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Ultimate Strength of Reinforced Concrete Members under Combined Loading
La résistance & la rupture d'éléments en béton armé sous charges combinées.

Traglast von Stahibetonbauteilen unter kombinierten Belastung

RYOICHI SHOHARA BEN KATO
Research Engineer Prof. Dr.-Eng.
Shimuzu Construction Co., Ltd. University of Tokyo
Tokyo, Japan Tokyo, Japan
SUMMARY

The uitimate strength of reinforced concrete members is analyzed based on the concept of a
diagonal compression field. In this analysis, the interaction among bending moment, axial force
and shear force is evaluated using a simple mathematical model. This theory is very simple but
can explain the resisting mechanisms of reinforced concrete beam-columns and of precast
concrete connections by a unified theory. The theoretical predictions obtained here are
compared with the test results of many beam-column specimens and with those of push-off
specimens; a satisfactory agreement was found.

RESUME

lLa résistance a la rupture d'éiéments en béton armé est analysée sur base du principe de
champs de compression diagonale. Dans cette étude, l'interaction entre moments de flexion,
effort axial et effort de cisaillement est évaluée par un modéle mathématique simple. Bien que
simple, cette théorie est capable d'expliquer conjointement les mécanismes de liaisons entre
poutres et colonnes en béton armé et entre éléments préfabriqués. Les prédictions théoriques
obtenues ici sont comparées aux résultats expérimentaux de jonctions poutres-colonnes et de
joints entre éléments préfabriqués.

ZUSAMMENFASSUNG

Die Traglast von Stahlbetonbauteilen ist mithilfe des Konzepts des Diagonaldruckfeldes
berechnet. Kombinationen von Biegemoment, Normalkraft und Querkraft wurden mit einem
einfachen mathematischen Modell behandelt.

Ortbeton- und Fertigteilkonstruktionen kénnen damit behandelt werden. Befriedigende
Ubereinstimmung zwischen Theorie und Versuch wurde gefunden.



702 RC MEMBERS UNDER COMBINED LOADING

1. INTRODUCTION

In the conventional evaluation of the ultimate strength of beam-columns subject to combined axial
thrust, bending moment and shear, the moment capacity is evaluated considering the interaction
with axial force firstly, and then the shear force is calculated from the moment diagram at ulti-
mate state depending on the end condition of the members, and this shear force is compared with
the maximum shear capacity of the members which is evaluated on the basis of failure modes of
the member. In this procedure of estimating shear capacity, different mechanisms of shear trans-
fer through a section are assumed corresponding to the observed failure modes such as diagonal
shear failures and shear bond failure, where the interaction of the shear with axial force and/or
beinding stress is not taken into account. Since the observation of ultimate strength and failure
mode in shear is made on the limited number of test specimens and thus of the limited varieties
of parameters, there is a vulnerability of overlooking other possible modes of failure unless the
assessment should be made on the basis of a comprehensive resisting mechanism of the member
against axial force, bending moment and shear force.

Herein, a structural model is developed on the basis of the compression field concept. And the
ultimate strengths of various types of reinforced concrete members such as beam-columns, beams
and precast concrete connections are analyzed in the unified theoretical approach, taking the full
interaction among performances of shear, bending and axial force into account.

The theoretical predictions obtained herein are compared with the test results consisting of many
beam-column specimens and push-off specimens to show a satisfactory agreement each other.

2. ANALYSIS

The ultimate load carrying capacities of reinforced concrete members are analyzed. In this struc-
tural model, the equilibrium is secured through the entire member and the stresses in any constit-
uent elements do not exceed their ultimate stresses, but the compatibility of strains and deforma-
tion is not necessarily satisfied. Therefore the lower bound solution will be obtained from this
analysis. The stress-strain relationship of steel is assumed to be elastic-perfectiy plastic ignoring
the effect of strain-hardening. As for that of concrete, it is assumed that the concrete has no
resistance against tension and that it can develop some extent of plastic deformation keeping its
maximum stress against compression.

2.1. Ultimate Strength of Reinforced Concrete Beam-column Subject to Anti-symmetrical Bending

In this paragraph the ultimate loading capacity of a reinforced concrete beam-column subject to
anti-symmetrical bending at its ends under constant axial force is analyzed.

A reinforced concrete beam-column in this model is fictitiously divided into two systems, namely
web reinforcement and the diagonal compression field system, and the consisting materials are
allocated into these systems without overlapping.

The loading condition and the dimensions of various parts of the reinforced concrete column to
be analyzed are shown in Fig.1, where the symbols are;
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rd

N = constant axial force N

M = bending moment KI\M

Q = shearing force -—Q __ T

£ = length of the member

D = depth of the section

b = width of the section

rd = distance between the center of gravities of &

reinforcing bars at each side

S e 7 LL_
QWw

b[
| o |
Fig.l Reinforced Concrete Member
and Loading Condition

2.1.1. Bending Moment and .Shear Force Carried by the Web Reinforcement System

A kind of truss mechanism consisting of web reinforcement, main reinforcement and concrete
which resists compression force are assumed as a load carrying mechanism. The concrete is divided
into virtual discreet elements with their inclinations ¢ =45°,

their stresses Fc, and imaginary width of the concrete 8b in wN
equilibrium with the stresses of the reinforcements. wM
wQ
Assuming the stress of main reinforcing bars at each end of
the member T=aTy when the web reinforcing bars have yield- aTy —aTy |

ed, the following equations are derived from the equilibrium IL
of the system. Where Ty =ra-roy is the yield strength of the
reinforcing bars at one side of the section.

¢
wQ = Pw'wa'b'rd (1) /45ﬁ
wM= aTyrd ) —aTy //J aTy

wN = wQ (3) W“?Hq /M
W
Py-wOy-b-2

o= 2Ty wN
2Pw‘w0y ’ e
B=—""F, (0Sa, f<1)

o 8

D

where;
ra = total sectional area of main reinforcing bars
allocated on cither side of the section
with respect to the bending axis T'ig.2 Equilibriun of Web
wa = sectional area of a set of web reinforcing bars Reinforcement System
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. . wa
Pw = web reinforcement ratio W

X = pitch of web reinforcing bars
roy = Yield point of main reinforcement
woy = Yield point of web reinforcement
Fc = maximum compressive stress of concrete

Putting =1 in the above equations, it can be observed that the yielding of web reinforcement
and that of main reinforcement will take place simultaneously when the condition that

— 21-3.']‘9}{

Pw = oy
is satisfied. And it will be seen that the moment capacity of this system will be saturated at this
state, and does not increase further even if one provides more amount of web reinforcement than
that defined by the critical value of Pw.

In general, the main reinforcements have reserve strength of (1-a)Ty before yielding.

2.1.2. Bending Moment and Shear Force Carried by the Compression Ficld

At this step of the analysis, the materials in the member which can be utilized as load carrying
elements are (1-a)ra of the main reinforcement and the concrete. Compression field which con-
sists of these materials are assumed as shown Fig.3(a), where ¢ corresponds a steel chord member
consisting of (1-a)a, and d is a fictitious compressive diagonal member made of concrete.

In Fig.3(a), dashed lines which define the
fictitious diagonal compression member d
are drawn from the corners of the opposite
column ends with a inclination 6 which is
the function of {M and N, and the width
of the horizontal intersection of this diag-
onal member is X=D-¢ tanf.

tN+2S

TS STL

Y

Nc ¢

ool
'tN?ZTSHS S*

LU

Denoting the compressive stress in this diag-
onal member g, the compressive force in
this member N¢ can be written as

N¢ = o¢ b'-X.cosf
= (D-2 tan@)b’.0 cosé @

where b’=(1-8)b is fictitious width of dia-
gonal compression field.

T

—

The equilibrium of the axial force, the bend-
ing moment and the shear at each end of the
member can be written as follows. (a) (b)

(N + 28 = N¢-cosf 5) Fig.3 Compre§sion FieZ.Ld Mo?el gubject
to Anti-symmetrical Bending
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¢-tanf-N¢.cosf N¢-2-sinf
tM = 2 = 2 (6)

tQ = Nc-sin® (7)

Where {N=N- N is the axial force carried by this compression field system and is positive for
compression, tM is the bending moment at each end of the member and is positive for clockwise
direction, tQ is the shear force, and the cords forces S are positive for tension. Substituting Eq.(4)
into Eq.(5), the inclination of the diagonal compression field tané is found to be

A  b'Dog¢ : 28 +N 25 +¢N
tanf = (_—2S+tN__ ){\/ 32 (o b'D-o ) (1- b'D-oC)“ 1%, (8)
where A= {/D, and substituting Eqs.{4) and (8) into Eq.(6), the end moment {M is found to be
b'D-ocAL \/ 4 28+¢N 2§ +¢N
M= —— 1+ o=t
t 4 { R2 ( b’D'UC ) (1 b’D‘UC) Lr. (9)
Eq.(9) shows that ¢M increases when o increases, and-tM becomes maximum when o¢ becomes
bD.a
its maximum value F¢, and if 2S5 +(N< 0 ¢ , tM becomes maximum when the chords forces S

reach their yield vaiue Sg, namely

S= So= (I—Ol)Ty
No
Region [ {N <N, Ny = 5 -28.

Substituting F; into Eq.(9) for o, and Sq for S, the maximum bending moment at column ends
is found to be

' NoAL 4 2So+tN 280+ N
M = Z{«/l+i;(-—9N—0"——)(l- 2 )_1} (10)

Where; No=b'DF¢ = maximum compressive capacity of the concrete section used in compression
field system. And the corresponding shear force {Q is

2 NoA / 4 2So+(N 2So+(N
tQ:T: (2) { 1+F( No )(1" NO )"l-(ll)

Looking into the effect of the axial force {N on the moment capacity through Eq.(10), it can be
seen that {M takes its maximum when ¢N reaches N, = (Ny/2)-28g, and until (N reaches this
critical value of N,, tM increases with the increase of {N. Substituting N,=(Ngy/2)-2Ss into Egs.
(10) and (11) for N, the bending moment and shear force under this critical axial force are found
to be

M, = TN (VAT T T-2) (12)
Qi = 5 No (WATFT- ), (13)

And the inclination of the diagonal at this state is
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tanf, =V \2+1 -2 . (14)

When the axial force is not larger than this critical value Ny, both steels and concrete develop
their full capacity at the ultimate state, and this mode of failure can be defined as the flexural
failure in a broad sense.

N
Region I. Ny <{N<N, Ny=—5 + 28

According to Eq.(10), the bending moment reaches the maximum value at the critical axial force
N,, and then decreases for the larger axial force, and correspondingly the inclination @ starts to
decrease as can be seen from Eq.(8). However this is not the only way of excurtion. As Eq.(8)
and (9) are the function of (2S+N) and not the independent function of § or N, both {M and @
can remain unchanged for the axial force which is larger than N, if S decreases and goes back into
the elastic region. And since the member should develop its maximum resistance against given
external forces according to the lower bound theorem, this behavior must be the actual one. N-S
relationship for this transitive regicn can be written as

No
2S+tN=.2SO+tN=—2“. {15)

From this equation, it can be seen that S becomes zero at the axial force No/2, and the chord
stress will change its sign into compression when the axial force exceeds this value, and finally the
chords will yield by compression when the axial force reaches

N
N, = +2So. (16)

Thus it can be concluded that, for the region of N, <t{N <N, , the ultimate strength of the mem-
ber is governed by the compressive failure of the concrete diagonal, while the chord members
remain elastic. For the range of this axial force, tM,, tQ, and €, keep constant values, and they
are given by Eqs.(12), {13) and (14) respectively. This mode of failure can be defined as the
shear failure.

Region TII. N, S${N<N;, N3=Ng+2S,
Since the only difference of equilibrium conditions between Region I and Region III is that Sy in

the former becomes -Sq in the latter, (M and tQ for Region III can be obtained by replacing Sgo
in Eqs(10) and (11) by -89 as

1 4  (N-28 {N-28
tM=IN07\52[/1+?\—2( o) (- ) - ! (17)

2 / 4  tN-25¢
i B N e tN-28
W=y ‘2N°"{ N Ha- D -1 as)

Eq.(17) shows that tM decreases with increasing value of {N. As the extreme, tM becomes zero
when the axial force reaches the following value

N3 = No+25¢ . (19)
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N, is the sum of the axial yield force of concrete and that of steel chord parts. The failure mode
in this region can also be defined as the flexural failure.

The case fora=1

This case corresponds to the situation of S=0 in the preceding section. Since the description for
the Region I in the preceding section is independent of the value of S or Sp, the moment and
shear capacities for this region can be obtained by introducing So=0 into Eqs.(10) and (11) as

M INRQ{jl+i(ﬁ)(1—ﬁ)—l} (20)
=gt A2 " No No

tQ = Nok{j1+—(N)(l O)-1}. (21)

The critical axial force which makes the moment maximum also can be found by placing S¢=0
in the expression of N, as

. No
N1=T.

The maximum values of M and {Q for this critical axial force are independent of the value of So
and are given by Eqgs.(12) and (13) of the preceding section.

When S=0, from Eqgs.(20) and (21), it can be seen that it is impossible to keep tM and tQ un-
changed for the increasing value of {N. Therefore, the Region II does not exist, namely the shear
failure does not occur in this case. And therefore, Eqs.(20) and (21) are valid even for the larger
axial force than N,’, and eventually tM becomes zero when the axial force reaches N3 '=Np.
2.1.3. Total Capacity

The total bending capacity of a member is obtained by summing up those of web reinforcement
system (section 2.1.1.) and of compression field (section 2.1.2.). The result is summerized in the

following;

No .
Region . (NSN;, N;=-—5-25

28, +(N 280+
M:WM+%NOAQ{ﬁ+i( 0TS fi— EED = : )-1} (22)

wM=arar0y-1d, a=(Pyw 0y-b0)/(2ra-roy) <1

tN=N-wN, wN=wQ.
. No
Region . N;<{N<N,, N,= — + 280.

M:WM+-31—N0Q(\/7\2+ -A). (23)
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Region . N, S{N<N;, N3=No+2So

1 4 tN-28, tN -284
M=WM+ZNO)\Q{\/1+§\—2(—"“NB‘—")(1——EE—)—I . 24

2.2. Ultimate Strength of Reinforced Concrete Beam-column Subject to Simple Beam Type
Loading

Considerable number of specimens have been tested under simple beam type loading, and accord-
ing to these experimental results!!! the strength of a simple-beam type specimen differs considerably
from that of the specimen subject to anti-symmetrical bending. For these reasons, the ultimate
strength of a reinforced concrete beam-column subject to simple-beam type loading is analyzed
here. Of cource, equations obtained here can directly be applied to symple-beam or cantilever

type structures.

To begin with, characteristics of these two loading systems are discussed qualitatively referring to
Fig.4.

As for the specimen subject to anti-symmetrical bending, the imaginary diagonal compression
field could touch point A to carry larger shear force. On the other hand, as for a simple beam
type specimen, it is impossible the diagonal compression field to touch the point A unless suffi-
cient main reinforcing bars are provided to counterbalance the bending moment produced by the
compression stress of the diagonal member, because at point A the boundary condition of bend-
ing moment is M =0.

On this reason, if the lengths of the members and other dimensions are equal, ultimate shear
strength of the specimen subject to anti-symmetrical bending is larger than that of the specimen
subject to simple-beam type loading unless main reinforcing bars are not sufficiently provided to
the specimen.

(a) Beam-column under Anti- (b) Beam—column under Simple (c) Simple Beam Type Specimen
symmetrical Bending Beam Type Loading with Same Parameter M/QD
te Fig.4(a)
Fig.4 Predicted Inclinations of the Diagonal Compression Fields Corresponding to the
Various Loading Systems
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Figs.4(a) and (c) show the differences of models under the same condition of the parameter M/QD.

Under this condition a simple beam type specimen carry larger shear than that of the specimen
subject to anti-symmetrical bending with equal dimensions, because the compression field of the
former can be drawn nearer to the edge of the section at point M =0 corresponding to the amount
of the main reinforcing bars, while that of the latter always remains at the center of the section.

2.2.1. Bending Moment and Shear Force Carried by Web Reinforcement System

According to the same method descrived in section 2.1.1., the ultimate loading capacity of a web

reinforcement system is deduced with the same equations (1), (2) and (3), though under this load-
ing condition « =Pw-woy-b2/Ty. Because the relationship wM = £.wQ exists while in section 2.1.1.
wM =2-wQ/2.

2.2.2. Bending Moment and Shear Force Carried by the Compression Field

Based on the boundary condition M =0 at point A and the equilibrium of forces, referring to Fig.
5(a), the bending moment at point B can be derived as follows.

((N+5+S)Ng + 7(S-S)Ng — ((N+8+5)?
tM:ANO.Q{/1+ L - Sk -1} 25)

(A\No)*
and the corresponding shear force across the section is

tQ = tM/2 .
where; v =,d/D

According to the lower bound theorem, chord forces S and S’ which maximize the moment tM
should be obtained. The derived equations are as follows.

Region I tNS 1__21 NO—ZSO S= So, §'= So
1- 1 1
Region 1l 5 Np - 25o<tN< 3 Ng S=So, §'= 3 No-So-N
1 1
Region TIII ——2'1 No<{N< —;—7 No S=8o S'=-S¢
1 1 1
Region v Tﬂ N0<tNS '__;_’Y‘No + 2SO S = ‘":;_’Y No + SO - tN, S'= —So
. L4y '
Region V. —5 Np + 2So<tN S=-80, S=-So

As the compression field can not protrude beyond member width, following condition must be
satisfied.

($-SH

2
tN? = [No- 2(S+8)] (N = (S+8)No + (S-8)¥No + ~>57~ +(S+8)2<0 (26)

where; A'=2/rd
If this condition is not satisfied, a model where the compression field touches point A is supposed

as shown in Fig.5(b). Satisfying the boundary condition and the equilibrium of forces of this
model, the bending moment at point B (M is derived as follows.
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Fig.5 Equilibrium of Compression Field Model Subject to Simple Beam Type
Loading

M = N —2nl 5 (1-Atand) (27)

1 + tan?

The inclination of the diagonal compression field tanf which maximize tM can be obtained by the
following equations.

N
Region VI (NS —>[1+N (VA2 +1 -1)]1-25g.

No(\'-2) \/ 4(NoAXN+2So+iN) (No-28g-tN)
tanfd = SN N+ 289+N) No? (A-1')2

+l} (28)
) No , No ,
Region VII — [1+N (VRTHT -0 1-28o<N<S2 {1-N(VREH1 -N) ] +28,
tanf =V N2+1 - A (29)

N
Region VIII (N2 5-[1-X' (VN +1 - A)1+250

. No(\'+)) { J A(NgAN12S0—{N) (Ng+2So—tN)
anf = -J1-

2(NoA\'+284-tN) NoZ? (A+\)? +1 }(30)

Loading capacities on these regions are obtained substituting above descrived values for tand into
Eq.(27).

In region VII the ultimate strength of the member is governed by the compressive failure of the
concrete diagonal, while the chord members remain elastic. This mode of failure can be difined
as the shear failure. For the range of axial force in region VII tM and (Q keep constant values as
follows.
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No-2
M=—5-(VA+1 - 1) (31)
No
Q=" (VA+1 -} 32)

This region corresponds to region Il in section 2.1.2.

2.2.4. Example

M - N interactions and Q - N interactions of reinforced concrete beam-columns with the section
as shown in Fig.6(a) are shown in Figs.6(b) and (c) respectively evaluatédd according to the fore-
going analysis.

According to this analysis, as parameter /D increases, the ultimate end moment M increases and
“shear failure” region where moment capacity keep a constant value for the change of axial force
N decreases. Referring to Fig.6(c), it can be understood that the ultimate shear capacity of the
specimen subject to anti-symmetrical bending is larger than that subject to simple beam type load-
ing with equal values of A(®/D).

t
E N
< [=
EI: S| 150
[=V]
200
100
F, = 213k8/cm?
Py = 0.0028
woy= 3.27kg/cm?
rd = 7.76cm2 2
r0y= 3.65kg/em
lkg = 9.807N
lc = 9807.N
—50f

under Anti-symmetrical Bending

——— under Simple Beam Type Loading

~-.— Full Plastic Mowent on Bending Theory

(c) Q ~ N Interaction Curve

(a) Sample Section (b) M - N Interaction Curve

Fig.6 Example

2.3. Ultimate Strength of a Reinforced Concrete Member Subject to Shear and Axial Force
without Bending

Mattock et.al.[?! investigated the shear transfer strength of push-off specimens shown in Fig.7
supposing the shear transfer mechanism of precast concrete connections. The shear strength of
such a reinforced concrete member subject to shear and axial force without bending is analyzed
here making use of the analogical concept of diagonal compression field model for a beam-column

descrived in section 2.1.2.
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The specimen shown in Fig.7(a) corresponds to the beam-column shown in Fig.3 making the
length of it sufficiently small. X - X’ axis in Fig.7 corresponds to the longitidinal axis of
the beam-column shown in Fig.3. The main reinforcing bars in Fig. 3 correspond to the
shear reinforcing bars shown in Fig.7,

The equations (11), (13) and (18) can be transformed
into (33), (34) and (35) substituting Ny = bD.F¢, N =

Reinforcement

Roliers
>

bDag, 1Q = rybD, and 2S5 = Ps-0y-bD and also replac- \
ing A=%/D by 0. Where; I
0o : mean value of compressive stress on the shear :
plane :
Tu : mean value of ultimate shear stress on the o :
shear plane 4
Ps : shear reinforcement ratio - E
oy @ yield point of reinforcement ™ 5‘%’1

Eqs.(33), (34) and (35) are thus derived equations to cal-
culate the ultimate shear strength and the corresponding
inclination of the diagonal for reinforced concrete mem- @ ]

i . . . Push-off i e
ber subject to shear and axial force without bending. ush-off Specimen  Modified Push-off
Specimen
Fc

Region I 0o< > - Ps-oy

[ _Fe
Tu = (PS'0y+GO)' PS'OY + 0o =F 33)
[ Fe
tand =/ Feoy + 0o

Fig.7 Loading Systems

F F
Region II *76 - Pgoy<oo= —22 + Pgoy
Fe¢
Tu= "% (34)
tangd = 1

F¢
Region III 04> - t Pg-oy

Tu=(Psay+ao)/ Psoy+oo"1 (35)

tand / *‘p;m

As shown in Fig.3 main reinforcing bars of the beam-column are located at each side of the
section, while in the specimen shown in Fig.7 reinforcing bars are uniformly distributed. Yet, the
strength is not affected with the locations of reinforcements as can be understood in Eq.(9). For
this reason the substitution 2S¢=Ps.0y-bD is capable.

As mentioned in section 2.1.2. reinforcements yield by tension in region I, by compression in
region III while they remain elastic in region IL.
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3. EXPERIMENTAL VERIFICATIONS
3.1. Strength of Reinforced Concrete Beam-
columns

The prediction on this analysis are compared
with experimental results of 877 beam-column
specimens tested recently in Japan(!]

The experimental results of the specimens sub-
ject to anti-symmetrical bending in region II
are compared with the prediction in Fig.8. As
the vertical axis of Fig.8 shows the strength of
the diagonal compression field, the modified
experimental value Qg' is computed by sub-
structing the value wQ calculated with Eq.(1)
from the experimental value Q. The experi-
mental results agree satisfactory with the pre-
dicted tendency that the shear strength in-
creases, as the paramater £/D decrease.

All the specimens in region Il are reported as
shear failure from the experimentalists, though
all the reported shear failure specimens are not
in region lI, but also scattered in the neighbour-
hood of region II. Main reason of this fact is
supposed that they call it shear failure even if
main reinforcing bars have yielded.

The ratios of experimental values Qe to theo-
retical values Q¢ are shown in Fig.9 ~Fig.14

as to alt the beam-column specimens, with the
parameters /D and F;. In table 1, mean values
m and coefficients of variation o/m concerning
Qe/Qc are shown. Also in table 1 these values
of empirical equations (36) and (37) for shear
failure specimens, and Eq.(38) for flexure fail-
ure specimens are shown. These equations are
commonly used in Japan[3!.

Jdo

0.23kykp (Fc+180)
(Qu,:={(0-9‘+ 25())

ho/d+0.23

+ 2.7V Pwwoy | - bi (36)

{023kukp(FC+180)
u = ho/d +0.23

0.1 0o

(37)

10

Table 1 Comparison between Culculated and
Experimental wvalues

Beam-colums subject to Anti-symmetrical
Bending ~

1 Shear Failure Specimens
Beam(112) Column(57)
o o/m o ¢/m
Writers| 0.941] 0.155 1.057 | 0.178
Eq.(36) 1.083 0.165 0.994 0.199%
Eq. (37) 0.975 0.165 0.949°| 0.160
2 Flexure Failure Specimens
Beam(35) Column(231)
n ¢/m m o/m
Writers | 1.14% 0.121 1.096 0.118
£q.(38) 1.099 0.131 1.008.1 0,104
3 Bond Failure Specimens (32)
® /m
Writers | 0.938 0.099
Eq.(36) 0.862 0.145 m ; mean value
o/m ; coefficient
Eg.(38) | 0.857 0.113 of variation

Simple Beam Type Specimens

1 Shear Failure Specimens
Beam{45) Column{119)
m d/m m T/a
Writers | 0.858 0.150 1.069 t 0.133
Eq.{36) | 0.944 0.160 0,840 | 0.137
Eq.(37) | 0.850 0.160 0.860 | 0.110
2 Flexure Failure Specimens
Begg(Sh) Column{152)
o ¢/m m 0/m
Writers | 1.178 0.146 1.179 | 0.128
Eg. (38) 1.202 0.183 1.081 | 0.152
g’ : Qe - wg
Qe : Experimental Result
Eq.13 L4 Column
O  Beam

Fig.8 Comparison between Tests and Theory

on Specimens Subject to Anti-symmetrical
Bending in Region I
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Mu = 0.8ra'r0y-D
o
+0.500-bD?(1 - f-;:—)

(38)

Where;

ku, kp = coefficients depending on

the size of section and

tensile reinforcement ratio

respectively

shear span

d = distance from extreme com-
pression fiber to centroid
of tension reinforcement

j = distance between the cen-
troid of compression and
tension stress

=
o]
]

In this section a shear failure specimen
is defined as the specimen reported as
shear failure from the experimentalist
and of which ultimate strength does
not reach its ultimate flexure strength
calculated by Eq.(38).

Seeing the above mentioned compari-

sons between experimental and theo-

retical values following facts are evi-
dent.

1) This analysis predicts the ultimate
strength of shear failure specimens
with equal accuracy as those of the
empirical equations (36) and (37),
and predicts the ultimate strength
of flexure failure specimen a little
conservatively, however coefficients
of variation o/m of this analysis
for Qe/Q¢ are almost equal with
those of Eq.(38).

2) This analysis predicts the ultimate
strength of the specimens subject
to anti-symmetrical bending and
simple beam type loading with al-
most equal accuracy. Therefore the
modelings on this theory as to the
characteristics of each loading sys-
tems are supposed to be appropri-
ate.

.
8 A
- A A
8 1 2
o e
o ; -
N N B - T T e
v ¥ 2 “ i - H r
S -
A & *
i % s »
. 3_ A Shear Failure Column
% Shear Failure Beam
4 * Bond Failure Specimen
8
T T T T T ¥
.o o0 2000 1 300 | 400 ' S0 ' 600 | 700
L/D

Fig.9 Shear and Bond Failure Specimens
Subject to Anti-symmetrical Bending
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Fig.10 Shear and Bond Failure Specimens
Subjeet to Anti-symmetrical Bending

- @ Flexure Failure Column
< ® Flexure Failure Beam
o

Fig.l1l flexure TFailure jvecimens “ubizct to
Anti-symmetrical Bending
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3) The strength of shear failure beams
in experiments are generally a little
smaller than that of the theoretical
one.

4) Though the diagonal compression
field is supposed to be formed only
in a “short” beam-column intuitive-
ly, this theory predicts the ultimate
strength fairly well without affect-
ed with the change of the para-
meter 2/D.

5) The aécuracy of the theory is not
also affected with parameter Fg,
though it is often considered that
the shear strength is the function
of v/ F¢ and not Fe.

6) Though this analysis over-estimates
the resistance of a shear bond fail-
ure specimen a little, coefficient of
variation o/m for Qe/Qc is small.
small,

Qe/Qc

Fig.l4 Ilexure Vaiiure
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Fig.12 Shear Failure Specimens Subject to

Simple beam type Loading
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Fig.13 Shear Failure Specimens Subject to
Simple Beam Type Loading
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3.2. Ultimate Strength of Reinforced T T T T T T
Concrete Member Subject to 0.5t Eq. (33) -
Shear and Axial Force without Tu "
Bendin Fe

& 0.4 ]

The Experimental results tested using

the loading apparatus shown in Fig.7 0.3F -

and writers’ prediction by Eq.33 are

shown in Fig.15. yd o

02}k ¢ Modified push-off tests

Marks ©® show the test results by y, 40 Push-off tests

Mattock et.al.!?land marks & show the OJJL/ i

test results by Aoyagi[‘” et. al.

1 1 L 1 1

Though the theoretical prediction by
Eq.33 show a fairly good correlation

0. 02 03 04 05 0.6

: : Je + Ps-03%
to the test results, it overestimates the _FsLL
resistance perhaps due to the fact that )
the plastic stress can not be sufficient- Fig.1l5 Comparison Between Test Results and

ly redistributed in such an extremely Galeulated Values

short length of specimen. A reduction
factor of 0.78 may be applied to Eq.
33 to obtain the modified semi-empir-
ical formula which is shown by dashed
line in Fig.15.

4. CONCLUSION

The ultimate strength of reinforced concrete members was analyzed based on the concept of com-
pression field. In this analysis, the interaction among bending moment, axial force and shear
force was evaluated using a simple mathematical model. Though proposed theory is simple, it can
explain the test results of reinforced concrete beam-columns and precast concrete connections
fairly well on a unified theory. -
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