussed by other authors, their effect on small relative displacements
is still uncertain.

As already shewn by Goto /2/ (Fig.1), radial micro-cracks form around each
rib immediately after the formation of the principal cracks. It has also been
shown in /3/, that as slip increases, the high bearing stresses acting on the
rib faces provoke local crushing in the concrete, with resulting deformations
of a permanent nature. As to bond, the experimental work by Rehm /3/ is par-
ticularly valuable, since it was the first and so far still the most signi-
ficant on the local bond-slip law. For his pull out tests he used a special
bar with a single rib placed in the center of a concrete cube (20 cm per
side)(“). Rehm was mostly interested in comparing different types of defor-
med bars, and his main purpose was to determine the strengths of various rib
shapes in the range of large relative displacements. He cobtained a remarka-
ble number of useful results, one of which showed the importance of the po-
sition of the reinforcement with respect to the direction of concrete casting.
He noted considerable differences in the cases of a bar parallel to the
casting direction or at right angles to this direction, as a result of the
different porosity of the concrete surrounding the reinforcement.

In Rehm's opinion this was due to the water, which tends to rise to the sur-
face during compaction(+). He also noted the importance of local crushing

of the concrete in contact with the reinforcement, leading to the permanent
displacements already mentioned. However, since he used monotonically increa
sing loads, his tests can supply no certain data on the beginning of crush-
ing('). Furthermore, he located the bar in a central position, while often
the reinforcement is located close to one of the faces of the beam, so
the analysis for different positions of the rib is certainly useful ("),

(*) Beyond this value the reinforcing steel of a beam in bending generally
reaches the yield point (stage III)} as shown in /1/, for the usual values
of crack spacing.

{~) Special lubricated sleeves around the bar, just before and after the rib,
were placed to prevent the adhesicn between the bar and the concrete.

(+#) In the tests herein examined, the bar was always horizontal, so perpen
dicular to the casting direction. Furthermore, with reference to the par
ticular rib shape, also the rib orientation is important: the lugs (sickle-
shaped) were always sub-horizontal (Fig.3).

(') This problem will receive greater attention in sect. 5,

{'") The deformed bars tested in the present researchwork, with sickle-shaped
lugs, were not available at the time of Rehm's tests.
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3. TEST PROCEDURE AND EXPERIMENTAL SET-UP

The usual pull out tests on long bars do not give suitable results for eva-
luating the local bond stress slip law. They only give the average bond
stress and the slip at the bar extremities. Specific tests are necessary to
find the local bond stress slip law, using reinforcing elements of very limi
ted length. (¥)

In Fig. 2 the reinforcing element used in the test is shown. It has two ribs
on each side, and was cbtained from a normal deformed bar of 14 mm in diame-
ter (core diameter 13.2 mm); its length is twice the rib spacing (16 mm).
Starting from a normal ribbed bar, the two parts adjacent to the test rib

are machined at the turning lathe, the diameter being reduced to 8 mm. The two
machined spindles are ingerted in smooth aluminium sleeves, which are removed
after the concrete has hardened(" ). The spindles protrude from the cube faces
(Fig.3), so that the measurement of the slip is possible at one end of the
bar, while at the other end the pull out force is applied.

In Fig. 3-a the four test positions adopted for the reinforcing element are
shown. In this way it becomes possible to analyse, within the range of small
displacements, the role played by the concrete covering, and alsc the local
bond stress slip law for various positions of the ribs aleng the bar. In

Fig. 3-b the orientation of the lugs and the direction of casting are shown(+).

The concrete test cube was glued along one face (Fig.3) to the loading set-

up in order to get as near as possible to the real conditions of the concrete
L}

block between two flexural cracks in a beam subjected to bending (fig.3-c)( ¥,

(*) In this way the slip will be the same at all points on the bar.

(°) The external diameter of the sleeves (14.5 mm) is the same as the exter-
nal diameter cf the lugs. The internal diameter of the sleeves is 12 mm.
To facilitate the removal, the sleeves are covered with a film of paraf-
fin. The cavity formed after the removal of the fore sleeve (see the
sketch)} enables the ribs to work in the same conditions as in an actual
bar with many ribs embedded in the concrete mass.

-

(+#) Expanded polystyrene molds were used for the castings to avoid the ther
mal gradients in the concrete during hardening.

(') In Fig. 3-a the transversal restraints of the bar: the purpose is to
avoid misalignments of the load especially when the load is reversed.
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In Fig. 3-d the %ayout of the instruments for the measurement of the displa
cement is shown ! ).

In Figs.4,5a picture of the test set-up is shown.Because of the length of

time (12 to 36 hours) required by each test, a loading device based on levers
and water tanks was preferred to a system of hydraulic jacks, also because

of the relatively limited value of the loads.

During the test the load was monotonically increased up to a fixed value of
the slip (7.5 hundredths of a millimeter). Next, it was reduced to zero,then
it was reversed in order to make the bar retract{ ). It was not possible to
obtain partial retractions, of pre-fixed values, because of the sudden re-
entry of the bar.

During the tests, the slip was heavily influenced by the time-rate of load

application, However, in each test, at each load step (200N), the load was
: +

kept constant until the slip value was stable ).

Fig.6 shows a typical time-dependent curve of the displacements: for each
load step the slip § tends towards a stable value.

The stabilization of the slip reguired a considerable length of time in the
nearly horizontal branch of the 1/6 curve, with respect to the steep branch
at the lowest slip values (see Fig.7).

4, RESULTS

The geometrical characteristics of the reinforcement and the mechanical cha-
racteristics of the concrete are given in Fig.2 and tab.I. The curves refer-
ring to the bond stress and to the displacement between concrete and bar
(slip &) are shown in Figs. 8-18.

1
The bond stress is defined as( ):

Tad = P/ {wd2c)

{(*) The deflectometer applied to the bar measures the displacement of the
two ribs embedded in concrete, while a second deflectometer measures
any possible displacement of the cube in a pocint at some distance from
the zone disturbed by the ribs.

("} The reversal of the load to thrust the reinforcement simulates the beha
vicur of a beam in bending which, during the unloading phase, shows par-
tial closure of the cracks, with the bars moving back.

(+) The concrete deformations were considered as stable when the time-rate
of the slip was less than 10~4 mm per hour. For monotonically increasing
loads, this criterion leads to a nearly constant slip velocity.

(") The term "bond" here is used for both chemical adhesion (with zero rela
tive displacements) as well as for the mechanical bond with bar-to-con
crete slip. It follows that the bond stress is actually a nominal stress
relating the force applied to the bar to the nominal surface of the
reinforcement (embedded in concrete).Then the bond stress takes into ac-
count all the effects involved,such as the bearing action ¢of the lugs,and
the friction produced by the radial pressure of the concrete at the tops
of the lugs.
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(with P the load, d the nominal diameter of the bar and ¢ the spacing of the
ribs ).

The T(8) curves of each test N; (i = 3,4,7,8) are adimensiogalized, the ac-
tual values of the bond stress being divided by the value TNy Which refers
to the value 0.075 mm of the slip (the value Tyj appears at the head of
each diagram).

Fig. 8 shows the curves for test N8 with the bar in a central position. During
the first cycle the load was increased up to a slip value of 0.075 mm {branch
01 Ay By Cl)' It was next decreased to zero (Cj Dl)' and then, by reversing
the sign(Dy Eq)}, the bar was forced to re-enter (E} F4) and this occurred
with virtually instantanecus slip starting at El(* .

The slip (at constant reverse load) stopped at a point corresponding to a
residual displacement () (see point Fq).

The cycle was completed (branch F; G;) by re-setting the load to zero.
The following cycles (2 and 3) differ considerably from the first in the loca
ding path. After a first steep short branch (G; Hp) the curve flattens off
(Hy K;) with small sudden displacements in the way that is typical of fric-
tion(#),

In the branch K, C; (and also in K3 C3) the load was increased up to the
maximum value reached in the first cycle, but the maximum relative displace-
ment was of a higher value. The unloading paths C; D and C3 D3 are practi-
cally identical with the corresponding C; Dy of the first cycle.

Also the branches Dy, E, and D3 E, are also practically identical(.)with D4E, .
In all three cases at Eq, E2 and Eq there is unrestrainable sudden slip

up to Fy, F, and Fq, the latter points being very close indeed., 1In

Fias. 9, 10. 11 the curves for the other positions of the bar (tests N 7,

N4, N3) are shown. In Fig., 1l a star indicates the point at which splittinag
parallel to the bar first appeared (the microcrack was detected by means of
a microscope)}. For the sake of comparison. in Fia.l12 the curves for these
four cases are superimposed. The comparison is limited to the first cyele
and the first branch of the second cycle. The loading paths OABS show rela-
tively modest differences(").

(*) Because of the instantaneous re-entry of the bar, the branch E.Fy is
dashed. Sudden slip may be explained if one thinks that crushing has led
to the formation of a cylindrical cavity in which the bar can move free-
ly, apart from some unavoidable friction.

(") This residual displacement is due to the presence of particles of aggre-
gate in the cavity left by the lugs in the loading phase.

(+) For further details, see sect. 5.

(') The values of the reverse load needed to pass from Ey to Fp and from E,
to F3 are a little more than half the load needed to pass from El to Fl'

('') The slope of the loading path, at the origin (branch DA} is less steep
for peripheral reinforcement, which seems reasonable.
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There are also limited differences in the unloading path of the first cycles
(branch C D).The curve of test N3 is less steep as a result of a split pa
rallel to the reinforcement.

Fig.13 shows the curves obtained in test N8, with reference to cycles
4-20, The load was limited sco as to get a fixed value for the relative di-
splacement (O17 mm).

The maximum value of the ratio Tad/TN8 continues to decrease for each cycle,
but with a tendency tg stabilize around a value which is about two-thirds
of the initial value!") - see the 4th cycle and the 20th cycle.

Fig.14 shows the behaviour of test specimen N8. Here the load was decreased
to zero and then increased again without any sign reversal.

In Fig. 15 the curves of the actual bond stress in the four cases examined,
are superimposed.

Although the strengths fo of the concrete were fairly similar, as shown in
the figure, the values of Ty ) were very different. tyg is equal to 0.59

TN4 .
The fact that the bond stresses Ty are almost independent of the specific
strength fc of the concrete is also underlined in fig.16, where the ratic of

the bearing stresses of the lugs to concrete strength are plotted versus bar
L (4)
Sllp( .

The value of local bond strength depends rather on the local hardness of the
concrete adjacent to the lug, but it is difficult to evaluate(|). An examina
tion of the test cubes cut along the mean plane containing the bar axis, af-
ter the tests showed that theose with lower values for local bond strength
had a more marked porosity, characterized by voids of some tenths of milli-
meters in diameter (see Fig. 17 ).

(x) The work dissipated in each cycle decreases as the number of cycles in-
creases. The loading and unloading paths tend to get closer for each
successive cycle, but up to a certain limit (see the modest difference
between cycles 14 and 20). Crushing of the concrete in contact with the
lugs does not seem to progress with the increase in the number of cycles.
The gradual decrease in work dissipated is perhaps due to friction bet-
ween the tops of the lugs and the concrete, which diminishes because of
the repeated scraping.

(~) As already pointed out, Ty Fepresents the value of local bonding corre-
sponding in the various cases tested to the relative displacement
§ = .075 mm.

(*) The concrete compressive strength was measured on prismatic specimens
(100x100x200 mm) cut out from the original cubes. The bearing stress Op
is defined as: op = P/{4ay - 1lp - cos (90°-8)) where ap is the average
height, lp the length and B the orientation of the lug (see Fig.2).

(') To the author's knowkedge no data on this problem is yet available in
the literature.
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Schlerometric tests were carried out on the concrete adjacent to the rein-
forcement to get some first ideas on the subject(*).

The average values from the schlerometric tests are given in table

IT . These values of course, are only partly related to the local
strength of the concrete, because of the limited section of the prod(“).
These results do make it possible to define an index of "relative hardness™
for each case, as a ratio between the hardness of the case involved and the
hardness of the test piece with central reinforcement (N8). With Kg; to in-
dicate this relative hardness, Fig.18 shows the curves of the "reduced bond
stress" Tad/Ksi as a function of the relative displacements. The deviation
from the mean value does not exceed + 5%. These curves point out the impor-
tance of the local hardness of the concrete over other parameters.

Fig.19 shows the curves t g /TN.for large displacements (1.5 mm).
al i

In case N3 the appearance of the first crack (split, see point I) while
still in the range of small displacements has no appreciable effect on bond.
It is the transversal crack (II) which leads to a reduction in stiffness.
However, there is a long softening branch up to failure, which occurs at a
relative displacement of 17 mm ),

5. SOME CONSIDERATIONS ON THE BOND MECHANISM

Fig.20 gives the local bond stress slip curve for test specimen N9 with
the bar close to one of the faces. As in all cases the curve shows a charac
teristic trilateral shape (CABC) with decreasing slope.

During this test, four load cycles were performed keeping the displacements
very small (less than 3/100 of a millimeter).

In the first branch of the trilateral curve (0Cy) the behaviour is practically
elastic (the first cycle has negligible hysteresis) with elastic shear in the
concrete and without any relative displacement at the bar-concrete interface
(bond is due to chemical adhesion).

After the first cycle,the load was increased up to C2, not much beyond point A
which marks the beginning of the second branch. Then the unleading (to D2) and
reloading up to C were carried ocut. The virtually elastic behaviour along
paths CyD5; , DyCy and the residual displacement OD,, could perhaps be explai-
ned as follows.

(*) A small test prod {(tab.Il) was attached to the schlerometer tip, in order
to reach the surface of the groove left after the test cube was split
and the bar removed. The readings were repeated about twenty times in
different positions along the groove surface.

(") In tab.II the concrete hardness (cbtained with the reduced prod) measured
along the groove surface and on the external surface are shown.

{(+) This behaviour related to crack II is certainly less remarkable in a
real case, with continuous reinforcement.
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Once the load goes beyond a value corresponding to point A, radial micro-
cracks form around. the bar starting from the lug tops (Fig.21-a). When the
load is reduced to zero, these micro-cracks do not completely close up. This
is partly due to the friction among the aggregate particles protruding from
the crack faces, but also to the wedging action of the loose particles.

After the second load cycle the load was progressively increased up to a
value corresponding to point B (Fig.20), which marks the beginning of the
third branch.

Once again the unloading and re-lcading process was performed (C5 D3 and

Dy C3), with again practically elastic behaviour and very limited hysteretic
behaviour. The average slope of curves C3 Dy and Dy C3 is rather less than
curves (1) and (2); because the micro-cracks propagate and spread, thus ma-
king the concrete adjacent to the lugs less rigid. Starting from C3 the load
was again increased, and crushing of the concrete in contact with the lugs
began, as a result of very high bearing stresses on the lugs.

Because of concrete crushing, permanent displacements are possible (Fig.21-b):
as a consequence, a cavity forms behind each lug.

Complete unloading (to D4) was performed starting from point Cy4.

During the unloading process the microcracks tend to close up almost comple-
tely, but on the surfaces of the lugs the radial compressive stresses P, con
tinue to be applied, though because of the shape(*)‘of the cavity produced
during the loading process BC4 these stresses are applied along a part of the
top of the lugs.

Because of these radial stresses, the reinforcement subjected to load reversals
is partially prevented from slipping back (Fig.20-d). This load, however,
does help to close the micro-cracks.

When the load reached a value corresponding to point E; (Fig.20) a sudden
slip began: this is because the equilibrium of the lug is no longer possible
when the lug is pushed out of the cavity, which was produced by concrete
crushing during the load process (Fig.21-d).

After the sudden slip (which occurs at constant load), the position of the
lug is practically the same as the initial (no-load) position, though a
slight residual slip remains, because of the loose particles detached during
the loading and unloading process.

In the fourth cycle, for load levels below point Ky (Fig.20) the bond stiff-
ness is very limited, because the only force acting on the lugs is friction
at the top ( ).

() The nominal failure surface (Fig.21-a) makes the angle o with the defor
med surface of the concrete adjacent to the bar; because of the elastic
strains, this concrete gets Qetached from the lateral surface of the bar,
between two contiguous lugs.

(~) It is interesting to note that points Ey (the lug leaves the crush-
induced cavity) and K4 (the lug is engaged in the crush-induced cavity)
are characterized by practically the same displacements. Furthermore,the
slip 6C1(between E4 and F,, Fig.20) coincides with the length of the c;ush—
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Beyond point K4, the lugs are engaged in the concrete, due to the conical
surface of the cavity produced by earlier crushing; as a consequence, the
bond stiffness increases (K4H4), because of the friction resulting from the
radial pressure.

At the same time the micro-cracks again open up around the lug, so that the
slope of the branch K4 Hy (Fig.20) is on average less steep than the slope of
Cy D4.

At point Hy the front face of the lug is again in contact with the crush
ed concrete: it follows that the value of the bond stress in Hy is hardly
different from the value in B, which marks the beginning of concrete crushing.
(Beyond Hy, further crushing occurs),

6. CONCLUSIONS

The local bond stress slip curves in the range of displacements below one
tenth of a millimeter do not seem to be markedly affected by the position

of the reinforcement with respect to the faces of the test cube and the amount
of concrete cover.

As a consequence,the test results suggest that in a beam subjected to bending
the rib-to-concrete bond is not markedly affected by the positicn of the rib
with respect to the beam faces and to the flexural cracks.

The test restilts show that the considerable scattering of the wvalues of the
bond stress, for any given slip, is mostly due to the different porosity of
the concrete layer immediately surrounding the bar, while the concrete com-
pressive strength seems to be a minor factor.

Should bond stress be related to the hardness of the concrete layer in con-
tact with the ribs (through a suitable "hardness index"), the scattering
of the bond stress/slip curves will be reduced to only about 5%: the depen-
dence of the bond strength on the hardness of the concrete along the bars
seem to be so important that further tests on a larger scale cught to be
carried out to confirm the above statement.

Finally, the experimental curves, obtained with cyclic loads characterized
by a limited reversal, clarify the role of microcrack opening and concrete
crushing with reference to bond stiffness. This role has different aspects
when the load is increased (microcrack cpening, possible splitting, concrete
crushing) or when the load is decreased and reversed (friction at the top
of the ribs, free slip to recover the cavity produced by earlier crushing).
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if o
induced cavity. The slip 6 co (between B and C,) does not coincide exactly
with 6 ,because the crushlng of the concrete occurs at the same time

as the opening of the microcracks.
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SYMBOLS

: relative displacement (slip) between the reinforcing bar and the sur-
rounding concrete

Tad = P/(Td 2c): nominal bond stress
P pull-out load

d : nominal diameter of the bar

c pitch of the ribs

e

/

Ni nominal bond stress for each test specimen at § = .075 mm

g = P/(4am1R cos(90—BO)): bearing stress on the ribs

n

_ average height of the ribs

lR length of the ribs

g angle of the ribs with respect to the longitudinal axis

fc : prismatic concrete strength of each test specimen, measured on prisms
cut out from each specimen, after the pull-out test

Ksi : relative hardness index defined as the ratio between the concrete hard-
ness of the generic ith test specimen and the hardness of the specimen
with central reinforcement (N8). The hardness is measured (with a sui-
table sclerometric test) in the groove left by the bar in the concrete,
after having cut the test specimen.
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Fig. 1 - Cracking and microcracking of concrete near the ribs of a deformed
bar, shown by Goto /2/
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Fig. 2-a Geometrical characteristics of the deformed bar used in the tests

guide rings for the special provisional sleeves

deformed bar with two ribs

special provisional sleeve coated with paraffin
to facilitate extraction before testing

external aspect of the test bar before concrete casting, with the
provisional sleeves closed up to the ribbed element

Fig.2-b - The two-ribbed element of deformed bar and the special provisional
sleeves
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are applied via watertanks and levers,
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Fig. 7 - Bond-slip curve with the length of time taken by the various phases
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Fig. 8 - Bond-slip curves with cyclic loading (the maximum bond stress is
kept constant in each cycle)
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Fig. 11 - Bond-slip curves with cyclic loading (the maximum bond stress is
kept constant in each cycle)
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Fig. 12 - Bond-slip test curves, with the bond stress related to the nominal
stress ’l.'Ni of each test specimen
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Fig. 13 - Bond-slip curves with cyclic loading (the maximum slip is kept

constant in each cycle)
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Fig. 15 - Comparison between bond-slip curves for monotonically increasing load
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Fig. 16 - Bearing stress on the concrete related to the prismatic strength

of each test specimen

Fig. 17 - Detail of the groove left by the bar
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Fig. 19-a - Bond-slip curves for large displacements
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Plain Concrete Under Load - A New Interpretation
Béton non-armé sous charge - Une nouvelle interprétation

Unbewerhter Beton unter Belastung - Eine neue Interpretation

MICHAEL D. KOTSOVOS JOHN B. NEWMAN
Lecturer Senior Lecturer
imperial College Imperial College
London, UK. London, U.K.
SUMMARY

It is propesed that plain concrete in compression suffers a complete loss of load
carrying capacity when ultimate strength is exceeded. This hypothesis, which contrasts
with the widely held view of post-ultimate behaviour, is supported by experimental
evidence and the results of analyses of structural forms. The results of these analyses
indicate that the response of the structures investigated is independent of the post-
ultimate behaviour of concrete under compressive stress states. It is shown that the
large deformations attributed to the post-ultimate characteristics of concrete as a
material may be associated with triaxial stress states existing in any structure, but
which are usually ignored for purposes of simplicity.

RESUME

On avance I'hypothése qu’en compression, le béton non armé perd toute sa capacité
de charge dés que le niveau de résistance ultime est atteint. Bien qu'elle s’inscrive en
marge du concept généralement accepté de comportement en régime post-uitime,
cette hypothése réflete néanmoins bien certains résultats d'essais et d’'analyse de
gquelgues structures. Les résultats d'analyse suggérent que le mode d'action des
différentes structures soumises a I'étude soit indépendant du régime post-ultime du
comportement typique du béton non armé chargé en compression. Les déformations
importantes, qui étaient jusqu’ & maintenant considérées comme caractéristiques du
régime post-ultime du béton, seraient plutét attribuables & des champs de contraintes
triaxiales qui existent dans toute structure, mais qui sont généralement négligés, par
souci de simplicité. '

ZUSAMMENFASSUNG

Es wird vorgeschlagen, dass unbewehrter Beton die ganze Festigkeit verliert, sobald
die Grenzbeanspruchung uberschritten wird. Diese Hypothese, die im Wilderspruch zur
weitverbreiteten Ansicht des Uberkritischen Tragverhaitens steht, wurde durch
Versuche und analytische Berechnungen erhdrtet. Die Resultate dieser Berechnungen
weisen darauf hin, dass das Verhalten der untersuchten Tragwerke unabhangig vom
Uberkritischen Bereich der druckbeanspruchten Betonzonen ist. Es wurde gezeigt, dass
die g.ossen, den Uberkritischen Eigenschaften des Betons zugeschriebenen
Deformationen mit den dreiachsigen Spannungszustanden in Verbindung gebracht
werden konnen, die in jedem Tragwerk vorhanden sind, aber aus Grinden der
Vereinfachung oft vernachlassigt werden.
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1. INTRODUCTICN

Most constitutive models of concrete behaviour under compressive stress states
published to date predict that the deformational response of the material in the
direction of the maximum principal compressive stress exhibits a trend similar

to that given in Fig. 1 which shows a stress-strain relationship consisting of

an ascending and a gradually descending portion. Such predictions result from
deriving the models on the basis of the widely held view that, beyond ultimate
strength, the load carrying capacity of concrete under a compressive load is
progressively reduced with increasing deformation. This view has been reinforced
by experimental evidence which has indicated that the deformational response of
concrete under uniaxial compression applied by a stiff testing machine is des-
cribed by a stress—strain curve which exhibits the characteristics of the re-
lationship shown in Fig. 1. Such stress-strain curves have been used to describe
the behaviour of concrete in the compression zone of reinforced concrete
structural members such as beams, slabs, etc. [1].

However, the validity of the stress—strain data for concrete, as for other
materials, depends on the testing techniques adopted and this fact has been
recognised by many research workers [2]. As a result techniques have been
developed in order to minimise restraint effects due to the interaction between
specimen and testing device. However, it is shown in the following that, even
when minimal, these secondary effects have a significant effect on material
behaviour for stress levels in the region of ultimate strength and beyond. In
view of this it is postulated that, if restraint effects could be eliminated
completely, concrete would exhibit a complete loss of load carrying capacity
when ultimate strength is exceeded. Experimental data which have been produced
by tests in which secondary testing effects have been effectively eliminated
support this hypothesis.

It is shown that the large deformations attributed to post-ultimate strength
stress—strain characteristics could be due to the triaxial state of stress which
exists in any structure under load but which is usually ignored for the purposes
of simplicity. This consideration is supported by the results obtained by a
finite element analysis of plain concrete structural forms under concentrations
of load which suggest that the overall behaviour of the structural forms invest-
igated is independent of the post-—ultimate strength behaviour of concrete under
a compressive state of stress.

2. TESTING METHODS AND STRESS-STRAIN BEHAVIOQUR

It is generally accepted that the fundamental deformational response of concrete
under increasing stress is realistically described by the stress-strain behaviour
measured for laboratory specimens provided definable states of stress are induced.
The application of such states of stress is achieved by using testing techniques
which have been developed so as to minimise restraint effects due to the inter-
action between specimen and testing device. The most significant of these
effects is the frictional restraint which develops at the specimen-platen inter-
faces under increasing load.

The use of cylindrical or prismatic specimens with a length to width ratio of
between approximately 2 and 2.5 is one method which has been adopted in order to
minimise the effect of the above frictional restraint on the specimen behaviour
[3]. It has been found by experiment that, while the end zones of such specimens
under uniaxial compression are subjected to an indefinable triaxial compressive
state of stress caused by this frictional restraint, the central zone of the
specimens is effectively free from such effects [3]. Other methods used to
minimise frictional effects involve the use of various types of anti-friction
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pads [4], brush platens [5], flexible platens [6], fluid cushions [2], etc.

The development of the above testing methods has been based on the assumption
that the mechanical properties of concrete during its whole loading history are
qualitatively comparable to the mechanical properties of a continuous material.
For example, loading devices such as brush and flexible platens are considered
to induce a negligible frictional restraint at the specimen-platen interfaces
when designed to allow displacements in the direction orthogonal to loading to
be compatible with tensile strains in concrete calculated on the basis of
Poisson's ratio values up to 0.5 which is the maximum value for a continuous
material. As long as this condition is satisfied, most of the above methods
have been found to produce stress-strain data which correlate very closely {7]
(see Figure 2). It should be noted, however, that most of the above data
describe material behaviour under stress levels approaching, but not exceeding,
ultimate strength. ’

Complete stress—strain relationships for concrete (i.e. relationships with both
ascending and descending portions) have been obtained mainly from tests on
cylinders under uniaxial compression [8] (see Figure 3). There is also some
experimental evidence which suggests that similar trends of behaviour are ex-
hibited under triaxial compression [9] (see Figure 4). The description of the
specimen behaviour beyond ultimate strength has been achieved by loading the
specimens at a constant rate of displacement through a 'stiff' testing machine
either by using a loading system capable of releasing rapidly any load in excess
of that which can be sustained by the specimen at any time [10] or by loading a
steel specimen in parallel with the concrete specimen in a manner such that, as
the load carrying capacity of concrete is reduced, the concrete-steel system
transfers the excess load from the concrete to the steel specimen to maintain
the internal equilibrium of the overall system [l1].

It is interesting to note in both Figures 3 and 4 that, for stress levels beyond
a level close to ultimate strength, the temsile strain increases at a rate very
much higher than that of the compressive strain. Such behaviour can only be
attributed to the effect on deformation of void formation caused by the fracture
processes of the specimens [12]. Thus it is difficult, if not impossible, to
explain the specimen behaviour on the basis of continuum mechanics concepts.
Since the development of the testing techniques used to minimise secondary testing
procedure effects has been based on assumptions which imply mechanical properties
for concrete quantitatively comparable to those of a continucus material, the
effectiveness of the testing methods used to induce definable states of stress in
specimens for the whole length of a loading path is questionable. The effect,
therefore, of the frictional restraint on specimen behaviour must be reconsidered
when using all current data.

3 EFFECT OF FRICTIONAL RESTRAINT ON CONCRETE BEHAVIOUR

The nonlinear deformational behaviour of concrete under increasing stress is
dictated by internal fracture processes. Therefore, any effect on the deformation
due to frictional restraints at the loaded boundaries will cause a modification

of the fracture processes.

3.1 TFracture Processes of Concrete

Preuious research work {13] has indicated that the fracture processes of concrete
under increasing stress take the form of crack extension, due to initiation of
crack branches, followed by stable propagation of these branches which eventually
becomes unstable and leads to complete disruption. Crack extension and propa-
gation occur in the direction of the maximum principal compressive stress in order
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to relieve high predominantly tensile stress concentrations which exist mear the
crack tips. During the above fracture processes voids are created withia the
body of the material.

Four stages in the process of crack extension and propagation have been identi-
fied under increasing stress [14]. The boundaries to those stages have been
termed Local Fraction Initiation (LFI), Onset of Stable Fracture Propagation
(OSFP) and Onset of Unstable Fracture Propagation (OUFP) and their variation

in stress and strain space have been established by experiment. A schematic
representation of the stages of crack extension and propagation is shown in
Figure 5. The variation of LFI, OSFP, OUFP and ultimate strength in stress and
strain space forms the failure envelopes shown in Figure 6.

3.2 Effect of Frictional Restraint on Fracture Processes

A concrete cylinder subjected to uniaxial compression can be considered as
exhibiting 2 principal zones of behaviour as showm in Figure 7. Material in the
central zone is generally accepted to be subjected to a near-uniaxial compressive
stress state whereas the end zones are subjected to a complex and indefinable
compressive stress state caused by the frictional restraint which prevents the
specimen from expanding in the direction of the specimen-platen interfaces.

As indicated by the failure envelopes of Figure 6, cracking of the concrete ;
cylinder will initiate in the central zone which is subjected to near-uniaxial
compression. For stress levels increasing up to OUFP, cracking occurs in the
microscopic level in localised regions within the material in this zone [14].

As a result, the overall deformation response of the specimen is comparable to
the deformation response of a continuous material and the effect of the boundary
frictional restraint is confined within the end zones of the cylinder.

When OUFP is exceeded cracking becomes continuous and propagates towards the end
zones. As discussed previously (see section 3.1) cracking propagates in the
direction of the maximum principal stress trajectories which, in the central zone
of the specimen, coincide with the direction of the applied compressive stress.
Outside this zone, both stress trajectories and propagating cracks deviate from
the direction of the initial crack branches due to the indefinable multiaxial
state of stress which exists.

The above change in the orientation of the crack propagation: path increases the
energy required for crack extension and a higher load is required for the fracture
process to continue. This will result in an overestimate of both the strength
and the strain in the direction of the applied load. Furthermore, the above delay
in the fracture process will also reduce the rate of void formation which affects
predominantly deformation in the direction orthogonal to the crack propagation
path. This may result in a serious underestimate of the lateral temsile strain
of the cylinder.

As the applied load increases to a level very close to the maximum load that can
be sustained by the specimen (ultimate strength), cracking spreads within the end
zones and propagates towards the specimen-platen interfaces. It becomes apparent
at this stage that the only reason for the central zone responding as a unit under
the applied load is the delay in the fracture process within the end zones caused
by the change in orientation of the crack propagation path. This suggests, there-
fore, that if the state of stress was the same throughout the specimen, no such
change in the orientation of the crack propagation path would occur and the
specimen would completely collapse due to rapid and unstable fracture propa-
gation. A schematic representation of the fracture processes of concrete
specimens (with and without frictional restraint) under increasing load is given
in Figure 8.
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3.3 Effect of Frictional Restraint on Deformation

On the basis of the above considerations the true deformational behaviour of
concrete under compression with no secondary effects may realistically be
described by the stress—strain relationships proposed in Figure 9. These are
characterised by a complete loss of load carrying capacity as soon as the
ultimate strength level is exceeded. For comparison the figure also includes

a typical form of experimental relationship obtained under monotonically applied
compression for concrete cylinders with a height to diameter ratio of 2.5 loaded
through rigid platens.

For stress levels up to OUFP, proposed and experimental relationships coincide
since, for such levels, the specimen behaviour has been shown previously (see
section 3.2) to be essentially unaffected by the frictional restraint which
exists at the specimen-platen interfaces. For stress levels between OUFP and
ultimate strength, there will be a significant deviation of the two relationships
due to the frictional restraint on deformation. The proposal that complete loss
of load carrying capacity will occur when ultimate strength is attained, is con—
sidered to provide a realistic description of the post-ultimate strength

. behaviour of an 'unrestrained' material.

A measure of the effect of the frictiomal restraint on the deformational
behaviour of the specimen is given by the deviation of the proposed from the
experimental relationships shown in Figure 9.

4. EVIDENCE FOR SUGGESTED NEAR- AND POST-ULTIMATE BEHAVIOUR

An unequivocal experimental proof of the validity of the trends of concrete
behaviour proposed in section 3.3 can only be obtained by using testing techniques
which eliminate completely any frictional restraint on the specimen-platen inter-
faces. However, on the basis of the considerations discussed in section 3, such
a proof is unlikely to be obtained by using any of the existing testing techniques
in isolation, although the fluid cushion technique [2] appears in theory to
eliminate frictional restraints. An investigation of the post-ultimate behaviour
of concrete under uniaxial compression could be based on a comparative study of
the trends of post-ultimate response of concrete specimens tested by using testing
methods employing different techniques to reduce friction. Such an investigation
forms part of an ongoing programme of research being carried out by the Concrete
Materials Research Group (CMRG), which is concerned with the derivation of a
constitutive model of concrete and its use with computer-based techniques of
structural analysis.

There is, however, published experimental evidence which suggests that under
certain types of triaxial compressive stress states concrete suffers a complete
loss of load carrying capacity when the ultimate strength is exceeded [9].
Furthermore, an analytical study of the fracture processes of plain concrete
structural forms subjected to a wide range of boundary conditions has produced
some interesting results regarding the transfer of load from elements which
suffer a partial loss of load carrying capacity due to cracking to elements
subjected to stress states below ultimate strength [15,16)., These results
indicate that the overall behaviour of the structural forms investigated is
independent of the post-ultimate strength behaviour of the material under com-
pressive states of stress. A brief description of the above experimental and
analytical information is given in the following.

4.1 Information from Experiments

The experimental data which are discussed in this section have been obtained
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during a comprehensive programme of research into the behaviour of concrete under
multiaxial stress carried out by the CMRG. The testing techniques used in this
programme have been fully described elsewhere [17] and the obtained experimental
data have formed the basis of a number of publications concerned with the
fracture processes [18,19], strength {20], and deformational response [9,12,21,
22] of concrete under generalised stress.

4.1.1. Test Procedure

Concrete cylinders with a height to diameter ratio of 2.5 have been subjected to
an axial compression (Ga) and a lateral confining pressure (0.) combined in such
a way that the state of stress within the specimen has been aiways either tri-
axial 'compression' (0_>0_ ) or triaxial 'extension (0 _>0_)(see Figure 10). The
axial compression has Beer applied by using a loadingcme%hod similar to that
described in section 2, whereas the confining pressure has been hydrostatic
resulting in the curved surface of the specimen being essentially frietion—free.
For both triaxial 'compression' and triaxial 'extension' tests the specimens were
initially subjected to a given hydrostatic pressure and then the axial compression
was either increased (triaxial 'compression') or decreased (triaxial 'extension')
to failure (see Figure 10).

4.1.2, Test Results

Typical stress—strain relationships obtained from the above tests are shown in
Figure 11 which indicates that while under triaxial 'compression' concrete
exhibits a gradual reduction of load carrying capacity for stress levels beyond
ultimate strength, under triaxial 'extension' concrete suffers an immediate and
complete loss of load carrying capacity. This difference in material behaviour
is considered to reflect the effect of frictional restraint on the fracture
processes of the specimens. According to the fracture mechanism of concrete
discussed in section 3.1, under triaxial 'compression' crack propagation occurs
in the axial direction and thus, when cracking spreads in the end zones of the
specimen, the frictional restraint will affect the specimen behaviour as dis-
cussed in section 3.2. On the other hand, under triaxial 'extension' crack
propagation occurs in the lateral direction and thus the fracture processes
which take place in the central zone of the specimen are not affected by the
frictional restraint existing at the specimen—platen interfaces.

However, in contrast to the complete loss of load carrying capacity exhibited by
concrete when ultimate strength is exceeded in an 'extension' test, experimental
stress—strain curves obtained for concrete under equal biaxial compression
applied through brush platens, which is a particular case of triaxial 'extension
with 0 = 0, exhibit a gradually descending portion [5] similar to that obtained
from triaxial 'compression' tests (see Figure 12), The difference between the
two types of tests are comnsidered to reflect frictional restraint effects. It
should be noted, however, that in contrast to the sequential loading path used
for the triaxial tests, the above biaxial tests have been performed by using a
proportional loading path. Since it has been shown that concrete behaviour is
essentially independent of stress path effects for stress levels up to OUFP only
[21], the dependence of the material behaviour on stress path for higher stress
levels may also reflect the effect of the frictional restraint.

In view of the above, the complete loss of load carrying capacity when ultimate
strength is exceeded in a triaxial 'extension' test is considered to be charac—
teristic of material behaviour under any state of stress.
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4.2 Information from Analysis

The analytical data which are discussed in this section have been obtained as
part of an investigation by the CMRG into the use of constitutive models of
concrete when coupled with computer-based methods of analysis. Nonlinear
finite element techniques incorporating the constitutive model of concrete
behaviour described in references [12] and [20] have been used to analyse plain
concrete structural forms under concentrations of load induced by a wide range of
boundary conditions (see Figure 13). The analysis has been found to yield
realistic predictions of structural response which correlate very closely with
published experimental data. The following is concerned only with a brief
description of the fracture mechanism of the structural forms investigated
predicted by the analysis. A full description of the results obtained has been
given elsewhere [15,16].

4.2.1. Constitutive Model

The constitutive model used has been devised so as to describe the effect of the
fracture processes of concrete on the material deformation [12]. Its formulation
has been based on an analysis of triaxial experimental data [22-24] and as a
result it suffers, like any other model, from the inherent disadvantage that it
may describe specimen rather than material behaviour. However, unlike other
models, it has been expressed in a modular form which allows improvements to be
made in the light of any new information regarding the material behaviour with-
out changing the theoretical basis of the model.

The above model describes completely the deformational behaviour of concrete under
generalised stress increasing up to and, for 'compressive' states of stress,
beyond ultimate strength. When the ultimate strength of concrete under a state

of stress with at least one principal stress component tensile is exceeded, the
maximum principal tensile stress is set to zero and the material behaviour is
defined by the model on the basis of the principal stresses in the orthogonal
directions.

4.2.2. Results of Analysis

It has been very interesting to find that for all cases investigated collapse of
the structure occurs without the compressive strength of concrete being exceeded
anywhere within the structure. The analysis predicts cracking will occur in
regions subjected to a state of stress with at least one of the principal stress
components tensile. For the cases investigated, the most critical state of
stress is that which causes cracking to occur in the region marked B in Figure
l4a. With increasing load, this cracking only propagates into other regions
subjected to similar states of stress, i.e. with at least one of the principal
stress components tensile, up to the formation of a crack pattern corresponding
to the collapse stage (see Figure 14b).

Figure 14 also shows that region A, which is subjected to a wholly compressive
state of stress, reduces in size as the applied load increases above the level
which causes crack initiation. This is due to stress redistribution which
transforms the state of stress at the periphery of region A from a wholly com-
pressive state of stress to a state of stress in which at least one of the
principal stress components is.tensile. When the strength of concrete under this
latter state of stress is exceeded cracking occurs and the size of region A is
further reduced (see Figure 14b). In all cases investigated collapse of the
structure occurs before the strength of concrete in region A is exceeded.

If the fracture process described above is typical of that of any concrete
structure, then the post-ultimate strength behaviour of concrete (i.e. the
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descending portion of the stxess-strain relatiomship) under a compressive state
of stress has no apparent effect on the overall behaviour of the structure, The
large deformations attrxibuted to post-uyltimate strength stress-strain character-
istics may be assocliated with the triaxial state of stress which exists in any
structure but which is usually ignored for the purposes of simplieity. For
example, the compression zone of reinforced concrete beams is actually subjected
to a triaxial compressive state of stress due to the restraints imposed on the
transverse expansion of the beams by the reinforcement, surrounding concrete,
etc,, but this is not accounted for in the design calculations.

A simplified description of the effect of hoop reinforcement on the strength and
deformation of linear concrete structural members subjected to axial compression
may be obtained by a finite element analysis in which the hoop reinforcement is
simulated as a spring support with a stiffness equivalent to the stiffness of
the reinforcement. The results obtained from such an analysis are shown in
Figures 15a to 15c.

Figure 15a shows that the load carrying capacity of concrete increases with
decreasing the spacing of the hoop reinforcement. The cause of such behaviour

is demonstrated in Figure 15b which shows the effect of hoop reinforcement
spacing on the stress path to which concrete under increasing lcad is subjected.
Figure 15b also includes the ultimate strength envelope for plain concrete and
indicates that the confining pressure (0 ) induced by the restraint which the
hoop reinforcement imposes on the transverse expansion of concrete with increas-
ing applied axial load increases with deareasing the spacing of the reinforcement
and thus a higher -axial stress (Ga) is required for the ultimate strength level
to be exceeded.

Figure 15c shows the variations of axial and lateral strains with increasing
axial stress for various values of reinforcement spacing. The stress—strain
relationships obtained from tests on plain concrete under uniaxial compression
are also shown in the figure for purposes of comparison. It should be noted
that, for values of the reinforcement spacing up to about 0.5 x the diameter of
the concrete member, the axial compressive strains corresponding at ultimate
strength are comparable, or higher than, the maximum axial strain exhibited by
plain concrete under uniaxial compression.

5l CONCLUSIONS

Based on a discussion of secondary testing procedure effects on the fracture
processes of concrete specimens under compressive stress states, it is shown that
experimental stress—strain relationships may realistically describe material
response only for stress levels up to a region close to the ultimate strength
level. Beyond this level, the hypothesis that concrete suffers a complete loss
of load carrying capacity is considered to provide the most realistic prediction
of concrete behaviour.

The above hypothesis is supported by experimental evidence obtained from triaxial
tests on concrete subjected to wholly compressive states of stress which indicates
that when the fracture processes are not affected by secondary testing effects
then the specimens suffer a complete loss of load carrying capacity when ultimate
strength is exceeded. Furthermore, results obtained by finite element analysis
indicate that the behaviour of plain concrete structural forms subjected to load
is independent of the behaviour of concrete under compressive stress states
beyond ultimate strength. If such behaviour is typical of any concrete structure
then the large deformations attributed to post-ultimate stress-strain character-
istics may, in fact, be associated with the triaxial state of stress which exists
in any structure but is usually ignored for purposes of simplicity,
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SUMMARY ]

An elastic-viscoplastic-plastic-brittle constitutive theory is chosen for concrete. it is
capable of describing rate, strain history, and stress history effects, as well as the
ductile and brittle failure of concrete. The mode! accounts for nonlinearities both in
deviatoric and volumetric states of stress and strain. Comparisons with experimental
results are presented.

RESUME

Un modéle constitutif élastique-viscoplastigue-plastique-fragile est choisi pour le béton.
Il est capable de décrire les effets de la vitesse, de I'histoire de 'allongement, de
I'histoire de la contrainte et aussi la rupture ductile et fragile de béton. Le modéle
permet de tenir compte des propriétés non-linéaires dans les états de contrainte et
d'allongement déviatriques et volumétriques. Des comparaisons avec des résultats
expérimentaux sont présentées.

ZUSAMMENFASSUNG

Ein Stoffmodell flir Beton flr elastisches, viskoplastisches, plastisches und sprodes
Verhalten is gewahit. Es ist moglich, Wirkungen von Geschwindigkeit, Dehnungs-
Geschichte und Spannungs-Geschichte zu beschreiben. Auch spréde und duktile
Briche sind beschrieben. Das Modell kann nicht-lineare deviatorische und
volumetrische Spannungs- und Dehnungs-Zustdnde berlcksichtigen. Theoretische
Ergebnisse sind mit experimentellen Resultaten verglichen.
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L]

1. INTRODUCTION

In all inelastic deformation of concrete, as well as most other materials, the
response is highly dependent on the rate of stressing or straining. Further-
more, the inelastic deformation is to a large extent non-recoverable and path
dependent. A realistic material mode! must account for these effects.

The present material model uses a combined elastic-viscoplastic-plastic-brittle
theory previously presented in Nilsson [1]. This model can be motivated from

the physical observations of two main stages of crack propagation: the stable
crack propagation and the unstable crack propagation. Thus, the stable crack
propagation will be described by the theory of viscoplasticity, and the unstable
crack propagation by a combined viscoplastic-plastic, or alternatively, a
combined viscoplastic-brittle theory. By the use of rate-hardening functions,
the stress at failure will also depend on the strain rate.

The actual material behaviour is governed by the relative location of the

stress point to the plastic yielding, brittle failure, and the viscoplastic
loading surfaces in the stress space, see Figure 1,

93

brittle failure
surface

initial
viscoplastic
loading surface

elastic region

plastic yield

surface ///
v

elastic-viscoplastic -0,
region

Fig 1 Regions of elasticity, viscopTasticity, plasticity, and brittle
failure

2.  CONSTITUTIVE EQUATIONS

2.1 Loading, potential, and failure surfaces

From proportional true triaxial tests, it is possible (within the assumption
of isotropy) to construct the surface of elastic 1imit, the crack initiation
surface, and the failure surface. Most work on the mathematical modeiling of
these surfaces has been concerned with the failure surface. In contrast to the
failure surface, both the elastic 1imit surface and the crack initiation
surface are closed. In the present theory, their mathematical representations
are the static viscoplastic loading surface FV = 0 and the plastic yield
surface FP = 0, respectively. For tension or combined tension-compression
states of stress, the plastic yield surface is also utilized as a brittle
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failure surface.

In concrete and other granular materials, strain softening and dilatancy are
obtained for small hydrostatic pressures, while strain hardening and con-
tractancy are obtained for high hydrostatic pressures. A closed loading surface
and an associated flow rule are capable of modelling these effects.

A simple geometric surface, which can be made to fit the experimentally found
surfaces (i.e. both FY¥ = 0 and FP = 0) fairly well, is the generalized
ellipsoidal surface

2 o & =8 e
.. [( Hé; _ ;] ]>2-+( E;gy)2]1/2 o -

‘where o_, 1., and 8 are the octahedral normal stress, the octahedral shear
stress, and the angle of similarity, respectively, given by

o =,% tro, T, = (%'2535)1/2 , 6= %—arccos(/? det(g)/ro3) (2)

Here s is the deviator of the stress tensor o. The parameters gu, g], and b(6)
can be identified from Figure 2. ~

The rate-hardening parameter Hr’ which will later be discussed, approaches in
static loading condition the " value of fcu‘

The deviatoric semiaxis b(8) is approximated as a function of & (an ellipse).
Due to the symmetry conditions, it suffices to interpolate b in its values o
b1 and b2 for 'triaxial extension' (8 = 09) and 'triaxial compression' (8 = 60°)

-g,/f
T /f \ o3/ f ey
B A 0O cu
~F
\ %of"
£y
-0,/ f
. 2" cu
c1/fcu
(b)
Fig 2 Rendulic (a) and deviatoric section at vertex (b) of the generalized
ellipsoidal loading surface. (f_ = unjaxial compressive strength)

Ccu



162 'CONCRETE IN HIGH RATE OF LOADING CONDITIONS

tests, respectively. Thus,

b(8) = [t(6) + u(e8)l/v(e) (3)
where

t() = 2b2(b§ - b%)cose (4a)

u(6) = b,y(2b, - b,) (4(b5 - bo)cos?s + b5 - ab,b,1'/? (4b)

v(0) ; a(6% - b2)cosPe + (b, - 2b))° (4¢)

where b1 = b(0°) and b2 = b(60°), respectively, ¢ f Figure 2(b). With the excep-
tion of the hardening and softening parameters, the generalized ellipsoidal
surface contains four parameters g1,€1, b1, and b2, which must be fitted to
experimental data. It is convenient to express some of these parameters in more
easily identified ones, which can be obtained from standard tests: the uniaxial
compressive strength fcu’ the unjaxial tensile strength ftu’ the biaxial
compressive strength fcb’ and the elastic 1imit in hydrostatic compression fct‘
Table 1 summarizes the four different test stress states.

TABLE 1 Identification of test stress states
(atu = fo'feur %eb = Tev/Teur 51 ° fct/fcu)
Principal
Test stresses Go/fcu To/fcu o b(8)
Uniaxial °1=ftu \
Lo, 1724 0° | b
tension 02=03=0 3%t t3 Ttu 1
Uniaxial c1=02=0 1 7 600 ;
. "3 B 7
compression o3=-fcu
Biaxial °q=0 ) 2a Jz N 0© :
compression 02=o3=—fcb 37cb 3 Teb 1
Hydrostatic e
0y=0p=03=-F ¢ | & 0 - -
compression
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The following substitutions for gu’ b1, and b2 are

2
_ “Eb‘§ P ~ E1)2 - u%u(g'acb " g])z } (“Eb ] 0‘12:u)£1 (5)
T 2 (2 )+l (2o o+ g - (o - af )E,]
[“cb 3 %y T 5 Atz %y * 5 %b tu’ =1
4

2 _2 2 I%p Y E T 211

b1‘§°‘cb[1'( —— )] (6)
u 1
2 2 -1

b2=2[1_/w)] (7)

2 _9— \gu‘g]

For many occasions a complete set of test data is lacking, and empirical rela-
tions must be relied on. With such empirical relations, however, the number of
model parameters can be reduced.

Figure 3 shows a fit of the generalized ellipsoidal surfaces to experimental
data. A remarkably accurate fit for this concrete is noted for the elastic
1imit surface. The poorer accuracy for the fit of the initial plastic loading

unjaxial

loading path experiment:

L2 —*—s—4— fajlure

— ——— onset of un-
stable crack

1. propagation or

o crack initiation

+++++ pglastic 1imit

dgeneralized ellipsoidal:

1. —.—.— initial plastic
loading surface

5 2 —— initial visco-
6 =10 plastic static
1 i f
Toading path oading surface
Fig 3 Fit of generalized ellipsoidal surfaces to experimental data of

Launay and Gachon [2]. Parameters of the initial plastic loading
surface: ay, = 0.15, a.p = 1.8, £y = -2.3 (gu = 0.05, b1 = 0.85,
b2 = 0.64). Parameters of the initial viscoplastic static loading

surface: gu = (.05, E] = -0.67, b1 = 0.24, b2 = 0.25
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surface is explained by the definite form of the ellipse. To obtain closer fits
more sophisticated types of loading surfaces are needed. Another possibility
for closer fits is to use two different types of loading surfaces; one of the
classical type, which conforms to the fajlure surface, and another which inter-
sects the hydrostatic compression axis.

2.2 Elastic response

For stress points inside the static viscoplastic loading surface, FY = 0 (elastic
limit surface), a hypoelastic stress-strain relation is assumed. Thus,

dg = $:dg (8)

where S is the fourth-order elastic tangential stiffness tensor and dg is the
elastiC strain increment tensor. Initially, a linear elastic stiffness is
assumed, in which case S contains elastic constants. For representation of
stiffness degradation due to micro- and macrocracking, a dependence of the
inelastic dilatance on the elastic stiffness § is introduced in the form

Ep €p
~{ 2y (2%
K=%e H;,G=°Ge'a§,eo>0 (9)

where °K and °G are the initial bulk and shear moduli, respectively, and
eP is the plastic volumetric strain. The parameters d4 and d, control the
rate of degradation. In general we have assumed that d1 = d2 = d.

2.3 Elastic-viscoplastic response

For stress points in the region between the static viscoplastic loading surface,
FV = 0, and the plastic yield surface, FP = 0, elastic-viscoplastic respOﬂse is
assumed. The total stra1n increment is add1t1ve1y resolved into elastic (de )
and viscoplastic (ds P} parts

de = det + de'P (10)

~ ~ ~

The elastic-viscoplastic stress-strain relation is thus

dg = S:(dg - £'Pdt) (11)

[t

The viscoplastic strain rate gYP is governed by a generalization of Perzyna's
{3] theory

&P = v(g.g) <o(F) > n. ‘ (12)

where the normalized grad1ent ne of the dynamic loading potential surface,
F¥(g, HY) = const., gives the direction of the viscoplastic strain rate. The



L. NILSSON - R. GLEMBERG 165

hardening/softening function HY will be discussed in Section 2.6. The bracket

< +> indicates that only values of ¢ with argument FY > 0 are taken as

different from zero. The static viscoplastic loading surface is given by

FV(g, HY) = 0. In short-term static and dynamic loading conditions, the primary
nonTinearities of concrete are caused by microcrack growth and pore collapses.
Both these physical phenomena manifest themselves as nonrecoverable delay
effects. From a physical point of view, a relationship must exist between the
velocity of the growth of microcracks and the viscoplastic strain rate. One can
therefore interpret the accumulated viscoplastic strain as a measure of micro-
crack damage. Several proposals of the function ¢(FVY) have been given by Perzyna
[3]. They are all derived from fits to experimental data. The function

Mﬂ)=e%f (13)

is used in this analysis. The value FY of the dynamic loading function is
normalized against FY!_in order to give nondimensional values of ¢(FV). The
normalization value FV' has been chosen such that FV = FV1 at plastic yielding
for a specified test state of stress. The parameter a determines the curvature
of the stress-strain curve at constant rate of straining.

The parameter vy in Eq. (12) is assumed to be a function of the strain rate. This
renders it possible to fit stress and strain at failure according to specified
values. The following function was proposed in Nilsson [1]

éef
Y(é) - éEf e-r‘ 'ln|é—e—1,_= (14)
r

ef . . . . . eof,
where € is an invariant function of the strain rate, s$f1s a reference
value of the effective strain rate, and r is a material constant. In the

following numerical analyses
2, 1:2"/? (15)

¥ = (& + 7 7,

has been utilized.

2.4 Elastic-viscoplastic-plastic response

For a stress point on the surface FP =0 plastic yielding takes place. The
plastic strain increment qu gives a contribution to the total strain increment.
Thus,

dg = de® + dg"P + deP (16)

It is observed that a non-zerc viscoplastic strain increment always accompanies
the plastic strain increment, unless the static¢ viscoplastic loading surface at
the actual stress-point coincides with the plastic yield surface.
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Within the assumption of an associated flow rule the plastic strain increment
is obtained from

P,
deP = dx 2 (17)

~

where the scalar dA will depend on the states of stress, strain, and strain rate.
During plastic flow the consistency conditions

FPlg, HP) =0 and  dFP(g, HP) = 0 (18)

must be satisfied. If the hardening and softening of the plastic surface is
governed by a function HP, which is a function only of the plastic strain, we
find

dg = ée}a: (d’g - dEVp) (19)

where the elastic-plastic tangential stiffness tensor §Fp is given by

p p
ep _ g _ 1 (g, 3F ) (3F" . ) 20
§., _§, -ﬁ(é.'ag)(ag '§J ( a)
oo 2FP o oFP  aFP aHP ng (20b)
og = ug aHP agp <

2.5 Elastic-viscoplastic-brittle response

Brittle failure is assumed to occur whenever the failure criterion
Fc(ga Hc) = 0 (21)

is met and at least one principal stress is positive. Before failure, isotropy
is assumed, and the failure criterion (21) can be interpreted as a failure sur-
face in the principal stress space. The shape of the failure surface changes
according to the hardening and softening parameter H®. The same function has
been chosen both for the plastic yielding (ductile failure) and for the brittle
failure. Thus, it is assumed that

F(g. H®) = FP(g, HP) (22)
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Prior to failure the material can carry a certain amount of principal tensile
stresses in any direction. Whenever the failure criterion (21) is satisfied in
a spatial point, a crack plane is formed there. The crack plane induces
anisotropy, which will exist for all future time. The normal of the crack plane
is assumed to coincide with the direction of the maximal principal {tensile)
stress at failure.

After the brittle failure, the tensile strength across the crack plane is
assumed to be zero. The compressive strength across a crack plane is, however,
assumed to be independent of an existing crack plane. Depending on the rough-
ness of the crack surfaces and on the crack width (distance between the crack
surfaces), the shear strength in the crack plane can vary from full strength
to zero strength.

Secondary cracks may develop at a cracked point as long as a tensile strength
remains in any direction. For every new crack plane that is formed, the order
of the stress state will be reduced by one. Thus, prior to cracking the stress
state is three-dimensional. After one crack plane has formed, it is two-
-dimensional, etc.

In the present analysis, the 'tension cut-off' surface is utilized as a post
failure surface. Thus,

(o) = max (o)) i=1,2,3 (23)
where Oys Oos and gy are the principal stresses.
At failure the following relations are satisfied:

FPlg, ) =0 and  F'(g) = m (24)

where u > 0 is the largest principal stress. Immediately after failure, the
following relation must hold

Ff(g +dg) =0 (25)

where dc is a stress transfer or stress re1axat1on It is assumed that
the incremental strain due to brittle failure de s can be added to the
total incremental strain, Thus,

de = dge + dEVp + dgc (26)

In analegy with an associated flow theory of plasticity, it is assumed that the
incremental strain due to brittle failure follows from the normality rule
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de® = dr - | (27)
where dxc is dependent on the stress and strain state. Some algebra yields

dg = éc s (deg - dEVp) - dgc (28)

where the tangential stiffness tensor §F for the material with one crack plane
is given by

fo zopf
§C=§-JE(S:§F )(g—F~:§) (29a)
pE w92 1
f f
c _9oF _ o, ,oF
D dfa’%,ag (29b)

and the incremental stress dgF due to brittle failure is given by

oFf

56 (30)

c u .
do” =+~ §S:

The derivation of the tangential stiffness tensor écc and the incremental
fracture stress do“C due to a secondary crack plane is analogous.

Finally, when the third crack plane is formed, the tangential stiffness tensor
for tensile states of stress is reduced to the zero tensor,

2.6 Strain hardening and softening

A11 four parameters of the generalized ellipsoidal loading surface can be func-
tions of damage measures. This renders it possibie to model complex hardening
and softening behaviour. Unfortunately, much experimental results on triaxial
hardening and softening of concrete are lacking, and the choice of hardening
and softening functions must mainly be based on hypotheses.

Experiments show that plastic contractance hardens the material, while plastic
dilatance softens the material. Thus, it is natural to use the inelastic
volumetric strain as an internal variable (measure of material damage).

The parameter €, (Eq. (1)) of the generalized ellipsoidal surface is assumed
to be a master hardening and softening parameter. The hardening function is
obtained by identifying the inelastic strain components of experimental data
obtained from hydrostatic compression tests. The exponential hardening function

—apP
g = g e % (e <0) (31)
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has been found to fit test data of Green and Swanson [4] fairly well. In Eq.
(31) °gq denotes the initial hydrostatic stress at plastic yielding and a
is a material parameter,

The softening function can be chosen in a similar manner from tests which ex-
hibit softening behaviour. The following function has been chosen

eP

)
g = (%5 +g) e - & (0 > 0) (32)

where g, and &, can be identified from Figure 2 and b is a material parameter.
The par;meter g controls the rate of softening. It has been found that b =

= 5.107"% yields a good fit to uniaxial compression tests by Linse [51, [6].
Experimental data for the hardening and softening of the elastic limit surface
seem to be Tacking at present. For this reason very simple hardening and
softening rules have been chosen. In the case of viscoplastic dilatancy, the
relation between the parameters of the plastic yielding and the static
viscoplastic loading surfaces is constant. However, plastic contractancy

is assumed to affect this relation in such a way that £¥p tends to £y- Thus

v
o,VP H vp vp
S SR
v
E.Ip = (333)
€1 otherwise

where it has been assumed that

vp _ v v v
°61" = K&y, °b1p = Kb1,0b2p = kb,, gup =g, (33b)

and k is a proportionality constant. The viscoplastic hardening can be explained
by the observation of relatively elastic unioading paths from stress states with
high hydrostatic pressure components. Furthermore, the existence of creep or
relaxation even after excessive cracking can be observed in experiments.

2.7 Strain rate hardening and softening

Experiments have clearly indicated the dependence of the rate of loading or
the rate of straining upon the failure. The general observation is that the
ultimate stress increases significantly with the rate of loading or straining.

In the present analysis the rate effects upon the ductile yield and brittle
failure surfaces are introduced in the form of a single rate hardening parameter
H., which is a function of an effective strain rate, Eq. (15). It was proposed
in Nilsson [7] that the rate hardening can be approximated as the function

H. = flep *+ ¢ 1n(éEf) + c3[1n(éef)]2} (34)

where the parameters Cys Cos and Cq are obtained by fitting Hr to experimental
data, c¢ f Figure 4.
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Fig 4 The effect of average strain rate upon compressive strength of
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The introduction of the hardening parameters H,. into the plastic yield and
brittle failure function Eq. (1) yields an 1so¥ropic rate hardening or
softening. Due to the rate effect, the failure surface can be interpreted as
'breathing'.

3. VERIFICATION OF THE CONSTITUTIVE THEORY

In this section some experimental test results found in the literature are
compared to numerical results obtained with the present constitutive model.
The simulations are carried out directly on the constitutive equations. Con-
sequently, homogeneous states of stress and strain are assumed in the experi-
mental test specimens.

In general, it is extremely difficult to perform an experimental test with all
components of the strain vector prescribed according to a specified history.
Most strain controlled tests have been performed with just cne pre-determined
strain component.

The verifications have been conducted under conditions of controlled strain
rate in the smallest principal stress direction, and with a given ratio between
the principal stresses. Two types of triaxial tests have been simulated: the
triaxial compression test (two principal stresses equal) and the true triaxial
test with constant ratio between the principal stresses.

The triaxial compression tests performed by Green and Swanson [4] were con-
ducted on high strength concrete. According to the experimental test

fcu = 48,4 MPa and ftu = 5.6 MPa, The biaxial strength was not tested. The
following parameters have been used: fcb = 1.15, fcu = 65,7 MPa, E] = -1.5,

E, = 38.8 GPa, v, = 0.18, « = 0.4 (Eq. (33b)}, a = 80 (Eq. (31)), b = 1.0-10"

(Eq. (32)), H = 24.0 £, (Eq. (332)), o = 0.8 (Eq. (13)), &7 = 2.0-107® 5~"

3
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and r = 0.0625 (Eq. (14), and d = 0.5-‘|0-3 (Eq. (9)). The rate of straining

is assumed to be 2.1070 5'1.

Figure 5 shows the fit of the hydrostatic compression test. With the proposed
parameters the deviation between the experimental and the mathematical curves
is small.

Figure 6 shows the fit of different triaxial compression tests. The hydro-
static pressure was applied in accordance with the prescribed rate of straining.
When the prescribed level of lateral pressure o; = o, was reached, the lateral
pressure was fixed and only the axial stress was increased according to the
specified rate of straining. It is noted that relatively good fits are obtained
for g4 = gp = 0 and g4 = 0, = -6.9 MPa, Due to the lack of independent devia-
toric hardening of the plastic surface, the plastic dilatance according to the
model appears to be too abrupt at material instability. The disadvantage of

the ellipsoidal shape of the plastic loading surface at higher hydrostatic
pressures appears for g, = 0, = -13.8 MPa. Furthermore, the shear compaction

of the proposed model is too small.

The true triaxial tests performed by Linse [5], [6] were conducted with a

constant ratio between the principal stresses. The rate of straining in the
smallest principal stress direction was 2.0-‘10*6 5_1. The following common
parameters have been used: fcb = 1.15 fcu’ ftu = 0.1 fcu’ £1 =-2.0, E, =

= 30.0 GPa, v, = 0.18, « = 0.4 (Eq. (33b)}, a = 100 (Eq. (31)), b = 0.5-10"

Eq. (32)), HY =50 £ (Eq. (33a)), o = 0.8 (Eq. (13)), eefs 2.0 1078 571,

(
r = 0.625 (Eq. (14)), and d = 0.5-107° (Eq. (9)).

3

g,/f
AL 5 A 3" ‘cu

- 4 ¥ + + + + 4 t t > 3800/0

present model

| ———- experiment:
Green and Swanson [4]

Fig 5 Fit of hydrostatic compression curve
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Figure 7a shows the fit of a uniaxial compression curve. Some deviations
between the mathematical and experimental lateral strains are observed. Figure
7b shows the corresponding fit to the biaxial loading curve. The deviations

are shown to be small throughout the tested range of strains. Linse did not
present any uniaxial tension test. The results from the present model, with the
same material parameters as for Linse's compression tests, are shown in

Figure 7c.

Figure 8a shows the performance of the present model under different Toading-
-unloading-loading conditions conducted under constant magnitude of strain

rate in the direction of maximal load (o3). The change of straining direction
is assumed to be instantaneous. In its current version, the present model fails
to describe the hysteresis loop commonly observed in cyclic tests on concrete.

Figure 8b shows uniaxial compression curves at different constant strain rates
as obtained by the present model.
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4, CONCLUDING REMARKS

The stable crack propagation and the unstable crack propagation generally
observed in experiments have been modelled by the viscoplastic and plastic-
brittle theories, respectively. Rate effects are included in the model both in
the sense of viscoplasticity and in the form of strain rate dependent plastic
loading and brittle failure relations.

From a number of verification tests, it is concluded that the present consti-
tutive model yields results which qualitatively agree with experimental tests.

Experimental results indicate a degenerated ellipsoidal shape of the loading
surface in the principal stress space. Experimental data for hardening and
softening of concrete in multi-axial states of stress and strain are still

not available. Thus, not much can be said about the appropriate choice of
hardening and softening functions. The failure of concrete in tensile states
of stress appears as a continuous softening rather than a perfect brittleness.
In the present model, the directions of anisotropy of the stiffness tensor are
memorized only in the case of a brittle failure. However, every kind of micro-
and macro-faiiure of concrete introduces anisotropy into the stiffness tensor,
and the directions of this anisotropy should be memorized by the material for
future time.
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Similitude of Brittle Fracture of Structural Concrete
Similitude de rupture fragile en béton arme

Ahnlichkeit bei sprédem Betonversagen

HANS W. REINHARDT
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Stevin Laboratory, Delft University of Technology
Delft, The Netherlands

SUMMARY

On three examples of brittle fracture of structural concrete - i.e. bending shear,
punching shear, shear in joints between prefabricated floor slabs - it is demonstrated
that the absolute size of the member influences the ultimate shear stress. This
influence is explained by linear elastic fracture mechanics.

RESUME

Par trois exemples de rupture fragile en béton armé - effort tranchant en flexion,
poingonnement de dalles, effort tranchant dans les joints entre éléments de plancher
prefabriqués - il est démontré que les dimensions absolues des éléments influencent
les tensions de rupture en cisaillement. Cette influence est expliquée par la mécanique
de rupture linéaire-élastique.

ZUSAMMENFASSUNG

An drei Beispielen fur spréden Bruch von Stahibetonbauteilen - Biegeschubbruch,
Durchstanzen, Schubversagen von Fugen zwischen Fertigteildeckenplatten - wurde
gezeigt, dass die absolute Grosse des Bauteils die Bruchschubspannung beeinflusst.
Dieser Einfluss wurde mithilfe der linear-elastischen Bruchmechanik erklart.
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1. INTRODUCTION

With the aid of modern computational methods and facilities it is possible to
analyse all kinds of structures under almost all loading conditions. Expecially
those structures do not give problems which exhibit elastic behaviour in the
service state and plastic, or more general ductile, behaviour in the limit state.
Most of the concrete structures are designed in such a way that they behave as
mentioned. There are only a few cases where brittle fracture or almost brittle
fracture occurs. But just these cases are the ones which should receive at-
tention, because they can be dangerous if the governing parameters are not well
recognized. This is true of structural design and also of analysis if the
engineer is not aware of possible influences which may reduce the safety of the
structure.

In the following only cone aspect will be discussed in relation to three examples
of structures, namely, the size effect in connection with shear failure of beams
and slabs, punching shear of slabs, and shear transfer across joints between
precast hollow core floor slabs. Common practice is that an average shear stress
is calculated and compared with a limiting value which is a certain fraction of
the tensile strength of concrete. This is done at finite element level, but
also for the structure as a whole. Sometimes the size effect is taken into
account by an empirical reduction factor. In the following it 1s tried to show
that fracture mechanics concepts could be applied to explain the influence of
the absolute size of the structure on the limit load.

2. EXAMPLE OF BRITTLE FRACTURE

Brittle fracture of concrete structures is the exceptional case and is normally
avoided by appropriate reinforcement or prestressing. But sometimes, because
of economical advantages, reinforcement is ignored and the concrete alone has
to be responsible for the loading capacity. The first example of this is a
beam or slab without shear reinforcement. Fig. 1 shows the loading system and
the crack pattern after failure. The common behaviour of such a beam is that

| L
L T

Fig. 1. Loading system and crack pattern of a beam after shear failure

the first cracks cccur due to bending. Subsequently the cracks become longer
until the extension of one inclinedcrack leads to failure because of low com-
pressive strength or low tensile strength. Failure is "explosive", without ad-
vance announcement by excessive deformation.

A similar example is punching shear of slabs which is shown in Fig. 2.
Fracture cccurs when a concentrated lcad which acts on a reinforced concrete
slab reaches the loading capacity. After the formation of radial and circular
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Fig. 2. Punching shear of concrete slab

cracks, sudden fracture occurs without announcement. The difference between
bending shear and punching shear lies in the mamner of stressing and the accom-
panying shape of the fractured element, which is a plane in the first case and
a cone in the second.

The third example is taken from a precast concrete building in which the floors
consist of prestressed hollow core slabs. The slabs are laid side by side and
are connected by mortal-filled joints. In most cases a thin topping concrete
layer is applied in order to ensure horizontal stiffness and vertical load
distribution. Actually, this topping delays the work on the building site and
is also an inconvenient feature when the building has to be demolished. There-—
fore, hollow core slab floors without topping are being investigated in regard
to the shear behaviour of the Jjoints under in-plane forces. A typical example
of a joint is shown in Fig. 3. Shear stresses in a test specimen are indicated
in Fig. 4 exhibiting stress peaks at the ends of the joint. If the joint mortar

F
— ?
D T
o ¥ . crack
F’
Fig. 3. Hollow core slab with Fig. 4. Shear stresses and crack
mortar joint in the joint

is a brittle material, a crack will start from the end of the joint as soon as
the peak stress reaches a certain maximum value and adhesion between mortar and
concrete falls. Because this is true for a short joint length and for a large
joint length the question arises as to the limiting shearing force F as a
function of the joint length. In the case of a plastic material and in the case
of a friction mechanism between the slabs, F is linear function of the length,
but in the case of a brittle material this is not expected.
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3. KNOWLEDGE FROM EXPERTMENTAL, INVESTIGATIONS

Much experimental work has been done on bending shear in beams and slabs.

The results show a distinct dependence of the ultimate average shear stress on
the absolute depth of the beam. Fig. 5 shows the results of various researchers
(for details see [1]).

Results of punching shear tests on slabs of various thickness are very scarce,
but the few available ones also show a decrease of the punching shear stress
with increasing slab thickness, Fig. 6.

In the Stevin Laboratory at Delft research is being carried out on joints be-
tween hollow core slabs and also indicates a nonlinear dependence of shear

force on the joint length. The results have not yet been fully worked out,
however.
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Fig. 5. Relative ultimate shear stress Ffig. 6. Relative punching shear
vs. depth of the beam stress vs. slab thickness

A common feature of all the experimental results is a significant influence of
the absolute size of the specimens on the ultimate average shear stress. This
influence is not explicable with the strength of material concept, for which the
absolute dimensions do not matter. Therefore fracture mechanics will be applied,
which could show a way out of the difficulty.



HW. REINHARDT 179

4. FRACTURE MECHANICS AND CONCRETE

Linear static fracture mechanics as originated by Griffith [4 | considers the
surface energy at a crack (energy demand) and the elastic energy release around
a crack. The condition for a stable crack is that the energy demand is greater
than the energy release.

From this condition the maximum nominal stress in an infinite slab with a cen-
tral crack of length 2a before failure, is

N R R
A Y T Ja T Y

For two specimens of the same material the factor 2EBEy/m 1is constant and
therefore the maximum nomimal stress ¢ depends on the absolute value of the
crack length. The larger the crack, the lower is o.

Ancther approach in fracture mechanics is the determination of the stress field
around a crack [5]

O=‘-V-T,"—§———.f(...) (2

where K is the stress intensity factor and f a non-dimensional function which
takes the geometry of the specimen or structural member and the loading con-
dition into account. Failure will occur if K is equal to a critical value K

which is a material constant. Thus, eq. (2) can be rewritten as ¢
1 Kb
O:ﬁ -m‘—" .f(...) (3)

which gives essentially the same result as eq. (1).

Until now, fracture mechanics has been widely used in mechanical, ship and
airplane engineering for failure analysis of metal structures. The application
of fracture mechanics to concrete is rather limited.

At micro-level it is used for the treatment of the influence of sustained [6]
and shorttime loading [ 7] on the strength of concrete, at macro-level for the
strength of a beam [%j and the failure criterion of a large dam [9]. All these
examples relate to plain concrete.

In general, linear elastic fracture mechanics presumes elastic behaviour until
failure, i.e., there is no plastic deformation near the crack tip. Concrete
does not exactly satisfy this condition; there are always microcracks around
the aggregate particles and also around the tip of the discrete crack. But if
this microcracking zone is small compared with the size of the crack, linear
elastic fracture mechanics may be applied [10].

Whereas plain concrete always develops brittle failure in a tensile stress
field, this is not true of reinforced concrete, where the tensile forces are
taken over by the reinforcement and ductile behaviour occurs. Only in cases
where the concrete is responsible for the loading capacity does brittle failure
occur. This is one condition for the application of fracture mechanics to rein-
forced concrete. Another is that there dis a decisive macrocrack which deter-
mines the behaviour of the structure. A third is the same as for plain concrete,
namely that the microcracked zone is small compared with the visible crack.
These requirements are fulfilled in the three examples given in Chapter 2.
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5. SIMILITUDE OF BRITTLE FRACTURE OF REINFORCED CONCRETE

Stress intensity factors of members with discrete reinforcing bars are not
available in the literature and no attempt will here be made to establish them.
The configuration most closely related to the shearing and punching problems

is a beam with an inclined crack treated by Bowie [11]. In regard to the joint
between slab units there is a solution by Erdogan[jZ] and subsequent papers
by several authors [13, 14, 15 ]. All these solutions have the general form as
given in eq. (3). This means that the square root of the absolute crack length
is inversely proportional to the failure stress. If the crack pattern in two
members of different size (scale factor A) is similar, the failure shear stress
is also inversely proportional to the square root of the scale factor A

T~ A (4)

The occurrence of similar crack patterns in scaled beams has been recognized
[16] and has been observed in current research on joints. So it is not sur-
prising that eg. (4) can yield good results, as illustrated by the dotted line
in Fig. 5 and 6. Punching shear (Fig. 6) does not appear to conform so closely,
but experimental results are admittedly very scarce. So far as Jjoints are con-

cerned, the experiments have not yet been completed and worked out.

6. FINITE ELEMENT ANALYSIS

Bazant states in the introductory report |17] that the analysis of crack pro-
pagation leads to different results for different choices of the finite element
mesh if the strength of material approach is used. He gives a possible solution
by means of an energy criterion which is applied in each single element.
Argyris, Faust and Willam [ﬁ@] also mention fracture mechanics, but prefer a
Stress-strain concept (J-integral) than the linear elastic fracture mechanics
which actually can predict only the limit state and not the state of stable
crack growth.

Gergely and White [19] also emphasize the fracture mechanics approach and show
the result of a finite element analysis of a beam on the basis of fracture me-
chanics. Crack formation and deflection of the beam show close agreement with
experimental verification.

It is not completely clear whether in these calculations fracture mechanics
have been applied to the single element only or also to the whole structure.
As can be concluded from the foregoing chapters, it should be required that
also - in the case of brittle failure - the whole structure should be checked
by means of fracture mechanics and, as a first step, by linear elastic fracture
mechanics. A comparative calculation for similar beams (as in Fig. 1) could
show the feasibility of such a finite element analysis.
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7. CONCLUSIONS

Advanced mechanics of reinforced concrete implies also fracture mechanics con-
cepts which can be applied at micro-level (finite elements, inhomogeneous struc-—
ture of concrete) but also at macro-level. To demonstrate the applicability at
macro-level, three examples of brittle failure have been considered: bending
shear in beams, punching shear in slabs, and in-plane shear in joints between
hollow core slabs. Using linear elastic fracture mechanics it was found that

where Ty is the ultimate average stress and A the scaling factor between simi-
lar strictures. This relation was confirmed by experimental results. In the
future, stress-intensity factors should be derived for reinforced structures
which allow a quantitative analysis, not merely a comparative one.

It should be emphasized that fracture mechanics can only be applied to rein-
forced concrete in the case of brittle fracture. Nomally those cases are
avoided by appropriate reinforcing, but if they can occur, fracture mechanics
should be used.

If brittle failure of concrete is analysed by means of finite element programs,
fracture mechanics should be applied not only within single elements but also to
the whole structure or a major part of it.
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8. NOTATION
a half crack length
d effective depth
E Young's modulus
F force
K stress-intensity factor
v shear force
Y surface energy
X scale factor
o normal stress
T shear stress
(nominal, computed acc. to CEB-FIP)
subscripts:
c critical

§) ultimate
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Materialverhaltens
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Research engineer Prot. Dr.

Laboratory for Building Materiats, Swiss Federal Institute of Technology,
Lausanne, Switzerland

SUMMARY

In structural analysis # is essential to introduce realistic materials laws. in this

contribution creep and shrinkage of concrete are calculated on the basis of a rather
general materials model. In addition heat and moisture diffusion are taken into
consideration. Concrete need not be considered as a homogeneous material.

The actual heterogeneous macrostructure can be simulated. The materials laws derived in
this report are used to analyse a conventional cross-section of a prestressed concrete
bridge.

RESUME

Dans 'analyse des structures, il est essentiel d'introduire des lois réalistes pour décrire
le comportement des matériaux. Dans cette contribution, le retrait et le fluage du béton
sont calculés sur la base d'une modélisation assez générale des matériaux. De plus, la
diffusion de chaleur et d'humidité est également prise en considération. Le béton ne
peut pas étre considéré comme un matériau homogéne. La macrostructure hétérogéne
est simulée sur ordinateur. On utilise les lois obtenues pour analyser la section
transversale conventionnelle d’'un pont en béton précontraint.

ZUSAMMENFASSUNG

Bei der Berechnung von Betonkonstruktionen ist es besonders wichtig realitdtsnahe
Materialgesetze zu verwenden. In diesem Beitrag werden Kriechen und Schwinden auf
der Basis eines allgemeinen Gefligemodells formuliert. Zusétzlich werden Wéarme- und
Feuchtigkeitsdiffusion berucksichtigt. Beton muss nich notwendigerweise als ein
homogenes Material betrachtet werden; das heterogene Geflige kann vielmehr im
Grossrechner generiert werden. Die hier abgeleiteten Materialgesetze werden
beispielhaft zur Berechnung eines Querschnittes einer Ublichen vorgespannten
Betonbriicke verwendet.
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1. INTRODUCTION

Recently in many countries serious defects have been observed on prestressed and
normally reinforced bridges. These difficulties can be traced back to a number
of reasons such as agressive climatic conditions caused by a dense industriali-
sation and corrosion problems caused by the application of de-icing salts. There
remains, however, another purely mechanical reason. By this we mean the use of
non-appropriate or over-simplified materials laws in structural analysis and
partly also the sheer lack of knowledge on materials properties.

This obvious deficiency is contrasted by sophisticated modern computer facili-
ties. In a number of reports the potential of computerized structural analysis
has been demonstrated in a convincing way (see f.e. /1,2/). Until now the
application of these elegant methods is, however, seriously 1limited because
there exists no comparable advanced approach on the materials science side.

The essential aim of this report is to help to fill this gap. Therefore we tried
to simulate materials behaviour under varying conditions on the basis of the
physical and chemical processes involved /3,4/. It is shown how these model

laws can be introduced in structural analysis. As an example we choose arbitra-
rely a conventional cross section -of a prestressed concrete bridge. Our approach
is outlined in particular by means of the analysis of one characteristic corner
of the structure.

This contribution clearly points out the urgent need for a close link between
materials science and structural engineering. The common effort of these two
different disciplines is nowadays often called concrete mechanics.

2. SIMULATION OF TIME-DEPENDENT DEFORMATION

2.1 Model for Creep and Shrinkage

In recent years much progress has been made in materials science in describing
the time-dependent behaviour of hardened cement paste with models based on real
mechanisms. One of these models by which good results have been obtained is the
Munich-model /5/. By means of this model it is possible to describe the main
influence on time-dependent deformation of hardened cement paste such as tempe-
rature and humidity.

This model describes quantitatively the unrestrained shrinkage. The unrestrained
shrinkage or unrestrained swelling is the immediate hygral relative volume
change of an infinite small volume element of hardened cement paste if the water
content is changed. Klug /6/ and Feldman /7/ have determined experimentally the
relationship between unrestrained shrinkage and the relative humidity. It turned
out that unrestrained shrinkage ¢, can be described satisfactorily as function
of relative humidity H by a 1inear relationship if the extreme regions are
excluded :

gy = al + b (1)
It is important to notice that unrestrained shrinkage is not time-dependent.
In the Munich-model creep is described as a rate process. The rate theory

provides, a solid theoretical basis for a rather general approach to study creep
processes of materials.
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The rate of creep of loaded hardened cement paste is then given by the following
equation :

2 _ce RT ginh %% o (2)

In this equation the symbols have the following meaning :

activation energie;

activation volume;

gas constant;

temperature;

stress;

a quantity proportional to the density
of creepcenters in a unit volume.

Oa Hd0o =<0

n n n u u n

Q and V do not depend on the duration of the applied stress. The time-dependence
of the rate of creep is given by quantity C. For constant stress, humidity and
temperature the change of C as function of time can be written as :

C = g (3)
This assumption leads to the well known creep formulea :

e = ath sinh bo (4)

Cy is dependent on the type of concrete and the age of loading. A reasonable
assumption leads to the well-known double power law.

2.2, Diffusion Processes

2.2.1. Moisture movement

Pihlajavaara /8/ and Bazant /9/ showed that the diffusion equation for drying
of hardened cement paste can be written as :

- div (Dy grad H) = 0 (5)

In this equation the symbols have the following meaning :

H
Dy

pore humidity;
hygral diffusion coefficient.

Dy depends on the pore humidity H because the pore system and the transport
mechanisms change when drying proceeds. The drying process is thus nonlinear.
So far very 1ittle is known on the exact relationship between Dy and H. The
calculations described in this report are carried out by assuming a dependence
of Dy as indicated by Bazant /9/.

The general egquation governing the temperature distribution in a real solid can
be written as :

apd - div (Kgrad 0) - § = 0 (6)
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specific heat

density

conductivity

temperature C

rate of liberation of heat of hydration

Ve RD R
it

This problem can be solved numerically if the boudary conditions are given and
all the materials parameters are known.

In the formulae (1) to (6) the coefficients are materials parameters and thus
depend on water/cement-ratio, degree of hydration and type of cement apart from
other influences. Some of these parameters are not known well enough. There is a
urgent need for further experimental work.

2.3 Influence of Heterogeneous Structure of Concrete

So far we have considered concrete to be a homogeneous material. In order to be
able to study the influence of parameters such as grain size and grain geometry
or cement content it is necessary to take the real macrostructure of concrete
into consideration. This can be done by generating random structures in a
computer. In Figure 1 two runs of the structure generation program are shown as
a typical example.

Figure 1 : Two computer generated random structures of concrete,
In this example all aggregates are chosen to be circular. This is, however, not a
necessary condition and arbitrary geometries can be generated as well., Any
granulometry and arbitrary shape factors can be simulated.
Once the diffusion coefficient of the mortar is known, the behaviour of the
composite material can be predicted. The method of finite element analysis has
proved to be successful in this connection.

3. ANALYSIS OF REAL STRUCTURES BY APPLYING BASIC MATERIALS LAWS

The materials laws as described in section 2 will now be used to analyse a real
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structure. As an example a bridge has been chosen. Figure 2 shows a side-view
and two cross-sections of a serial Tanced prestressed concrete bridge.

qqgﬂawnwuuv
Da®.

2850

a0 | 7500 J_ 3150
S 1

14000

CROSS SECTION A-A

CROSS SECTION B-B

Figure 2 : Side view and cross sections of a typical
serial lanced prestressed concrete bridge.

The floor and the two corners of the box-girder (cross-section B-B) are usually
concreted one week before the upper-section is concreted. First of the tempera-
ture distribution in cross-section B-B due to heat of hydration is calculated.
The assumption has been made that the flow of heat is two-dimensional in this
cross-section. It is also assumed that the flow of heat through surfaces with
shuttering is 5 times smaller than through boundaries without shuttering. The
temperature of the fresh concrete was supposed to be 18 C.
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Boundary [3

Boundary [j

Domain {L Boundary [c Boundary g

Boundary [e

Differential Equation in Domain L : otp@-div(Kgrad(D)—é: 0

= specific heat 800 J
kg °C

= density 2500 K9
m3

K = conductivity 8000 J
mOCh

B= temperature °C

S=rate of liberation of heat of hydration=

t
01(®it)-20) ~0.009 faM@m=20,,
b

162000 x 2 3
mih

Boundary Conditions: on [ and e q,= 1000000(®- 20) _}2_.

m<h

on fp: Q,= 200000(@-20) __J

m2h

onfe: | q,= 200000(@-15) L.

m2h

on fg: Qn= 0 —l

m2h

Initial Condition: |®(x,y.0)=18 ©C

Figure 3 : Differential equation, boundary, and initial conditions
for temperature development.

In figure.3 the mathematical "translation" of this problem is indicated.

Figure 4 shows how domain @ is subdivided into smaller domains, representing the
finite elements.
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Figure 4 : Finite element idealization.

For the analysis 83 triangle elements with 6 nods and 26 membrane elements with
3 nods have been used. In Figure 5 the calculated temperature distribution at
3 different times after concreting are drawn by means of isotherms.
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Figure 5 : The calculated temperature distributions
at three different times of hydration.
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42 hours after concreting the temperature in the core of the corner is about 72 C
and the temperature gradients in the directions of the boundaries have reached
their maximum. In this situation concrete has become rigid and when the tempera-
ture goes down again due to diffusion and the gradients have disapeared this will
result in initial stresses which can introduce cracking and which influence total
deformation.

Next the drying process of this cross section is simulated. The same finite element
idealization has been used. The relative humidity inside the box-girder and of the
surrounding air are supposed to be 80 and 70 % respectively. In figure 6 the
applied differential equation, the boundary, and the initial conditions are indi-
cated.

Boundary I'b

/4{///

Boundary [
Differential Equation in Domain L1 3 H_diviDpgradH)=0
_ 0.95 2
With : Dh'2[°'°5"' 14 (00-H 4] —_——
25
mm
On boundary [ ¢ ] q,=10(H-70) ==
: mm
On boundary fj @ q,= 10(H-80) =
Initial Condition ! H(x,y,0)=100 in domain ),

Figure 6 : Differential equation, boundary and initial conditions for drying.
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T-:150 days
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T:-450 days

70 Isohygres % RH
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Figure 7 : The calculated moisture distribution at given
times after demoulding.

In figure 7 the calculated moisture distribution at three different times after
demoulding (duration of drying) are drawn by means of iso-hygres (lines of con-
stant pore humidities).

After 50 days the main part of the corner is still wet. Near the surface there
is a big gradient of humidity. This gradient results in tensile stresses which
can overcome the tensile strength and thus introduce small cracks (tensile
softening).

After 450 days the smaller parts of the cross-section have allmost reached an
equilibrium while the core of the corner just has started to dry.

This complex moisture distribution during drying will introduce so-called
"drying induced bending moments" which again will influence the total deforma-
tion of the structure.
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In figure 8 it is indicated how the calculated moisture and temperature distribu-
tions can be used in a routine analysis. By means of the derived materials laws
these distributions can be translated into initial strains which have to be super-
imposed to the global state of stress. In this way it is possible to take into
consideration the influence of moisture and temperature gradients on the overall
response in structural analysis in a realistic way and based on actual ‘materials
behaviour.

File
O(x.y.t)

T(x,y.t)

Apply derived materials laws to
calculate the initial strains €

+ k.

Tij=Siu [ € - £

Initial strains: shrinkage
creep
tensile softening

thermal strains

Figure 8 : Flow-chart for a routine analysis.
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4. CONCLUSIONS

There exists a huge gap between structural analysis and materials science. It is
possible nowadays to formulate materials properties in a complex and realistic
way. By means of finite element analysis it is possible to describe the behaviour
of composite materials such as concrete on the basis of elementary processes
within the different components. Arbitrary structural members can be analyzed by
using computer generated materials laws.

In this contribution an approach is outlined in which the materials parameters
used in computerized structural analysis are derived by using numerical methods
in materials science. This general concept will be further developed.

It is obvious that the method outlined in this contribution is not meant to be
applied in every routine analysis. In all these cases where a detailed analysis
is justified and needed, however, this approach can serve as a powerful tool.

In a more general way this complex analysis enables us to point out and quantify
the risk for mechanical damage in critical parts of a construction.
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SUMMARY

A finite element formulation capable of clarifying inelastic behavior of reinforced
concrete shear wall structures is presented. Inelastic effects such as tensile cracking
of concrete, nonlinear stress-strain response ot concrete and steel, bond between steel
and concrete, aggregate interlock between cracked concrete surfaces and dowel
action of reinforcing bars are considered and particular attention is given to a
constitutive modeilling of these effects which have an important effect upon hysteresis
characteristics of reinforced concrete structures. Finally, an incremental self-correcting
approach used as a numerical procedure is briefly explained.

RESUME

On présente une formule par la méthode des éléments finis capable d’'éclairer le
comportement inélastique de la structure asismique des refends en béton armé.
Compte tenu des effets inélastiques tels que de la fissuration dans le béton due a la
traction, de la contrainte non-linéaire et de la réponse de déformation du béton et de
I'acier, de l'adhérence entre 'acier et 'armature, de 'effet d'engrénement des faces en
béton fissurées et de l'effet goujon, plus particuli€rement on a essayé d’obtenir la
formule modéle mathématique de constitution desdits effets qui donnent une grande
influence sur les caractéristiques d’hystérésis des structures en béton armé.
Finalement, on explique en bref le mode d’ accés auto-correction incrémental employé
comme un procedé numérique.

ZUSAMMENFASSUNG

Es wird eine Formel nach der Methode der finiten Elemente zur Kldrung des
inelastischen Verhaltens von erdbebenfesten Stahlbetonwandkonstruktionen
prasentiert. Es werden inelastische Effekte wie Zugrissbildung im Beton, nichtlineare
Spannungsdehnungslinie von Beton und Stahl, Verbund zwischen Stahl und Beton,
Rissverzahnung zwischen Betonrissoberflachen, Dibelwirkung des Armierungsstahls
betrachtet. Der Modellierung dieser Effekte, die eine wichtige Auswirkung auf die
Hysteresecharakteristiken von Stahlbetonkonstruktionen haben, wird besondere
Aufmerksamkeit gewidmet. Abschliessend wird kurz eine inkrementelle,
selbstkorrigierende Methode erlautert, die als numerische Analysemethode verwendet
wurde,
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1. INTRODUCTION

The reinforced concrete shear strucrure is a structural system being composed of
columns, beams and wall panels and is the most efficient earthquake resistant
element. Therefore, it is necessary for investigating inelastic behaviors of
reinforced concrete shear wall structures subjected to cyclic loads such as sei-
smic forces to consider all sorts cof inelastic effects including ecyclic beha-
viors. Attempts to model inelastic effects have been carried out by many
investigators so far, but it is felt that simple and effective models for a fi-
nite element formulation have not been proposed yet.

The inelastic effects included in this paper are l)brittle fracture of concrete
(tensile cracking), 2)nonlinear stress-strain response of concrete and steel,
3)bond between concrete and reinforcing bar, 4)aggregate interlock and 5)dowel
action. Particularly, the bond model based upon a new concept of bond beha-
viors and the modelling of aggregate interlock and dowel action evaluated as
equivalent shear moduli by introducing crack spacing and width are described in
detail.

An dincremental initial stress approach or an incremental self-correcting app-
roach which is able to minimize computational time is used as a numerical pro-
cedure and here the latter approach, which has not been applied materially non-
linear problems, is briefly explained.

2. MATERIAL IDEALIZATION

Reinforced Concrete is a composite material being made of concrete and steel,
and mechanical properties of each component material are idealized as follows,

2.1 Concrete

Uncracked concrete is assumed as a homogeneous isotropic material, and on the
other hand cracked concrete is considered to be anisotropic and capable of resi-
sting normal stress parallel to average crack direction.

The uniaxial stress-strain relationship for uncracked concrete is assumed to be
elasto-plastic of tri-linear type including strain-softening with a negative
slope in compression, and elastic up until to the tensile strength and there-
after concrete changes to a brittle material as shown in Fig.l. In order to
simulate compressive behaviors, the yield criterion for plasticity in compre-
ssion is assumed of either the Von-Mises's formula[l] or the Drucker-Prager's
formula[l] and associated flow rule(see Section 3.1),

= - + .—-= ________ .
F Al cm A2 o A3 (2.1)
2
where oy = (CIx + o‘y + Oz)/3 ;a = [( s, + S; + Si Y/2 + T:y + T:z + -1-2 ]1,2 Opr Oy Oy Txy'
Tyz!T : the stress components in the orthogonal coordinates X, Y and Z ;Sx.Sy,

8, ¢ the deviatoric stresses of % Oy 4 0, and the coefficients &p A, and A, are
défined in Table 1.

The fracture criterion of Mohr-Coulomb{1l] is applied to tensile failure in order
to take a reduction of tensile strength due to lateral compressive stresses into
consideration,

F =(fc—ft)(0m - 081n¢b’3)/(fc+ft) + Scos ¢ - fcft/(fc+ft) = (0 === (2.2)
where ¢ = —?‘; sin-ll-3J3'J3/263l with -1/6 Lé<n/6 5 g, - $,8,85, + M T T, - sxr:z - SyT:x
-sszy N S the uniaxial compressive strength; and f : the uniax1a1 tensile
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Fig.3 Assumed Cracking Modes friction ; and C: the cohesion.
strength. Fig.2 shows the assumed fracture and yield surfaces in the two-
dimensional principal stress plane. The direction of concrete cracks is de-
fined to be perpendicular to principal tensile stress in uncracked concrete just
prior to crack formation. In order to be able to pursue behaviors under cyc-

lic loading excursions, six different cracking modes[2] representing the opening
and closing of cracks are considered in the present study as shown in Fig,3,

2.2 Steel Reinforcement

The reinforcing bar is regarded as one-dimensional continuous medium in which
the area of reinforcing bar distributes uniformly within any concrete element
and therefore it is in uniaxial stress state. The stress-strain relatiomship
for reinforcing bar is assumed to be elasto-plastic of bi-linear type with the
strain-hardening effect as shown in Fig.4.

The subscripts of 0, E, etc. in the left hand side shall indicate the correspon-
ding materials, and the subscript s is used for steel and ¢ for concrete is

omitted in this paper.
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3. MATERTAL STIFFNESS FORMULATION

The material stiffness for reinforced concrete is assumed to be obtained by a
linear superposition of component stiffnesses of concrete, reinfercing bar, bond
, aggregate interlock and dowel ation to be bescribed below.

3.1 Concrete

The material stiffness for elastic uncracked concrete shall fellow Hooke's Law
for plane stress in an isotropic material. The relation between the incre-
mental stress A{o} and the incremental strain A{e} for palstic uncracked con-
crete was derived on the basis of the Theory of Plasticity along with the yileld
conditions defined in Eq.{(2.1) and associated flow rule[3},

Ao} = (1D, = [P] )ble} = D] Ale}  ——-m (3.1)

where 0}, :the elastic matrix for corxcrete;m]ep : the elasto-plastic matrix and
the plastic matrix [D]p for plane stress is defined as follows,

) diz 442 444
E 1
D] = e n o d M| s (3.2)
. Y A 22 23
SYM. s
B = E[282/9(1- V) + 0 A,A./3(1- VT +{o> + 2(1- v)J,}A%/45%G (1-v2)]
1 ml 2 m 3°7°2 m
2 2 _ 2 ) } _
dyp T Dy s dyp =Dy 5 dyg =Dy, dy, =DyD, , dyy = DyD;, dyy = DD,
D, = (1+ U)A1/3 + (Sx+ usy)Azlza " D2 = (1+ U)A1/3 + (st+ Sy)AZ/ZO .
D, = (1- U)TxyAz/ZG

where E : the initial Young's modulus ; U : the Poisson's ratio ; m' = AY/Ae_for
the Von-Mises's formula and (1-/3a)“AY/Ae_ for the Drucker-Prager's formula ;

AY : the increment of uniaxial yield stress ; and Aep : the increment of uniaxi-
al plastic strain.

Cracked concrete is subjected to the normal stress gy parallel to crack direc-
tions and thus the uniaxial stress-strain relation in the U-direction, as indi-
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cated in Fig.5, is written as follows,

o, = Ee, with Y@y Lo <f - (3.3
If the crack direction makes an angle of B¢y with the X-axis, the stiffness ma-
trix in the local coordinates U,V is converted into that in the global coordi-
nates X,Y by using a appropriate transformation[2],

{GX} = [D]cr{Ex} ————— (3.4)
. . T _ T
in which {Gx} = {Ux’ 0y, Txy} {ex} = {Ex, Ey, ny} and
4 2 i 2 3 .
cos ecr cos ecrs1n ecr cos ecr51n8cr
= 4 3., 0
[D]cr = E sin ecr cosecrsin ecr (3.5)
SYM, c0326 sinza
cr cr

The stiffness formulation for cracked concrete in the plastic range(UuS;Y(k),
where k = 1, 2 and 3) is to be done in the same way as the case for elastic
cracked concrete(Y(l)S;(ﬁls;ff) by using the tangential moduli E¢l and E o on
the uniaxial stress-strain curve corresponding to the strain induced in the
crack direction instead of E in Eq. (3.5).

3.2 Steel Reinforcement

Since the reinforcing bar is one-dimensional element, a derivation of the elas-
tic stiffness matrix for reinforcing bar inclined by an angle of g6 with the X-
axis is similar to the case of cracked concrete. The stress-strain relation
for reinforcing bar in the X-direction, as indicated in Fig.6, is written as
follows by assuming the compatibility of deformation,

op = pg. Ee- with - el Il B, (3.6)

where gE : the Young's modulus of steel ; gAx : the area of one bar reinforced
in the X -direction ; A : the cross sectional area of concrete between reinfor-
cing bars ; and hereafter the subscript s shall indicate steel.

The stiffness matrix of Eq.(3.6) in the global coordinates X,Y takes the follow-
ing form[2],
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{c. } = [D]e{ex} ——————— (3.8)
: 5 2 2 3 :

in which cos 9 cos  BOsin” B cos” DOsin 6

'8 s 5 s s

_ 4 3

S[D]e = p;.SE sin SG cossesin SS ————— (3.9

SYM. cos2 Bsin2 6
s s

The stiffness formulation for reinforcing bar in the plastic range is to be done
in the same way as the case for reinforcing bar in the elastic range by using
the tangential Young's modulus gEgt on the stress-strain curve corresponding to
the strain instead of gE in Eq.(3.9).

3.3 Bond between Concrete and Steel Reinforcement

It has been already known that bond between concrete and reinforcing bar after
crack formation gives some resistance to concrete(tension stiffening effect) and
its resistance gradually deteriorates with an increase in number of cracks, that
is, an increase of strain as shown in Fig.7{4 and 5].

Reffering to experimental results on tensile bond tests[4 and 5],bond effect was
replaced by the equivalent stress which indicates the nominal concrete stress,
without idealizing it into the discrete element such as the linkage element, and
the equivalent stress due to bond is modelled as shown in Fig.8.

It is assumed that the equivalent stress under monotonic loading is represented
by the 3rd orders of polynomial function,

- 2 3
Gﬁ,eq = ft.( a, + alX + aZX + 33X )
with O S Oi'{,eq S ft » €.p S e;{ gsBu and ———=—= {3.10)
X = (Ei T Eer )/(EBu T Ber )

where 9% oq : the equivalent stress(kg/cmz) of concrete in the reinforcing direc-
tion X and the subscript eq indicates an equivalence to the stress o, T, etc.;
ex (or gex): the average strain of concrete(or reinforcing bar) in the X-direc-
tion ; €qr! the cracking strain ; €py: the strain at which bond over the element
length disappears; and the coefficientsao.al,a21nm a, are 1.0, -2.748, 2.654 and
~-0.906 respectively.

1070 = 2 }
oy REINFORCEMENT PRISM_ SECTION x’efo‘{ ..... Og,eq (otaik+azki+aXOf,
H —o— D1 125x125°" '
MOS A" - D19 95x 95
-0-- DI6 9.5x 95 £
b —-0--- D6 7.5%x 75
06 B I, ---O--- D16 5.0x S0 1
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) ) e yA:
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Furthermore, the hysteresis for unloading from an arbitrary point A on the curve
of Eq.(3.10) was assumed on the basis of a line AC connecting a point A{0y ,e3)
and a point C(Bf, , 0) on the zero-strain axis as follows,

.for region AB (Ob'< o

Y i,equ 0a )

(o = E €= + = o Pre e N e e 3.11
X,eq eq( X Ea) Ga * qu O:E b 0 (Ga+ ft)/EEa ( )

where Egq: the equivalent Young's modulus(kg/cmz) and the equivalent stress
Ub of the point B is set equal to an average of Ga and OC.

.for region BC (B.f_ § 9%, eq éab)

Gi,eq = Eeq'Ei + B.ft s Eeq (Ga - Bft)/2€b ______ —

- 0.5

€y = (Bft - Ga)/2aE +te, B

Nextly, the hysteresis for reloading from a point C or C', where C' is an arbi-
trary point in the compression range, takes either a path(C+D-~A) before the
closing of cracks or a path(C'»> 0->A) after the closing of cracks,

.for region CD (Bft < g - <:Gd)
Gi,eq = Eeqei + Bft . Eeq =a.E ————— (3.13)

where the equivalent stress 0d of a point D is set equal to an average of 0, and
Cc.

.for region DA (Gd Sgci,eq <:Ga)

Gi,eq = Eeq(ei - ea) + O, Eeq = (Ua - Bft)/ZEb —————— (3.14)
.for region 0A ( O <0§ e <Ga)
>R, N
Gi,eq = Equi , Eeq = Ga/Ea ——————— (3.15)

The equivalent stress‘&,eqdefined in the above is converted into the stresses

{ Ui,eq’oi,eq’Tii.eq} in the orthogonal coordinates X,Y as follows,
o] cos2 0 sin2 9 -2cos Bsin 6] Jo_
X,eq s s s s X,eq
a — sin2 0 cos2 §) 2cos Bsin 6 0 -——~ (3.16)
v,eq = s s s s
a cos Bsin 6 —cos Bsin 6 c032 8- sin2 6 0
Xy, eq s s s s s s

3.4 Equivalent Shear Stiffness due to Aggregate Interlock

In order to evaluate the shear stress induced along cracked surfaces of concrete
due to aggregate interlock after crack formation, Paulay et al.[6] conducted the
test on aggregate interlock whose variable factors were concrete strength and
crack width, and proposed the shear stress-relative displacement relation.
However, since their predicting equation gives a rather high evaluation, it is
modified to the following,

=(0.141/W -1.0)(1.526\/%2 -7.365)(6S -0.0436W) =—=~=—m (3.17)

Tuv,eql

where T4y eq1:the shear stress acting along cracked surfaces of concrete(kg/cmz) 3
W : the crack width(em) ; 8g : the relative displacement across cracked surfaces
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(cm) ; and the subscript s in the right hand side indicates slip.
The strain of cracked concrete yyy is considered to be a sum of the elastic

shear strain and the shear strain due to the relative displacement as shown in
Fig.9,

Yoo = Ty’ + ssle —————— (3.18)
where G : the elastic shear modulus(kg/cm2) ; Tuy : the elastic shear stress in
the local coordinates U,V(kg/cm?) ; and e : the crack spacing(cm).

Assuming that the first term in Eq.(3.18) can be negligible as compared with the
second term, then Eq.(3.18) can be reduced to,

Yuy © 65/e with Yylf;;YuVIS:YBl _______ (3.19)

Substituting Eq. (3.19) into Eq. (3.17) and arranging it, then the following equi-
valent shear stress-—strain relation is derived (see Fig,10),

Tyv,eql = CeqlMuy ~|Yy1|) + Yyp = 0-0436W/e

et = (0.141/W - 1.0) (1.526\/_‘1'_—- 7.365)e
where Ggq1 = 0 for Yy Vuy <Yy1 ; Tuv,eql the equivalent shear stress(kg/cm?) ;
Geql the equivalent shear stlffness(kg/cm ) ;3 and Yyl: the shear strain at
which aggregate interlock becomes effective.

The limit shear strain at which aggregate interlock disappears is assumed as
follows on the basis of the experimental result{6],
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Yg1 = (0.01799 + 4.1857W) /e = ——~———- (3.21)

The equivalent shear stiffness of cracked concrete becomes maximum when crack
just occurs and is roughly equal to 0.1 E.

Now, the equivalent shear stress in the local coordinates U,V defined in the
al?ove is converted into the stresses {ox'eql, Oy eql’ Txy,eql} in the global coor-
dinates X,Y as follows,

o cosze s1n28 -2cos8 _sinf 0
x,eql cr cr cr cr
o 2 2
Uy,eql —[sin ecr cos Gcr 2cosecrsin6cr 0 (3.23)
T cosf _sinf -cosf _sinf cos26 -sin26 T
Xy,eql cr cr cr cY cr cr uv,eql

Fig.1ll shows the reduction of shear modulus due to cracking which is evaluated
from Eq.(3.20) and those which have been used by different investigators[7], and
a discrepancy among them is considerable, ranging from ablout 40 to 3 percents
for very wide cracks. Fig.12 shows a comparison between the equivalent shear
stress-strain relation calculated from Eq.(3.20) and that observed by the exper-
iment[6] for several crack widths and constant concrete strength.

3.5 Equivalent Shear Stiffness due to Dowel Action

Dulacscka[8) conducted the dowel test whose variable factors were concrete stre-
ngth and diameter and angle of reinforcing bar, and he proposed the relative
displacement-dowel force relation,

6

5, = 4 (358Ty/D/f"c) x 10 ° = —m———- (3.24)
A= (T/Ty)/tan[(T/Ty) (m/2y]  -————- (3.25)
'.ry = O.ZDzsoy{/pzsinsecr + pfc/0.03scy - psinsecr} ----- (3.26)

where o= 1"(501,0,)2 ; Ty : the dowel strength of one reinforcing bar(kg) ; T :
the dowel force(kg) ; 50 : the steel stress(kg/cm2) ; g0y : the yield stress of
steel(kg/cm2) ; D : the diameter of reinforcing bar(em); and gBecr : the angle
between the axis perpendicular to the crack direction and the reinforcing bar.

A in Eq.(3.25) is a function of the non-dimensional dowel force T/Ty and gives
the curve as shown in Fig.13. This curve is approximated by the elasto-
palstic relation,

.for elastic case ; T/Ty =a,A @ ——m——- (3.27)
/Ty
10— ———
o8}
os} /
ost / /
02 ,\u
00 i

% :

~
S S L BN

Fig.13 Non-Dimensionized Dowel

Fig.14 Idealization for Dowel Force
Force Curve
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.for plastic case ; Geq2/ G
0.06
B C¢-1:010 P =0.018
T/Ty = 1.0 (3.27) - e C-2:D10 P ~0.0053
5 C-3:
where o indicates the elastic yd \ B o
slope and is set equal to 0.2. 8.03 /////,z’ 2 \\\\
In the next place, in order to 0@ l//’ \\\\
evaluate the equivalent shear // e T~ N\
stiffness due to dowel action, 0.01 - ~J
the dowel force is replaced by -
the equivalent shear stress g 0 3 o o o g
as shown in Fig.14, «Bcr
Fig.15 Equivalent Shear Stiffness due to
Lo, a2 P Tcossecr/sA —===(3,28) Dowel Action

Substituting Eqs. {3.19), (3.27)
and (3.28) into Eq. (3.24) and arranging it, then the following equivalent shear
stress-strain relation is obtained,

.for elastic case ( lYnVIS;YYZ )

Tuv,eq2 ='Gqu'YuV —————— (3.29)

_ 6
Geq2 = (a.DJf;.e.picossecr) x 107/358 A

.for plastic case (IYUV|>>Y 2 )

T = p_.T cos 6 [/ A
[ uv,eq2| y s cr' s (3.30)

[y 2= 358T x 10 /u.DfJ‘:.e

A transformation of the equivalent ﬁhear stress 'uv,eqzin the U,V-coordinate
system to that 0 ,eq2® © eqz- } in the X,Y-coordinate system is to be done
in the same way as Eq. (g The relation between ratloscmﬂ/Gof equiva-
lent shear stiffnesses eqz of Eq.(3.29) to the elastic shear stiffness G and
angles gOcx of reinforcing bars is plotted in Fig.l1l5 for several steel ratios,
and it is found that an effect of dowel action is relatively small.

4. CRACK SPACING AND CRACK WIDTH

It is necessary for evaluating aggregate interlock and dowel action described

in the previous section and also checking up the opening and closing of cracks
in cyelic analysis to determine crack spacing and width.

Morita et al.[9] found from theilr own experiment that there was a linear rela-
tionship between average minmum crack spacing emin and ratios D/p of bar dia-

meters D to steel ratios p. Thus, assuming that when steel yields average

crack spacing eazy becomes epin, the equation predicting ei,aV'iS proposed,

ei,av = 0,1476 + 0.19.D/pi + 0'0023/862 ______ (4.1)

where ®%,av indicates average crack spacing in the reinforcing direction X, and
note that this is a nominal crack spacing for any one of cracked concrete
element. ‘

Fig.1l6 shows a comparison between crack spacings of the experiment[10, 11 and
12] and those calculated from Eq.(4.1) for sevearl ratios D/p, and they have
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some scatters at low stress levels but they fairely agree to each other with an
increase of steel stresses.

Fig.17 shows plots of experimental crack spacings{9, 11, 12 and 13] against cal-
culated values by Eq.(4.1) and it can be seen that although a discrepancy bet-

ween them exists for big crack spacings, they coilncide as crack spacings become
smaller.

In the next place, a derivation of crack width based upon the conventional bond
theory is presented. The slip increment dS over the interval dX is generally
defined as a difference between elongations of concrete and reinforcing bar, and
assuming that concrete strain after crack formation is negligible as compared
with steel strain, then the slip is approximately expressed as follows,

S(x) =ﬁ)‘ O (4.2)

The maximum slip is obtained from Eq.(4.2) as follows, provided that distribu-
tions of steel strain and slip over crack spacing e are given as shown in Fig.18,



208 INELASTIC ANALYSIS OF R C SHEAR WALLS

e/2

Therefore, crack width W is defined as a function of maximum slip S, and steel
strain g€pax at the cracking part,

W= 2'Smax(1 + o — ) e (4.4)
However, it is hard to evaluate Sy,y since strain distribution of reinforcing
bar along its length is unknown, so the average strain .95 defined in Section
3.3 is adopted in this paper. But since strain at the cracking part is in-
cluded in this average strain, it needs to redefine the net average strain
excluding that strain,

&R T 8w wx<s€max - e  mmmmem- (43

Thus, Spax is derived by using Eq. (4.5) instead of ge(x) in Eq.(4.3) as follows,

S = a, E_‘I") - W- £ _ £ 3 :2 ______ ,4'6.
max s %' x(s max s % 7/ { )

An introduction of Eq.(4.6) into Eq. (4.4) results in the following crack width,

w§ - e’sgi(l * semax)/{l * (1 Semax)(semax T s i)} —————— (47

where £ = e_+ O /p_.

S max § X X,eq
Fig.19 shows plots of experimental crack widths observed in the tensile test
(black circles)[13] and the flexural test of beams[1l1l and 12] against calculated
values by Eq. (4.7).

Although the proposed equations for crack spacing and width give an evaluation
on each reinforcing direction, it is useful from an analytical point of view to
define crack spacings and widths normal to crack directionms.

Consider the general case in which concrete is reinforced in the orthogonal di-
rections X,Y.

Letting e,—‘ av’ °5,av’ "z 2nd ¥z be average crack spacings and crack widths evaluated
by Eq. (4. l) and (4 7), then the average crack spacing ezy perpendicular to the
crack direction shall be either smaller one between the following two equations

(see Fig.20),

Fig.20 Representation of Crack Fig.21 Representation of Crack
Spacing Width
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e =-e_ cos © or e =e. sinB = ————- (4.8)
av X,av s cr av y,av s cr

and crack width normal to the crack direction is given as follows(see Fig.21),

W= W.cos(® - L. > (4.9)
W=/w+w § = tan t(u_/u_)
X y y X

5. NUMERICAL PROCEDURE
5.1 Finite Element

In order to improve accuracy and reduce number of degrees of freedom, the com—
posite element with four nodes and eight degrees of freedom is developed from
four constant strain quadrilaterals with nine nodes and eighteen degrees of
freedom through the conventional condensation process as shown in Fig.22 and we
refer this to as the Super Element[14].

5.2 Solution Procedure

An incremental initial stress approach or an incremental self-correcting app-
roach is used to solve governing nonlinear equations, However, the latter
approach is suitable from a viewpoint of a stability and a computatiomal time
when cyclic behaviors are to be followed.

Now, the incremental self-correcting approach proposed by Stricklin et al.[15]
in which a nonlinear analysis is performed by using the initial stiffness all
over the computaional process without iterations is briefly described.
According to this approach, the incremental deflection A{8} is calculated from
the following equations for materially nonlinear problems,

A{S} = [KO]'l(AP{?} + Q) + APz {£} )  --mom (5.1)
{£} = -[KO]{G} + P{P} + {Qp} —————— (5.2)

where {f}: the force in unbalance induced by the deflection {8} which does not
satisfy equilibrium ; [K.] : the initial stiffness ; {Q_} : the fictitious load
due to material nonlinearities ; P : the load parameterp; {P} : the normalized
load vector ; Z : the correcting factor ; and APZ is conventionally set equal
to 1.2,

Fig.22 Composition of
Super Element
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Stress-Strain Characteristics of Reinforced Concrete in Pure Shear
Les relations tensions-déformations du beton armé soumis au cisalllement pur

Spannungsdehnungsverhalten von Stahibeton unter reinem Schub

F. VECCHIO M.P. COLLINS
Doctoral Student Professor

University of Toronto University of Toronto
Toronto, Canada Toronto, Canada
SUMMARY

Experiments in which reinforced concrete panels were loaded in pure shear are
described. It is shown that the observed behaviour of the panels can be predicted by
using basis equilibrium and compatibility conditions in addition to appropriate stress-
strain relationships for the concrete and the steel.

RESUME

Des essais sont décrits concernant des panneaux en béton armé soumis au
cisaillement pur. On démontre que le comportement des panneaux, tel gu'observé,
peut étre predit en utilisant les conditions usuelles d'équilibre et de compatibilité, en
plus des relations appropriées entre contraintes et déformations unitaires pour le béton
et l'acier.

ZUSAMMENFASSUNG

Versuche, in denen Stahlbetonscheiben nur mit Schubkréften belastet werden, werden
beschrieben. Es wird gezeigt, dass man das beobachtete Verhalten der Scheiben
durch die Benutzung von elementarem Gleichgewicht und Vertraglichkeitsbedingungen
wie auch von geeigneten Spannungs-Dehnungs Linien fur Beton und Stahl
beschreiben kann.
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L, INTRODUCTION

Developing a rational theory capable of predicting the behaviour of reinforced
concrete subjected to shear has been the goal of a large number of research en-
gineers for very many years. Achieving this goal would enable current empirical
shear design procedures to be replaced by methods comparable in rationality and
generality to the procedures now used in the design of reinforced concrete for
flexure and axial load.

In the past many researchers have tackled the shear problem by testing simply
supported beams subjected to point loads. A fundamental difficulty inherent in
such tests is that no substantial region of the specimen is subjected to uniform
stress conditions. The local disturbances caused by the point loads and the
reactions plus the changing moments along the span mean that (apart from end-to-
end symmetry) no two points on the specimen behave in quite the same manner.

It is the authors' belief that before we can understand the behaviour of rein-

forced concrete in complex load situations involving shear we must first under-—
stand its behaviour in pure shear. Hence, as part of an ongoing research pro-

gramme at the University of Toronto [1], an experimental project in which rein-
forced concrete elements were loaded in pure shear was undertaken. This paper

will describe the preliminary results of this '"pure shear" project.

2. LOADING REINFORCED CONCRETE IN PURE SHEAR

The test specimens were concrete panels, 890 mm square by 70 mm thick, reinforced
with two layers of welded wire fabric, Fig. 1. Five steel shear keys, anchored
with shear studs, were cast into each edge of the specimen.

The specimens were loaded via links pinned to the steel shear keys. Each key was
acted upon by two inclined links, one at +45° to the normal to the specimen edge
and the other at -45°, Fig. 2. When one link pulled, while the other pushed with
the same force, a resultant force parallel to the euge of the specimen was pro-
duced.

Shear key

B

Links

—— Jack

L 4 L)

Fig. 1 Specimen Ready for Casting Fig. 2 Hydraulic Jack and Link Assembly
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The forces in the 40 links (2x5x 4)
were produced by 37 double-acting
hydraulic jacks acting on 37 of the
links. The remaining three links
were fixed in length in order to
stabilize the overall position of
the specimen within the rig.

To prevent out-of-plane movement

of the panel the shear keys were

attached to an auxiliary frame by
means of tie-rods with spherical

rod ends, Fig. 3.

Fig. 3 Rear View of Shear Rig

s DESCRIPTION OF SPECIMENS

Table 1 summarizes the parameters of the 17 specimens tested to date. The pure
shear tests were subdivided into two groups. In the Series I tests, the amount
of reinforcing was varied; but, for a given specimen, the amount of reinforcing
in the transverse direction was always equal to that in the longitudinal direc-
tion (longitudinal and transverse were defined as directions parallel to the
edges of the specimen, Fig. 1). For the Series II tests, the amount of reinfor-
cing in the longitudinal direction was held constant while the transverse rein-
forcement was varied. The two panels of Series III were tested in uniaxial com-
pression to calibrate the performance of the test set-up.

TABLE 1. SPECIMEN PARAMETERS

| Percentage of Steel Yield Strength Concrete | Cylinder
Specimen Steel Reinforcement (MPa) Strength | Strain at
Long. Trans. Long. Trans. 5 (MPa) ::?:1 o_a)

Series |

Pv2 0.18 0.18 430 430 23.5 2.25
PV3 0.48 0.48 660 660 26.6 2.30
PV16 0.74 0.74 250 250 21.7 2.00
PV5 0.74 0.74 620 620 28.3 2.50
PV4 1.06 1.06 240 240 26.6 2.50
PVi14 1.79 1.79 460 460 20.4 2.23
PV6 1.79 1.79 270 270 29.8 2.50
PV7 1.79 1.79 450 450 31.1 2.50
PV8 2.62 2.62 460 460 29.8 2.50
Series 1|

PV13 1.79 = 250 = 18.2 2.70
PVi2 1.79 0.45 470 270 16.0 2.50
PV10 1.79 1.00 280 280 14.5 2.70
PV11 1.79 1.31 240 240 15.6 2.60
PV1 1.79 1.68 480 4£0 34.5 2.20
PV9 1.79 1.79 460 460 11.6 2.80
Series lll

PV15 0.74 0.74 250 250 21.7 2.00
PVI1F 0.74 0.74 250 250 20.4 2.00
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Brass strain targets were fixed onto the reinforcing steel and protruded to the
surfaces of the specimen. Sixteen targets, on a 200 mm grid, were used on each
side of the specimen.

Strains were read (using a demountable mechanical strain gauge) in the longitu-
dinal, transverse, and the two diagonal (+45° and -45°) directions; resulting in
a total of 84 separate readings.

4, TESTING OF THE SPECIMENS

In the Series I tests, the initial cracks formed at 45° to the steel grid at a
shear stress of approximately 0.33 /?z'(MTa). As the load increased the number
and width of the cracks also increased, but the direction of the cracks did not
change. Failure occurred either by a mass yielding of the steel, Fig. 4, or by
a sliding shear failure of the concrete, Fig. 5. The mode of failure depended on
the amount and strength of the reinforcing relative to the concrete. The ulti-
mate shear stress, as a fraction of fé, increased with the percentage of rein-
forcing. The maximum shear stress attained was 0.32 fé.

(a) Prior to yielding, v = 2.40 MPa (b) Yielding at v = 2.89 MPa
Fig. 4 Specimen PV4: Steel Yielding Failure

In the Series II tests, the initial
cracks also formed at 45°. In this
case, however, as the load increased
the cracks began to shift direction
to become more acute to the longi-
tudinal steel direction, Fig. 6.
Failure at ultimate occurred either
by: (i) yielding of both the trans-
verse and longitudinal steel;

(ii) sliding shear failure of the
concrete after the transverse steel
had yielded but prior to the yield-
ing of the longitudinal steel, or
(iii) sliding shear failure of the
concrete prior to yielding of the
transverse steel. The mode of
failure and ultimate shear strength
was influenced mostly by the per- Fig. 5 Specimen PV9: Sliding Shear Failure
centage and strength of the trans- of Concrete

verse reinforcing.
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(a) Shortly after cracking, v = 2.1 MPa (b) At ultimate, v = 3.13 MPa

Fig. 6 Specimen PV12: Cracks Shifting Direction

One specimen tested, PV2, was under-reinforced in both directions. It failed
immediately after the formation of the diagonal cracks, Fig. 7.

Fig. 7 Specimen PV2: Failure of Under- Fig. 8 Specimen PVl: Premature Failure
reinforced Panel Upon First Due to "'Pull-Out'" of Shear Keys

Cracking

Unfortunately, some of the test specimens failed prematurely due to a local
pull-out failure of the shear keys, Fig. 8. These occurred mostly in the
earlier tests where a uniform concrete mix was used throughout the specimen.
In later tests, a band of strong concrete was used in the peripheral areas to
help alleviate the load transfer problem. A summary of the cracking stresses,
ultimate stresses, and mode of failure is given in Table 2.

The two specimens of Series III were tested in uniaxial compression applied in
the longitudinal direction. The test on specimen PV15 had to be halted prior
to failure because the applied load was approaching the capacity of the rig
and a leak had developed in the hydraulic system resulting in severe pressure
losses.
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TABLE 2: TEST OBSERVATIONS

Specimen Vcr l/u Mode of Failure
(MPa) (MPa)

PV1 2,21 8.00 Pull-out
PV2 1.10 1.16 Cracking'
PV3 1.66 307 Steel rupture 2
PV4 1.79 2.89 Yielding
PV5 1.73 4.24 Pull-out
PV6 2.00 4.55 Local yielding
PV7 1.93 6.81 Pull-out
PV8 1.73 6.67 Pull-out
PV9 1.38 3.74 Concrete shear
PV10 1.86 3.97 Concrete shear
PV11 1.66 3.56 Local yielding
PV12 1.73 3.13 Concrete shear
PV13 1.73 2.01 Concrete shear
PV14 1.93 5.24 Pull-out
PV16 2.07 2.14 Yielding

1 Initially cracked at 90°
2 Non-stress relieved wires ruptured at welds, Fig 9

.With Specimen PV17, loading proceeded to failure. At ultimate, there was an ex-
plosive failure of the concrete, Fig. 10, with large pieces of concrete thrown

as far as 20 m. Prior to failure, only one or two small longitudinal cracks were
visible.

Fig. 9 Specimen PV3: Brittle Failure Fig. 10 Specimen PV17: Explosive Failure
Due to Fracture of Steel of Panel in Uniaxial Compression

At ultimate, the concrete compressive stress in PV17 reached 1.04 fé.

5. ANALYSIS OF TEST DATA

The data gathered from a particular specimen was analyzed such that Mohr's
circles of stress and strain could be drawn at every load stage.

The strain readings were reduced to average strains in the longitudinal, trans-—

verse, +45° diagonal and - 45° diagonal directions; € and € _

®2° ft2 Fhus 45
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respectively. These strains were 5
used to define a Mohr's circle of &
average strains, Fig. 11. Since ‘o
four separate items of information * 8
were being used to define a circle, o~
there existed one redundant point. = 3(‘
The fact that all four points lay 5 /’ 6 7 8
very close to it inspired confidence < O !
in the accuracy of the strain data. = Pvi2 |
o 5l (] Measu.red
Defining the strain circle fixed the £ o Best fit
values of: (i) the principal compres- F g1
sive strain, €g; (ii) the principal »
tensile strain, €4ty (1ii) the nor- -9 N I i 1 |
mal shear strain, Yg.; (iv) the maxi- -6 -3 o] 3 6 9 i2 5 I8
mum shear strain, Y_; and (v) the NORMAL STRAIN, € x1073
angle of inclination of the princi-
pal compression, 6'. Fig. 11 Mohr's Circles of Strain for
Specimen PV12
From the strains in the longitudinal
and transverse directions, the aver- 0
age steel tensile stresses (f;;, and Al
£5¢) were determined from the stress- g PV1
strain relationship of the reinforce- % €™ o Measured
ment. These steel stresses, in turn, N\ 4
permitted the average concrete com— G 2
pressive stresses in the longitudinal 0 71 6 5
and transverse directions, f;, and £, E 0
respectively, to be calculated (fy = -2
pofgy and £y = prfgr)- Given the T 4|
applied shear stress, v, and the ﬁ_GL_
calculated concrete stresses fg and 5
f., the Mohr's circle of concrete -8r- JJ
stress could be drawn, Fig. 12. goll——L 1 1L 1 L 1 L | L
From the stress circle, the princi- e e -\ - - 9 4
NORMAL STRESS MPa
pal compressive stress, fgq, and
principal tensile stress, f4., in Fig. 12 Mohr's Circles of Stress for
the concrete were found. Specimen PV1
6. STRESS—-STRAIN CHARACTERISTICS OF THE CONCRETE IN COMPRESSION
In Fig. 13, the observed relation- 2
ships between principal compressive o ",,—w——o PV17
stress and principal compressive ' (,//”"““\\\
strain are shown for four of the //// Cylinder
panels. It can be seen that the fy 08— {fj/ \\~ ’/
principal compressive stress is not - / e PV \\
solely a function of the principal ¢ 06— /f/<,—”° \\
compressive strain. As has been pre-
viously suggested [2], it would ap- 04| f \
pear that these relationships are t—————s PV12
influenced by the magnitude of the 0.2 . PV \\
maximum co-existing shear strains, \\
Yo o[l L I R I S
" 0 0.5 10 1.5 20
To further investigate the effects €4/€0

of shear strain, separate plots of
the f3:eq data were made for specific

Fig. 13 Principal Compressive Stress vs.
Principal Compressive Strain
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ranges of the ratio Y _/e. (see Fig. 14). It could be concluded that shearing
strains had a degrading effect on the compressive stress-strain response of con-
crete. Furthermore, the magnitude of this effect appeared related to the ratio
of maximum shear strain to principal compressive strain, Ym/ed.

llz

2.0<¥,/€q<4.0 4.0<Yn/fq<6.0

s+ Experimental \
/ \ i / —— Theoretical \
o2 Ao \ \ _.Z \ \

o ll\lllll\v.J L\Lillil

O 0.2% 050 075 1,00 1,25 150 1,75 2000 0.25 0,50 O75 1.00 125 150 L75 2,00

€q S
€o ‘ €o

Fig. 14 Influence of Shear Strain on Principal Compressive Stress-Strain
An expression was derived to model the observed behaviour. It involved the addi-

tion of a modifying term in the commonly used parabolic stress-strain curve for
concrete, The modified expression was:

, €4 4.7
fd fC [} (E;) - A Cg;) ] cee (D)

(leed - U)O's vew . (2)

where A
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Poisson's ratio, u, is taken equal to 0.30; a value commonly observed near fail-
ure in concrete cylinders. The term 'X' degenerates to 1.0 in the case of uni-
axial compression, leaving the customary parabolic curve passing through (eo,fé).

For a given ratio of Ym/Ed, the peak concrete compressive stress attainable, fp,
is:
= ! / “un
£,= /2 (3)
The strain at which this peak stress is achieved, Ep’ is:

e, = eo/h ees (4)

Thus, all peak stresses for various values of Ym/Ed lie on the line passing
through the points (0, 0) and (g,, f2).

The experimental fq:eg data indlcated that the concrete had considerably more

ductility after peak strain than that predicted by Eq.(l). Thus, a more gradual
unloading portion of the stress—strain curve was required. This was achieved by
a transition curve between Eq. (1) and the usual parabolic expression, after peak ™.
stress.

In summary, given the principal compressive strain (£4) and the maximun shear
strain (Y,), the principal compressive stress (f4) can be determined as follows:

(i) Determine shear strain coefficient, A:

- _ 0.5 ’
A= (Am/sd 0.3) ves (5)
(1i1) Determine peak stress and peak strain, fp and Ep respectively:
£ = {'/A ce. (6)
P ¢
e = e [x vew (1)
p o]
(iii) 1If eq =< €t R
£.0= ' 12 - a&@ (8)
d c EO EO e
(iv) If eq > €p! .
fd = fp.(l -n) vee (9)
(eg —€)
where n = s ... (10)
(260— sp)

The correlation between the test data and the prediction model was quite good
(see Fig. 14). A coefficient of variation of 167 was obtained for points where
fq/f, was greater than 0.15.

7. STRESS—-STRAIN CHARACTERISTICS OF CONCRETE IN TENSION

The stress circles determined for each of the pure shear test specimens showed
that the concrete continued to carry scme average tensile stresses even after
cracking. These stresses, which are the result of the tensile stresses in the
concrete between the cracks, must be less than the tensile cracking strength of
the concrete, f.,, but are significantly greater than zero, Fig. 15.

While equilibrium relationships are written in terms of averagé stresses, it will
still be necessary for the reinforcement to transmit the loads across the cracks.
At these locations tensile stresses in the concrete cannot assist the
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L2s
PV4 PV9
1,00 .
e— Experimental
\\ Theoretical
Q.75
0.50 -
0.25}
[ ] [
fd \.
! 0 l | [ I L I | [ { |
er h25
PV1i1
1.QO
0.75
0.50
0-25 —
0 } | | ] | 1 | ] l 1 1 {
6 8 10 12 14 16 C 2 q 6 8 10 12 14 16

PRINCIPAL TENSILE STRAIN, €, x107%

Fig. 15 Principal Tensile Stress—-Strain Behaviour of Concrete

reinforcement. Hence, when the average stresses in the reinforcement approach
yield, the average tensile stresses in the concrete are assumed to approach zero.

Based on the observed behaviour of the panels, the following procedure is sug-
gested for calculating the average principal tensile stress, fj,, from the aver-

age principal tensile strain, eg;.

(i) Prior to cracking:

fdt = (edt - 0.15 ed) -E, = fCr
2k,
where E = — and f = 0.33 f/f'(MPa)
c €5 cr c

(ii) After cracking:

£ = 1 :
dt cY Edt. 0.5
1+( gos)

_ 2
fsl) sin“6 + pt(fs

A

2
TSI £ ) cos’@

ty
It can be seen from Fig. 15 that the predictions of the above model follow the
trend of the experimental data. However, as might be expected for a phenomenon
dependent on the tensile strength of the concrete and the bond characteristics of
the reinforcement, there is considerable scatter in the data. Fortunately, the
tensile stresses are only a small component of the total stress circle (Fig. 12).
Hence, large errors in the predicted tensile stress will not necessarily result
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in large errors in the predicted behaviour. It is, however, necessary to in-
clude the contribution of the concrete tensile stresses if accurate predictions
of deformation at all stages of loading are to be made.

8. PREDICTING THE RESPONSE OF THE PANELS

The complete shear response of the
reinforced concrete elements can be
traced by solving for stress and
strain conditions as the principal
compregsive strain, €q° is incre-
mented.

For a given value of £,, solving for
all stress and strain requirements
involves an iterative procedure.

Two other strain conditions, typi-
cally €y and €, must be estimated.
Conditions of equilibrium and com—
patibility are checked, and the
estimates adjusted accordingly,
until convergence is achieved.

A schematic representation of this
solution procedure is given in
Fig, 16. A detailed, step by step
description follows.

Step 1: Choose value of principal
compressive strain, €4+

Step 2: Estimate longitudinal
strain, FZ.

Step 3: Estimate angle of inclina-
tion of principal compres-
sive strain, 8'.

Step 4:

(i) Normal shear strain Yo

2(€l+€d)
Yor = tand'
(ii) Transverse steel strain, €t
L
t 2 tand' d

(iii) Principal temnsile strain,
€ = +e_+e
dat - 2T %t T fa

(iv)

Maximum shear strain, Yo'

Yy =¢,_+¢€

hul t L A 2€d

CHOOSE Ed

'

ESTIMATE €;

v

ESTIMATE O’ -

Y

DETERMINE €4, €4, Y,

¥

peTERMINE 815t L Fr
fa. fqt. 60

I
|
|
L

DETERMINE U/

Fig. 16 Solution Procedure for Pure
Shear Response of Reinforced
Concrete Element

Determine all other strain conditions from the circle of strain, Fig. 17:

4 SHEAR
STRESS

4} NORMAL
STRESS
v

f

f Lo
d dt

Fig. 17 Equilibrium Conditions for
Average Stresses in Concrete
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Step 5: Determine stress conditioms:

(i) Longitudinal steel tensile stress, f_ :

st
= . £
fsz “2 Es = sly
(ii) Transverse steel tensile stress, fst:
= - <
fst Et Es - fsty
(1ii) Longitudinal concrete compressive stress, fl:
fl = Py - f

(iv) Transverse concrete compressive stress, ft:

T

(v) Concrete principal compressive stress, fd:

_ _ 0.5
A= (Ym/ed 0.3)
ep = eolk
- T
fp fC/A
no= gy sp)/(ZE0 - Ep)

then

P
- °d °q)"
£, = [zqi? - A J

- If € > €, then
p

d
£ = f£,.011.0 - n?]
(vi) Concrete principal temnsile stress, fdt"
fcr = 0.33 /f; (MPa)
Ec = 2 fc':/e0
Prior to cracking:
fat = E .(c, -0.15¢) < f
c’tdt d cr
After cracking: 0.5
£t - £ /M Gaky ]

v - 2'+ _ 281
but fdt < pz(fszy fsz) sin“0 pt(fSty fst) cos

(vii) Angle of inclination of principal compressive stress, 6:

From stress circle, Fig. 18

b 4
. = tan_l[/_i_i;i_z
d t
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Step 6:

Step 7:

Step 8:

Step 9:

Check compatibility:
Is 8 =07

If yes, go to step 7.
If no, go to step 3.

Check equilibrium:

From stress circle, Fig. 18,

far = fa— F, I,

= 1o
Is fdt fdt ?

If yes, go to step 8.
If no, go to step 2.

Determine shear stress, v,
from stress circle, Fig. 18,

v = (fd - ft) . tan6

Increment ¢ . and repeat.

d
0 < eq < 1.5 €

Aad + 0.05 ¢ to 0.10 e .
o o

1/2 SHEAR |
STRAIN
I Yit/a
y%/g I
| I
1 NORMAL
STRAIN

Ye/2

Fig. 18 Compatibility Conditions for
Average Strains in Concrete

The above procedure was used to predict the response of the 15 panels lcaded in
The resulting predicted shear stress -shear strain relationships for
these panels are compared with the experimentally determined response in

It can be seen that the theoretical predictions agree well with the
experimental observations.

shear.

Fig. 19,
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PV1 = PV2 — PV3
Pull-out Cracking Steel rupture
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Yielding Puli-out Local yielding
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9. CONCLUDING REMARKS

The results of the 17 panels tested to date have demonstrated that the relation-
ship between the principal compressive stress in the concrete and the principal
compressive strain in the concrete is strongly dependent on the co-existing maxi-
mum shear strain. Further, it has been found that in order to predict accurately
the deformation characteristics of the panel, it is necessary to account for the
tensile stresses in the concrete.

Mathematical models were developed to represent the concrete stress—strain char-
acteristics. Using these models, equilibrium conditions based on average
stresses, and compatibility conditions based on average strains, it proved pos-
sible to predict accurately the behaviour of the panels.

Experimental work currently underway is aimed at investigating the applicability
of the models to more complex stress combinations, specifically combined tension
and shear, and combined compression and shear. Studies on the influence of re-
versed cyclic loading are also planned. Hopefully, the material properties de-
termined in this study can be incorporated into general mathematical models

which will enable complex reinforced concrete structures to be designed for shear
in a rational manner.
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The Behaviour of Cracks in Plain and Reinforced Concrete Subjected to Shear
Le comportement des fissures en béton armé et non armé

Das Verhalten von Rissen in bewehrtem und unbewehrtem Beton
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SUMMARY

Due to the roughness of their surfaces, cracks in concrete can transmit substantial
shear forces. Constitutive equations are derived for cracks in plain and reinforced
concrete on the basis of a realistic description of the physical behaviour, in such a way
that the influence of the concrete mix properties can be taken into account.
Comparisons between theoretical and experimental results are presented. Bearing
capacities are derived for cracks in plain concrete under different loading conditions
and for cracks in reinforced concrete subjected to pure shear loading. Comparisons
are made with existing shear-friction equations.

RESUME

Suite a la rugosité de leurs surfaces, les fissures dans le béton ont la possibilité de
transmettre des efforts tranchants considérables. Des rélations entre les contraintes et
les déplacements sont données pour des fissures en béton armé et non armé, sur
base d'une description réaliste du comportement physique, de telle maniére qu'il est
possible de tenir compte de l'influence des propriétés du béton.

Des comparaisons sont établies entre les résultats théoriques et expérimentaux. Les
résistances sont données pour des fissures en béton non-armé, soumises a des
sollicitations différentes et pour des fissures en béton armé soumises au cisaillement
pur.

ZUSAMMENFASSUNG

Infolge der Rauhigkeit ihrer Rissufer kdnnen Risse im Beton betrdchtliche Schubkrafte
ubertragen. Die Beziehungen zwischen Spannungen und Verschiebungen sind auf der
Grundiage einer wirklichkeitsnahen Beschreibung des Materialverhaltens flr Risse in
unbewehrtem und bewehrtem Beton abgeleitet, derart dass auf den Einfluss der
Betonzusammensetzung Rucksicht genommen werden kann. Theoretische und
experimentelle Ergebnisse sind verglichen.

Die Tragfahigkeit von Rissen in unbewehrtem Beton unter verschiedenen
Beanspruchungsarten und von Rissen in bewehrtem Beton unter reiner
Schubbeanspruchung ist abgeleitet.



228 CRACKS IN PLAIN AND R C BY SHEAR

1. INTRODUCTION

In many concrete structures the capacity of cracks to transmit shear forces
plays an important role. Cracks, which have been formed due to flexural action,
may be subjected to shear forces as a result of other leoading configurations.
Such a situation occurs for instance in a long bridge, which is supported on
hinged columns in the longitudinal axis, so that the torsional moments have to
be resisted by the abutments. In such a case open cracks have to be able to
transmit shear forces, to warrant the full lcad bearing capacity. In the design
of nuclear power vessels the behaviour of cracks subjected to shear loading is
directly taken into account. Design criteria [1] require that the structure
be designed to withstand the simultaneous occurence of an internal pressuriza-
tion, sco that horizontal and vertical cracks are formed, and the inertia forces
generated by a strong motion earthquake.

The variation of external loading conditions is not a necessary condition for
the occurence of shear forces in cracks. The anisotropic properties of cracked
reinforced concrete may as well cause shear action in the cracks. The shear
capacity of beams without shear reinforcement depends essentially on the re-
sistance of the cracks against shear displacements [2,3,% .

Up to now the understanding of what really happens in a crack subjected to
shear forces was not satisfactory. Examples of some Ifrequently encoutered
simplifications are shown in Fig. la,b: In Fig. la the whole mechanism is re-
duced to the case of simple friction between two interfaces (1 = p.o). Fig. 1b
considers the possibility of crack dilatancy. If the undulations of the crack
faces are considered to be rigid and frictionless, the mechanism can be de-
scribed by a similar relation T = (tang. 4) o . If the undulations are con-
sidered as elastic a description is more difficult: during shear displacement
at constant crack width both a shear stress T and a normal stress ¢ are de-
veloped. Further complications occur if it is assumed that the undulations are
not perfectly elastic and frictionless. Due to all these incertainties only
provisional equations were available for the use in non linear finite element
programs, so that even the most advanced programs could not be used with full
profit.

It was concluded that there is a need for a better understanding of the
phenomenon, improved constitutive equations and better defined strength limits.
This paper focusses on these questions. The work was carried out within the
scope of the project "Concrete Mechanics" supported by the CUR-VB, the Nether-
lands Committee of Concrete Research.

2. CONSTITUTIVE EQUATIONS

2.1 Cracks in plain concrete

In order to obtain constitutive equations with a wide range of applicability

it is necessary to describe the physical reality as accurate as possible. Hence
first the fundamental behaviour is studied.

In general the strength and the stiffness of the aggregate particles are higher
than those of the matrix, consisting of hardened cement paste and small particles
(f.i. < 0.1 mm). The contact area between the two materials, the bond zone, is
the weakest link of the system. Hence, cracking occurs commonly through the
matrix, but along the circumference of the aggregate particles. Only i1n the case
of high strength concretes (with high matrix strength) and lightweight concrete
(with low particle strength) are cracks observed running both through the ma-
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trix and the particles. Generally crack faces are encountered which have a
structure as indicated in Fig. 2.

Fig. 1 a, b. Simplified representation of crack behaviour

o
. S »
T
T Fig. 2. More realistic representation
Y of crack behaviour

It can be expected that, during shear displacement of the crack faces, contact
areas develop on the surface of the particles exceeding from one of the crack
faces. The behaviour in detail, for a single particle, is represented in Fig. 3.

|5
a!
F Ogu \
X . ;’\ ’
ayI:__ — j [ Iw a
. y
N\ o -

Fig. 3a. FTormation of a contact area b. Equilibrium at a contact area

If the shear stress 1 on the plane of cracking is increased and crack opening
is counteracted by a restraining stress ¢ , a mechanism will develop, which can
be described as follows: the contact areas tend initially to slide: as a result
of this sliding, the contact areas are reduced, which results in high contact
stresses, sO that further deformation occurs. Hardened cement paste is a visco-
elastic material: the deformation, provoked by stresses is only partially elas-
tic, for the other part plastic. Under multi-axial stresses, as in the area
between the aggregate particles in concrete, large plastic deformations can
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occur as a result of pore volume reduction. Since the plastic deformations are
expected to dominate the elastic deformations, the stress-strain relation of
the matrix is assumed to be rigid-plastic, with a yielding stress opy. If we
consider the case that both T and ¢ are monotonically increasing, tﬁe contact
areas are always about to slide, so that (Fig. 3a)

= o] (1)
p~ "%

The equilibrium conditions for one particle (Fig. 3b) can be formulated as:

FX = Gpu(ay +11ax) (2a)
Fy = Opu(aX —11ay) (2b)

a_ and a_ being the projected contact areas, parallel and normal to the crack
pfane. Tgking intc account all particle contributions over a unit crack area,
the equilibrium is described by

"

T o (Za_ +ufa ) 3a)
pu v b

o o] (ZaX w}ﬂi;y) (3b)

pPu

Since La_ and Xa_ are functions of the crack displacements w and A , the
equationé 3a,b ate the generalized constitutive equations. In order to obtain
expressions for concretes with a particular strength and composition, the
values of the parameters ¢_ , U should be known, and Za_ and ZXa_ should be
expressed as functions of Ble crack width w, the shear d%splaceme%t A and the
aggregate characteristics.

The matrix yielding strength o must have a direct relation with the uniaxial
concrete compressive strength © f! . Although no adequate data are found in
literature concerning this relatiSf, it can be expected that the value o_ is
higher than the uniaxial compressive strength f' , because this value +o
flo is limited by progressive microcracking betW&en particles and matrix and
not by the matrix strength.

Also about the coefficient of friction u no specific data are found in the
literature. An indication is given by tests of Weiss [5_], whe found for con-
cretes and concrete components (aggregates, mortars) values, ranging from
0.4-0.6.

The projected contact areas Za_ and Za_ depend on both the displacements be-
tween the crack faces and the Zoncrete’mix composition, particularly the
volume fraction of the aggregate particles and their grading curve. If it is
assumed that the central crack line is straight, the aggregate particles are
spherical (Fig. 2) and the distribution of the particles over the volume is
random, the most probable values of za  and Ia, can be found by a statistical
analysis. The expressions for Zax and Zay are’derived in [6]

Tests have been carried out for two reasons: to find out if the theoretical
model makes sense anyhow and, if it does, to establish the expressions for

Oy and u.

Tﬁe set-up of the tests is represented in Fig. 4. The specimens were precracked
before actual testing. Crack opening during the actual shear test was counter-
acted by external restraining bars, clamping the two specimenhalves together.



4 J.C. WALRAVEN 231

The displacements between the crack faces, both in normal and parallel direction
were recorded by two combinations of displacement gauges at both sides of the
specimen, Variables were: 2

- the concrete strength: £' = 13, 35, 59 N/mm

- the maximum aggregate pa%%icle diameter: D = 16, 32 mm

- the corncrete type: normal, lightweight

- the initial crack width: w = 0.01, 0.20, 0.40 mm

~ the stiffness of the external restraining system

All the concrete mixes were composed according to ideal Fuller curves.

Fig. 4. Specimen with external restraining
bars for tests on cracks in plain concrete

Results

For all the concrete mixes the grading curve (Fuller), the maximum particle

diameter D__ _, and the aggregate volume fraction p,, were known. Writing the
; LINaX . k

constitutive equations 3a, b as

T = Gpu { Zay(pk, Dmax’ A, w) o+ uZaX(pk, Dmax’A s W)} (4a)
g = Gpu { Zax(pk, Dmax’ A, w) - uZay(pk, Dmax’A , W) } (4b)

the only urknown values are o__ and U .

Apart from the theoretilcal refations a large nurber of combinations (t.,0,4,w)
were obtained from the tests. Comparing the theoretical with the experimental
relations, it was found that excellent fitting of the curves was obtained for

0.56

6.39 £ (N/mm?) ()
(&@

H

g
pu

u o = 0.40 (8)

for all the concrete mixes (except lighgweight concrete) . These comparisons are
shown for four mixes in the Figures 5-8%!

It should be noted that only two parameters (o_ ,u) are available for curve
fitting, so that only two lines per diagram.(f?%. for w = 1.0 mm) can actually
be fitted. The fact that it turns out that automatically all the other lines fit,
demonstrates the validity of the theory.

%) The agreement between theory and experiments in these figures is even slightly
better than shown earlier in [6], since here a correction is applied for the
elastic deformation of the concrete between the measuring points (located
50 mm from the crack to both sides) which was earlier neglected.
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Because 1 and o are proportional to §10+58 (eq. 5) it is possible to repre-

sent the relations in a more general w%:f. This is done in Fig. 9 and 10.

T/ f;co.ss (N/mm?) Dpax= 16 mm
20 oW =
| e | 01 mm
15 2 —— =g2 5.4
J ? ]
05 [/ ,/_,/:::EEE:::i:Z:: i
' — —aJ A (mm)
10 15 20 gTs
05 \\\\ =10
\h\ ———————F——028
10 ~f————"—06
" \{\\\\ 0.4

a1£. 256 (NImm?)

Fig. 9. Generalized constitutive relations for a crack in plain concrete
(13 < f! < 60 W/mn?, D__ = 16 mm, p_= 0.75)

'0.56 2 -
T, (N/mm?*) Dpay =32 mm
20 O -w = 0.2 mm
15 ——— 0.4

/"— g
———— 0% ;8

/[ =
N "

05

10 AN
15

N = S
RSS2
\\\::::::““-—E_~

g £9%8 (N1 mm?)

Fig. 10. The same as Fig. 9, but for 13 < f! < 80 N/mmz, D = 32 mm,
_ B max
pk = 0.75
Comparing both figures 9(for D = 16 mm) and 10 (for D = 32 mm), it is

seen that the differences are Yeédy small. Only for large @vack widths the dif-
ferences in the development of T as a function of A are not insignificant.
This phenomencon is also exhibited by the test (Fig. 6 and 7). The theoretical
mcdel enables a parameter study. Detailed data about this study, focussing on
the influence of u, the contribution of individual aggregate fractions, the in-

fluel.:nqe of the grading curve and the behaviour under cyclic loading, are found
in [6].
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For the range of values tested simplified linear relations have been derived:
1

Tz 4 {1.8w?8 & o.om w7 o203 (1> 0) (7a)
30 cc =
1
o= - 4 {1.35w 0% 4 (0.191 wC->% L 0.15)F" IA (02 0) (7D
20 . felal =
(N/HHF).
Fig. 11 shows these graphs for two of the COHCPEEF mixes .
1o (N/mm?) . =561 Nimm? 1 (N/mm?) f., =13.4 N/mm?)
03 3 0.7 s 1
g iy A 1op ., 02 03 04
ol ’;{1: 8 V. 0.7 mm
614 of s}
4t 4
2} 7" * 2|
2: 2
4 4
6l & w=00 02 03 04

 O(N/mm2) . . O (N/mm?) )
Fig. 11. Simplified constitutive equations (eq. 7a, b) for two mixes

1] = 2 1 = 2 7
(fCc 56.1 N/mm<, left) and fCC 13.4 N/mm4, right)

2.2 Cracks in reinforced concrete

It is obvigQus to expect that cracks in reinforced concrete behave essentially
in the same way as cracks in plain concrete, because the mechanism seems to be
only slightly different: the restraining force against crack widening is not
provided by an external system but internally by the reinforcing bars. The
stiffness of this internal restraining system is governed by bond between bars
and concrete and the yielding stress of the steel. Furtheron dowel action of
the reinforcing bars is an additional component. Tt can however be demonstrated
that, within practical limits, dowel action can be neglected without committing
a significant error [6]

Test have been carried out on specimens as represented in Fig., 12. Variables
were: - concrete strength: f' = 20, 30-35, 56 N/mm?

-~ maximum particle diafiter: Doax = 165 32 mm

- grading curve (continuous, disContinuous)

~ reinforcement ratio: B = 0.14 - 3.35%

- bar diameter

~- concrete type: normal, lightweight

~ inclination of the reinforcing bars (45-135° to the crack plane)

The specimens were precracked (w =~ 0.01-0.03 mm) and subsequently subjected to
a monotonically increasing shear load. The displacements between the crack
faces in normal and parallel direction were measured.

A full description is given in [7]].
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Fig. 12. Experimental set-up for tests on
cracks, crossed by embedded
reinforcement
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Fig. 13. Crack opening paths for cracks in plain (a) and reinforced (b)
corkrete with varying restraining stiffness
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Resul ts

—————— — —

The results of the tests on specimens with embedded reinforcement appeared to
be essentially different from the results of the tests on cracks in plain con-
crete.

In the tests on unreinforced cracks it appeared that the external restraining
stiffness has a significant influence on the crack opening path (w,A path).
This can be shown with the aid of Fig. 9. Point A is attended with an arbitrary
restraining stiffness (normal stress o, for a crack width w = 0.2 mm). If the
restraining stiffness is higher (o, > é for the same crack width) this results
in a larger value of A . So the dependency of the crack opening path on the
external restraining stiffness ¢an, in a general way, be represented as in

Fig. 13a. In the tests on specimens with embedded bars the crack opening di-
rection remained unaffected by the restraining stiffness (or reinforcement
ratio) (Fig. 13b). _

A similar type of behaviour was earlier reported by Mattock ESJ. S0, apparent-
ly the relations between stresses and displacements cannot be described on
the basisof the relations derived for cracks in plain concrete (eq. 4, 5, 6)
even if the restraining stiffness (load-slip relations) of the reinforcing
bars were accurately known. The average crack opening paths for the different
series, each of which consisted of 4 specimens of one concrete guality and re-
inforcement ratios of 0.56, 1.12, 1.68 and 2.23%, are represented in Fig. 14.

Four different concrete mixes with strengths of 20 < f' 30 N/mm2 displayed
hardly any difference. The hlgh strength mix (f' = 56°N/mn?) exhibited a
slightly steeper crack opening path, possibly caused by breaking through of

a number of the aggregate particles. The lightweight concrete showed a con-
siderably steeper crack opening path (all lightweight particles break through).
Apparently there is a fundamental difference in behaviour between unreinforced
and reinforced cracks. This difference may be caused by the bond between the
deformed steel and the concrete. It is known that, due to this bond, the crack
width in reinforced concrete is not constant, but decreases coming nearer

to the bars (Fig. 15a). It is probable that, due to this local crack width re-
duction higher stresses occur in the concrete around the bars, resulting in
secondary cracking. In this way local compressive struts could be formed

(Fig. 15b) . which force the two halves of the specimen to follow a certain'cri-

Fig 15 a. Decrease of crack width around reinforcing bar
b. formation of compression struts
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tical crack opening path. The presence of such a mechanism seems the more pro-
bable because additional tests on specimens, in which soft sleeves were secured
arcund the reinforcing bars over a short distance to both sides of the crack, so
that not such a severe crack width reduction has to be expected, displayed a
behaviour similar to that of the specimens with external bars.
It turned out that the relation between T, ¢, w and A could be described by a
model as shown in Fig. 16. Here is
F_ = the axial force in the embedded steel reinforcement (the pull-out
‘ stiffness should be known)
Fy dowel force provided by the reinforcement. On basis of tests of other
authors it was derived that the dowel force for one bar can be ap-
proximated by

Fo= 406 + 0,207 403 70 e 0038 g v /)
d cc
Fiv Fih = the forces due to pure aggregate interlock as described by eq. (4)
% or (7)
S = strut action, provided by hinged compression struts with infinite

stiffness. The direction of the struts depends on the position of

the crack faces (w,A) and is defined such that the critical w, A

path canrot be exceeded. The struts are only active if compressed.
The direction is always normal to the w,A path. The critical crack
opening path for the concretes with 20_< f' < 40 N/m”, defined such
that both the author's and Mattocks[8] teS%s (with large initial
crack widths) could be described as

98 = 078 (165 + 2.20 w) - 1.54 (mm)
Undoubtfully these phenomena need further study. It should be investigated if
the profilation of the bars has a governing influence on the behaviour (smooth
bars may be expected to give no crack width reduction and consequently to dis-
play a behaviour similar to that of external bars. Purtheron it should be
studied if such type of behaviour alsc occurs in the case of combined shear and
tension, perpendicular to the crack. /

3., ULTIMATE BEARING CAPACITIES

5.1 Cracks in plain concrete

On the basis of the theory and the experiments a number of different conditions
can be analysed.

3.1.a Cracks in plain concrete, not subjected to a normal compressive stress

Studying the nature of the equations (4a,b) represented in the Figs. 9 and 10,
an interesting property is found: if a pair of lines for an arbitrary, constant
crack width is considered, it is seen that the ¢,A line intersects the abscis and
that the 1-A line goes through the origin (Fig. 17). This shows that a crack
can resist a shear stress even in the case that no normal compressive stress

is available. For a crack width w, equilibrium is obtained for =Ty A=A1 5

g = 0.

If t > 14, and the same crack width should be maintained, equilibrium can only
be obtaified for ¢ > 0: if 0 = 0 an increase of the crack width (overriding of
the crack faces) will occur. However, no equilibrium is possible any more

(Fig. 17 1, < Tl).
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wii

Fy W

Fig. 16. Schematic representation Fig. 17.
of forces in a reinforced
crack

This "stick-slip" behaviour can be explained considering the crack on particle
level.

Fig. 18a shows the equilibrium condition for a small shear force: the external
shear force is internally reacted by the shear and normal stresses at the con-
tact area. If the external shear force increases, the contact area is enlarged, re-
sulting in intermal stresses which are larger but the resultant of which is in-
clined in another direction. The external shear force is limited due to the

fact that at a certain degree a deformation, the direction of the internal re-
action is turned to such an extent that no equilibriuwmn can be cbtained any more
and sliding occurs (Fig. 18b).

Gy A A
\\,
R "
—pn | é
Fx onbu Fy
[ K‘_ ~
Zgﬁthpu '-.A(Z tpu
equilibrium no equilibrium

Fig. 18. Stress conditicns at pure shear loading
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Fig. 19 shows a nunmber of -results obtained in the tests with external bars
(Fig. 5); the maximum shear stress T _ was supposed to be reached at the load
increment just before the external s were observed to be stressed (smallest
reading o = 0,003 N/mm2).

Fig. 9 and 10 show that, theoretically, a maximum shear stress level is reached
for every crack width. This maximum is reached if the maximum total contact
area is reached (Fig. 3).

Due to the set-up of the tests, permitting an increase of the crack width during
loading, no values were available to control the ultimate shear level, reached
for constant crack widths. Therefore the thecretical values (Figs. 9,10) have

been compared with the results of tests carried out at the TU-Munich [97]
Fig. 20 represents this comparison. It turned out that the theoretical lines
(for D~ = 16 mm) are slightly conservative compared with the experimental

valuesm%ﬁmax = 8-16 mm).

If a crack, after opening, is subjected to a normal compressive stress , it

will not close perfectly. Basing oneself on a residual value of w = 0.1 mm,

the ultimate shear stress T can be read as a function of the normal compressive
stress in the diagrams of thHe Figs. 9 and 10. Fig. 21.a shows the theoretical
function, compared with a number of experimental results. The values of the
coefficient of friction for the crack on macro-scale Mg = 1/0 are represented

in Fig. 21b. It is shown that U decreases with increasing values of the normal
compressive stress.

3.2. Cracks in reinforced concrete

The ultimate resistarice of cracks in reinforced concrete, subjected to shear
loading, has been discussed many times and several expressions for the bearing
capacity have been suggested [10,11,12 ]. It is striking that in these expres-
sions only a subordinate role has been attributed to the concrete strength,
whereas the previous analysis of the mechanism demonstrates that the matrix
strength (directly related to the concrete strength) is one of the most im-
portant variables.

The expression which is most frequently used, providing a lower bound is

T, = 1.4 + 0.8 of (N/mm?) (10)
with 2

T
T < 0.3 fccyl

which is known as the "modified shear-friction equation".
The concrete strength has here only been used as an upper limit, but not as
an influencing variable for lower values of pfsy'

Fig, 2la showed a curve for an unreinforced crack, subjected to an external
compressive stress. If reinforcement is applied, the force which is developed
in the bars acts roughly in the same way: it prevents the crack from opening.
However, there are a number of differences which should be noted:

-~ whereas in an unreinforced crack the confining stress acts to close
the crack, in a reinforced crack the maximum restraining force is
only reached at yielding of the steel, at a considerably larger
crack width.
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- as it was demonstrated before, there is a fundamental difference
between the behaviour of unreinforced and reinforced cracks, pro-
bably due to crack width reduction (Fig. 15). However, the utmost
part of the shear is still transferred across the crack via the
contact areas between particles and matrix [6]

An ircrease of the concrete strength may be expected to have a positive in-
fluence on the shear resistance for three reasons:

- the matrix strength is enlarged so that a greater resistance against
deformation of the crack faces is cbtained.

- better bond between bars and concrete causes yielding at a smaller
crack width [13] so that a larger potential contact area is available.

- by virtue of the increase of the shear resistance, resulting from
the two previous points, the transverse stresses on the reinforcing
bars will be larger, improving again the bond characteristics: a
greater pull-out stiffness is obtained, which results in a secondary
reduction of the crack width at yielding.

It seems to be realistic to assume that the relation between the ultimate shear
gtress T.. and the restraining normal stress pf  is of comparable shape as the
relation between T, and o for an unreinforced“¥rack (Fig. 21a). In a gene-
ralized way this rélation can be expressed as:
c

Ty = Cl(pfsy) 4 (N/mmz) (11a)
where c, and c, are constants, defining the exact shape and position. For the
previously disCussed reasons c, and c, may be expected to be primarily functions
of the concrete strength f' . An analysis of the own results (28 tests) and a
nurber of tests carried ou%cby Mattock (21 tests - series 2, 3, 4, 5 [1u])
showed that good agreement is cbtained for

_ ~0.36 2
g = £l (N/mm") (11b)
_ 0.46
c, = 0.08 féc (¥ 3 (11e)

The average value of Ty,exp/Tu,th for the 49 tests (all normal weight concrete)
was 0.98 with a stardard deviation of 0.10 (Fig. 22). So a 5%-lower bond is
obtained with
) 2 2

Ty = 0.85 Ci(pfsy) (N/mm") a2
Fig. 23 displays a comparison between the lower bounds according to the "modi-
fied shear friction equation" (10) and the improved equation (12). It is seen
that the "modified shear friction equation” is rather conservative for higher
concrete strengths. The use of (12) could result in a saving of up to 50 % of
the reinforcement.
Fig. 24 shows the effective coefficient of friction u_ based on eq. (11).
It is seen that the lines are lower than the comparabie ones for unreinforced
cracks.,
As was argued before the stress condition in the specimens is important. This
was confirmed by comparing the equation (11) with the results of "pull-off"
specimens, where tensile stresses instead of compressive stresses are acting
perpendicular to the bars (Mattock [10], series 8, 6 tests). The average value

of Tu,exp/?u th (eq. 9) was indeed only 0.77, which can be explained by worse

bond behaviour of the reinforcing bars.
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4. CONCLUSIONS

- The transmission of shear and normal stresses across cracks in plain
concrete can be explained on the basis of the behaviour on particle level.
Constitutive equations can be derived, based on physical considerations,
taking into account all concrete mix properties.

- There is a fundamental difference in behaviour between cracks in plain con-
crete and cracks in reinforced concrete.

- The shear-friction equations as actually used in practive give too conser-
vative results for high strength concretes. An improved formulation for the
shear resistance can be derived taking account of the concrete strength f'

and the mechanical reinforcement ratio pf -

5. NOTATIONS
a a.y

f!

cec

f
5y

projected contact areas parallel and normal to the crack
cube cruéhing strength (150 mms)

yielding stress of the steel

volume fraction of the aggregate

crack width

maximun particle diameter

reinforcement ratio

coefficient of friction (particle-matrix)

effective coefficient of friction (crack on macro scale)
stress normal to crack

matrix yielding stress

shear stress

shear stress on particle

shear displacement

bar diameter
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DISCUSSION
Session 1, part 1: Modelling of Material Behaviour

Introductory Report by Bazant, U.S.A.

aggregate size). However, if the mesh size is much larger, you need fracture
mechanics in your computational model.

Paper by Vecchio/Ceollins, Canada

cracks are extended over the whole plate. Did you measure for these cracks
the crack width and slip?

Collins: No, this would have taken too much time. We measured the local

strains and occasionally the width of some characteristic cracks.

pure shear. The strains were surprisingly uniform as appeared from our
measurements.

you make a superposition of cracks in three directions, which in fact
presupposes that the cracks form an orthogonal system?

model and it can be used as a basis for sound consistent design rules.

Kénig (F.R,G.): Referring to fig. Y4 and fig. 5 of prof. Reinhardt's paper,
there must be anasymptotic line with increasing depth of the beams. The
test results show this asymptotic line, but not your theory.

to explain the size effect. I started with a linear fracture mechanics
approach, knowing that this is not optimal.In fig. 5 for beams with greater
depths the dotted line represents a lower bound.
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Because there are no experimental results available it cannot be proved
whether the theory is correct or there exists an asymptote. More FEM-
calculations are necessary in order to find out if this linear fracture
mechanics approach is to be justified.

3,00 x 3,00 x 0,80 m, was tested recently and its punching load compared with
others. It turned out that the relative ultimate shear stress is governed by
the span-depth ratio rather than the absolute thickness. Is it possible that
because of not equal span/depth-ratio's the tests mentioned in Reinhardt's
paper cannot be compared?

I think this would be a very appropriate opportunity to try and clarify the
relationship between your slip-free limit design and the classical approach,
which you insist on calling frictionless design.

Assuming a finite coefficient of friction in the cracks, you arrive at this

. . -
7 T+t

¥ ield criterion:

= s s s < _ 2
[ -n) -8, (e Ny)j [(Ny N -8y (0 N o= BoNoy)
which is equation (31) of your paper. Here N° and N° are the required yield
forces in the orthotropic reinforcement in the - agd y-directions, and Nx’
Ny and ny are the applied membrane forces with regard to the x, y-system.

The parameters Bl and 82 are defined as:

= {tan (E—- gﬁ }2 : R, = 3 {cos (% —-%)}—2

& 2

which is equation (4) of Ref. [68];

where B is the friction angle, i.e. the angle between the cracks and the

displacement rate vector.

In the Introductory Paper the definition of 82 is slightly different, but that

must be a misprint.

Eheﬁe expressions are from the paper by Bazant, Tsubaki and Belytschko (Ref.
68]).

Now in the classical approach the yield criterion is simply this:

(Ni - NX) (N; - Ny) = Niy’ if equal notations are used.

In your paper you state that the slip-free design equals the classical case
if we put B= Bl = 82 = 0. This is obviously not correct.

For one thinga B= 0 will make neither g1 mor B, = O.
No, the fact is that we cobtain the classical criterion for

T . . - _ 1
B = 5 which gives Bl 0 and 82 5.

Thus the classical approach is certainly not frictionless; on the contrary,
the coefficient of friction is infinite.
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Or rather, friction is not an issue at all, because the classical analysis,
which is only valid for underreinforced elements, assumes that the collapse
cracks form in the sections of least resistance, which means that the
deformation rate is always perpendicular to the discontinuity.

Generally the structure will have more cracks in other directions as well,
which are formed during earlier stages of the lecading history.

But it is assumed that no tangential slip occurs in these, i.e. that friction
or shear transfer i1s unlimited, or at least sufficient to prevent slip.

It is important to note that the tensile strength of concrete is neglected,
i.e. no shear can be transferred on any section unless there is a compressive
stress delivered by the reinforcement.

This is described by the Coulomb criterion with a zero tension cut-off (see
figure 1}.

4 Fig. 1 Modified Coulomb criterion
+ 4 &=
0 fC re, T compressive strength delivered by
M reinforcement

Here 1 is the shear strength and r is the compressive stress, r being the
reinforcement ratio.
The slope of the curve may be interpreted as the coefficient of friction,

which 1s infinite at the origin, eventually decreasing to C¢,75.

This description is very similar to the classical shear-friction theory, only
slightly more sophisticated.

As mentioned, the classical analysils only considered the underreinforced case,
where there is always a possibility for the structure to avoid slip in the
discontinuities by failing through simple opening of the collapse cracks.
Lately, the analysis has been extended to cases where the failure 1s constrained
by strong reinforcement or for other reasons, in such a way that the optimal
failure mechnism involves tangential slip in the discontinuities.

Then this yield criterion is no longer valid and the dissipation is calculated
using the modified Coulomb criterion.

Ty

To summarize:

The classical limit design does not assume no friction in cracks; on the
contrary, it assumes no slip, because it consumes less enery for the structure
to let the reinforcement yield, rather than overcome the resistance of the
concrete to tangential deformations.

If the reinforcement becomes sufficiently strong, this is no longer true, and
tangential slip must be considered.

This is done by the modified Coulomb criterion, which appears to give an
adequate description of the shear strength of concrete.
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detail, I wish to summarize at least the following.

Your remarks are useful, but 1 cannot quite agree with them.

You seem to have a different concept of friction. Apparantly, if the yield
surface depends on the mean stress g, you call that friction.

A proper definition of frictional force, in the context with thermodynamics,

is different: it is a force which affects the response, but does no work in
the response (see, e.g., Hill and Rice, VMPS, early 1970's, and Bazant, IASS,
1980). Thus, it is the salient feature of friction that it cannot be derived
from a work expression by differentiation, i.e., no potential exists. In this
sense, the slip~dilatancy medel Tsubaki and I developed is a frictional model,

which yours is not because you assume normality!

Now, within your point of view, we were well aware that the classical design
corresponds to infinite friction coefficient on the crack and we stated so in
our first paper (Bazant-Tsubaki, ASCE, Struct.Div. 1979, p.327).

As a consequence of this fact, however, the critical crack {(which you curiousiy
call "discontinuity'") and actually the only possible crack is that on which
there is no slip (no tangential displacement), and since there is no slip there
is no shear stress on the crack, i.e. no friction.

So, classical design is a design based on the assumption of no shear stress

(no friction) on the critical crack.

Thus I just cannot see how anyone can object to the word "frictionless".

Your arguments are based strictly on the assumption of a plastic yield surface
and the type of the yield surface you need to assume to get these results. But
that is clearly secondary.

Anyhow, I do not favour predicting the behaviour of concrete on the basis of
plasticity, even though plasticity solutions may be adapted (after the fact)
to fit reasonably well certain test data for concrete structures.

Prof. Bazant outlined some conceptual problems with applying plasticity to
concrete. This discussion can be summarized as follows (see figure).
a. The lack of ductility, i.e. lack of a horizontal plateau in the c-g-diagram,

do not a priori know the stresses at the failure surface at the moment of
collapse.

b. The literature on plasticity of concrete strikes us by one difference from
the literature on plasticity of metals. In the latter, one always starts
with the o-e-relation, and being satisfied that it is close enough to ideal
plasticity, one uses plasticity to solve a structural problem and compares
the calculation results with tests.

In the literature on plasticity of concrete, people also compare the results
of the analysis with tests of structures (or adjust them to fit the tests
of structures), but suspiciously omit the first stage; they never start by
showing the stress-strain relation. If they did, there would be of course
no resemblance of ideal plasticity.
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Problem of Ductility of Concrete
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DISCUSSION
Session 1, part 2: Modelling of Material Behaviour
Introductory Report by Gerstle, U.S.A.

Kotsovos (U.K.): In the report cracked concrete is discussed. In the cracked
state however, the plane stress assumption 1s not valid any more, This should be
explained.

On the other hand, simplifiedmethods have to be found for structural design.

relevance in microscopic and macroscopic approaches. The bond-slip behaviour is
important in both.

practical to have criteria to distinguish cases when the bond-slip should be
considered frem those when it can be neglected. In case of cyclic loading the

bond-slip behavicur is to be taken into account in the macro-approach as well
as in the microscopic approach.

§g§gg§gig§ (U.S.A.): Should Peter's tests be considered as micro- or as macro-

tests? There are some doubts with respect to these tests, concerning the edge
constraint and strain measurements.

Gerstle: Peter's tests are to be understood as element (macrc) tests. Peter's

yielding steel has done the job.

Paper by Gambarova, Italy

in the plane of that crack the principal stress axes must be different from
those corresponding to the stresses that have produced the crack. As a
consequence, these further stresses may cause new cracks in different directions:
a complicated model should be necessary to describe the different systems of
cracks!

conceived with the aim of analysing the shear stiffness and the shear strength
of primary {preformed)cracks, when further loads are applied, with shear in

the plane of the crack. It is completely true that any load combination, not
related to the primary cracks, may produce "secondary'" cracks in the solid
concrete between the "primary" cracks: this fact is going to be introduced in
the Rough Crack Model. However, also in the case of principal axes aligned
with the crack axes (normal and tangent), the aggregate interlock 1s exploited,
provided that the bars are not symmetric with respect to the axis normal to
the crack. The same is true when the principal axes coincide with the axes

of the bars. '
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Bazant (U.S.A.): I agree with Dr. Gambarova. A recent model developed at North-
western University shows that not only cracks perpendicular to the direction

of the maximum principal tensile stress matter. This model involving solely an
elastic matrix, plus rough cracks of all directions, gives a complete descrip-

tion, also for plain concrete. A current work is dedicated to the description

of different cracks.

Paper by Walraven, The Netherlands

Bazant (U.S.A.): I am surprised that there is, in your opinion, no rubble in
the crack. I think that there is some evidence which points the contrary.
For example: if it is tried to return the shear displacement to zero and then
to close the crack, it will turn out that this is impossible. The same is

observed in rock mechanics.

Walraven: After the tests on the specimens with external bars, the specimens
were opened, and then only a negligible amount of powder was observed. That

was my evidence that the behaviour is principally governed by irreversible
deformation of the matrix between the particles, and not by the action of loose
aggregate particles, rotating between the crack faces. If it is tried to close
the crack after opening, this is indeed not perfectly possible without any
normal compressive stress., However, this may also be due to microcracking under
the level of the crack faces,resulting in a deformation of these faces.

Kotsovos (U.K.): It is known that on the tip of the crack there are very high
stress concentrations, and these stress concentrations are of the order of

magnitude equivalent to chemical forces or even physical forces. What would be
the contribution of the state of stress on the tip of the crack on the overall

strength behaviour?

Walraven: The behaviour at the crack tip was not studied in detail.’

The model that was developed was meant to be used for finite element analysis,
where we distinguish in general between cracked and uncracked elements, so that
we do not have to deal with this question. To my opinion the influence of the
state of shear at the crack tip on the behaviour of most concrete structures

is not very great.

Mehlhorn (F.R.G.): I wonder why the diameter of the aggregate does not influence

the relations between stresses and displacements very much.

Walraven: If I compare two mixes, one with a maximum particle diameter of 32 mm
and the other of 16 mm, these mixes contain the same total aggregate volume.
So actually every large particle is replaced by a number of smaller ones.

Apparently these effects compensate each other.

Gambarova(Italy): With reference to your tests with embedded bars, you said
that a mechanism based on the information of concrete struts occurs. These
struts, which are at an angle to the crack blane, improve the crack shear
stiffness. What is in your opinion the nature of these struts? Do they consist
of concrete rubble (aggregate particles detached from the crack faces during
the loading process) or are they made of solid concrete in between the secon-
dary cracks originating from the bar deformations? Have you noticed any

remarkable amount of concrete rubble at the crack interface, after each test?
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of Mattock, conducted at the University of Washington D.C., showed inclined
cracking at the outside of the specimen. However, the only thing that we saw,

was that the crack opening was constant, independent of the reinfercement ratio,
which raised the supposition that alsc here inclined struts had been active.

As we did not realize in advance that such a mechanism was possible, we had

not made any arrangement to study the behaviour inside the specimen.

A reasonable explanation is that the crack in the direct vicinity of the bars
has a smaller width than elsewhere, which will attract stress concentrations

and result in internal cracking, attended with sclid concrete struts, which

are invisible from outside. It is true that after opening of the specimen, after
testing, concentrations of rubble were found in cratershaped holes, directly
around the bars, but this may have been caused by the opening procedure itself,
since a considerable pull-out of the bars is necessary before the specimen
halves can be separated.

A definite answer may be found by injecting the cracks during testing with a
fluorescent fluid and studying the micro-cracking pattern after the tests.

Paper by Nilsson/Glemberg, Sweden

even when the corresponding stress is zero or even compressive. Can your model
take account of such a phenomenon?

zero, but not in other cases.

Paper by Dieterle/Bachmann, Switzerland

over the length of the beam. In a second calculation the real bond stress is
used, as can be calculated from the paper by Rehm, published by the Deutscher
Ausschuss flir Stahlbeton. Also the height of the lcad was considered calculating
the real bond stress.

e.g. showing the high damping for small amplitudes and a decrease of damping,
with increasing amplitudes; furthe® an increase with the percentage of
reinforcement, etc.

Paper by Roelfstra/Wittmann, Switzerland

of the aggregate. Does this mean that in cement paste there will be no creep
recovery?

creep recovery of concrete. Hardened cement paste is far from being a homogeneous
material. There are unhydrated clinker particles and weak zones randomly
distributed in the microstructure. Therefore even in hardened cement paste
locally elastic energy is stored during time-dependent deformation and therefore
even in hardened cement paste creep recovery is observed.
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