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Shear Lag Analysis in Reinforced Concrete

Analyse du phénomène de flux du cisaillement (shear lag)
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SUMMARY
At the intersection of the web of a T-beam or a box girder with the flange or with the top and
bottom slabs longitudinal shear and transverse bending stresses occur. The finite element
method of analysis is used to study the deformation and strength of reinforced and transversely
prestressed concrete flanges under this stress condition. The analytical and experimental results
are compared for beams tested in Zurich, Switzerland. The adequacy of the mathematical model
to represent the behaviour of cracked reinforced concrete is assessed with particular attention
to the shear lag phenomenon.

RÉSUMÉ
A la jonction de l'âme et de la table d'une poutre à caissons, des tensions de cisaillement
longitudinal et de flexion transversale apparaissent. La méthode des éléments finis est utilisée
pour étudier la déformation et la résistance de ces tables en béton armé à précontrainte
transversale, soumises à ces conditions de charges. Les résultats analytiques et expérimentaux
sont comparés sur base d'essais exécutés à Zurich (Suisse). La capacité du modèle
mathématique de représenter le comportement du béton armé fissuré est analysée avec une
attention toute spéciale au phénomène de flux du cisaillement.

ZUSAMMENFASSUNG
Am Stoss des Steges eines T-Trägers oder eines Kastenträgers mit dem Flansch oder der
Bodenplatte entstehen Längsschub- un Querbiegespannungen. Die Finite-Elemente-Methode ist
auf diesen Fall angewandt. Theoretische und experimentelle Ergebnisse (aus Zürich) wurden
verglichen, wobei gute Übereinsstimmung im Hinblick auf Schubversatz erzielt wurde.
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1. INTRODUCTION

The successful application of the finite element method to the analysis
of concrete structures depends much upon the development of accurate
analytical models that can simulate the complex behaviour of concrete under
multiaxial stresses, the initiation and propagation of cracks, bond and
slip, and the manner in which stresses are subsequent transferred
across cracks. Some of these problems have been successfully dealt with
while others remain to be yet fully explored. Perhaps the most complex
of these is the formulation of an acceptable shear transfer model.

An exact analysis of shear by finite element is indeed complex since an
accurate modelling of most of the aforementioned phenomena is necessary.
However, despite the complex nature of the problem, it is possible to
obtain a fairly acurate picture of the overall stress condition by a rather
simple model in most practical situations. Several investigators [1, 7,
13, 16] have used such simplified models to study the problem of shear in
ordinary beams, deep beams, and panels.

In this paper yet another case of shear transfer is considered, namely
the longitudinal shear at the web-flange connection of a flanged beam,
and the interaction of this shear with transverse bending of the flange.
In practice, this stress condition occurs at the connection of floor
slabs with their supporting beams, between bridge decks and supporting
girders, and at the connection of the webs and top and bottom slabs of
box girders. Using a simplified shear model, four reinforced concrete
T-beams that have been previously tested [2, 3, 4, 5] are analyzed by the
finite element method. The model adopted is equally applicable to box
girders but since no sufficiently documented test results are available
for comparison with analytical findings, the results for T-beams only are
compared here. The limitations of the applied simplified model and a
review of some of the other proposed models is presented.

The purpose of comparing experimental and analytical results in this
paper is to establish a procedure for the analysis of shear transfer at
the web-flange connection which can be reliaby applied to situations not
yet tested.

«

2. FINITE ELEMENT MODELLING

The program FELARC [11, 12] used in this investigation utilizes layered
F.E. with an incremental iterative tangent stiffness approach. The
concrete and distributed steel are represented by a quadrilateral inplane
element QLC3 [18] with twelve nodal degrees of freedom and a
quadrilateral plate bending element RBE [21] also with twelve degrees of freedom.

The above two elements are combined to develop a shell element.
The thickness is divided into a number of concrete and smeared steel layers,

or prestressing layers, and the contribution of each is summed up to
compute the element stiffness. Individual heavier bars or prestressing
tendons are modelled by a so-called element bar which assumes perfect
bond between the steel and concrete and which can be located anywhere
within an element. The contribution of these bars to the element stiffness

is directly superimposed on the element stiffness matrix.

3. CONSTITUTIVE MATERIAL RELATION

Increments of stress {Act} and strain {Ae} in principal stress directions
1 and 2 are related by
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{Acs} [D] {Ae}

where [D] is the constitutive matrix shown in Eq. (1).

E,

[D] 1

1-v2

M v/e1e2 1

J /^2
(1)

1<e2 + e2
4

2V7

J
in which and E2 are the uniaxial tangent moduli and v is the Poisson's
ratio. The values of E^ and E2 depend upon the ratio of the two principal
stresses following the "equivalent uniaxial strain" concept of Darwin and
Pecknold [9]

The equivalent stress-strain relationship employed to determineE1 and E2 is
comprised of two parts, as illustrated in Fig. 1. Part 1 follows Eq. (2)
proposed by Saenz [17],

(2)
O F F 2

(1 + 2) (—) + (-£-)
E e e
cs cu eu

whereas Part II traces the Smith-Young [20] model as described by Eq. (3),
e 0

0 V^u> exP(1 " W <3>

In the above equations, EQ, Ecs, crc and £cu are initial elastic modulus,
secant modulus, maximum compressive stress, and the strain corresponding to
ac, respectively (Fig. 1); o and e are equivalent uniaxial stress and strain
[9].

The maximum compressive strength ac is determined from the modified biaxial
failure envelope of Kupfer and Gerstle [14], and £cu is evaluated as a function

of oc/f^., where f^. is the uniaxial compressive cylinder strength. To
avoid numerical difficulties, the value of the tangent modulus for the
unloading portion of Fig. 1 is set equal to zero.

Steel and prestressing steel are both modelled as bilinear elastic-strain
hardening material, including the Bauschinger effect.

4. CRACKING AND TENSION STIFFENING

In this study the smeared crack approach is adopted. When a principal
stress exceeds the uniaxial tensile strength of concrete in a principal
direction, cracking is assumed perpendicular to the particular direction. If

c*i >_ f^, where fj. is the uniaxial tensile strength of concrete, then the
constitutive matrix in the principal directions is given by
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0 0 0

[D] 0

ßG

(4)

while if ai and o^ >. f^i then all elements of the above matrix/ except
ßG, are set equal to zero. In Eq. (4) G is the elastic shear modulus and f

is the shear retention, or reduction, factor.

The concept of shear retention factor was first introduced by Suidan and
Schnobrich [20] and later with certain modifications adopted by other analysts.

In the present analysis, as demonstrated later, it was found out that
setting the shear rigidity on the cracked plane equal to 10% of the uncracked
concrete shear modulus, i.e. ß 0.1, and holding it constant renders good
results in the case of most of the beams analyzed. In one case, however,
this approach did not yield acceptable results. This will be dwelt upon in
more detail later.

For accurate modelling of reinforced concrete, one has to account for the
tension that is resisted by the concrete in between the cracks. This phenomenon

known as "tension stiffening" is allowed for in FELARC by the use of
the stress-strain relationship for concrete in tension shown in Fig. 2.

5. EXPERIMENTAL BEAMS AND THEIR ANALYTICAL MODELS

To investigate the action of longitudinal shear alone and longitudinal shear
plus transverse bending at the junction of compression flange and web in
reinforced concrete T-beams, Bachmann et al. [2, 3, 4, 5] carried out tests on
seven beams. Fig. 3, whose transverse flange reinforcements were designed on
the basis of different analyses.

Four of the above beams, namely Beams 1, 2, 4 and 7 are selected as representative.
Beams 1 and 2 are intended to investigate the action of longitudinal

shear alone, hence, the beam webs are loaded with two concentrated loads
P at the third points of the span (Fig. 3). The amount of reinforcement
running in the transverse direction in Beam 1 is determined by Bachmann et al
by considering the principal stress in a longitudinal section at the
intersection of the flange with the web. In Beam 2 the transverse reinforcement
is designed using a spatial truss model [3, 4].

The flanges in Beams 4 and 7 are subjected to longitudinal shear and transverse

bending. In addition to the concentrated loads P, a downward distributed

load of 1.136p per meter length is applied to the outer edges of flange.
Equal and opposite forces are applied on the bottom of the web as shown in
Fig. 3. The transverse flange reinforcement is obtained by superposition of
required steel from the truss model for shear alone plus the steel needed for
transverse bending. Beam 7 is similar to Beam 4 except that the flange is
partially prestressed with a transverse prestressing of 58 kN/m. The dimensions

and web reinforcement for all the beams are identical, as illustrated in
Fig. 4.

Tables (1) and (2) give the concrete and steel properties data used in the
analysis and were taken to comply as far as possible with data reported by
Bachmann et al.

Due to symmetry about two vertical planes, only one quarter of the beams, i.e.
the cross-hatched portion in Fig. 3, is analyzed. The finite element idealization

of the quarter beam is shown in Fig. 5.
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Table 1. Concrete strength data(1) based on 120 x 120 x 360 mm prisms

Beam
No.

fc
MPa

ft
MPa

E cu e max E0<2>

GPa
1 23.40 2. 16 0.00165 0.00375 31.38

2 27.22 2.45 0.00182 0.00225 34.53

4 24.71 2.06 0.00170 0.00225 34.90

7 25.57 2.26 0.00170 0.00270 34.70

(1) is the prism strength, other symbols are defined in
Figs. 1 and 2.

(2) Calculated from f^.

Table 2. Steel strength data1

Bar $ Area fy e smax Es V
mm mm^ MPa GPa GPa

4 12.6 1686.63 0.037 178.3 5.31

6 28.1 482.45 0.066 196.0 0.94

12 108.0 508.93 0.162 196.0 1.16

30 696.0 567.77 0. 138 196.0 1.54

(1) fy yield stress; esmax the Btrain at failure;
Es modulus of elasticity (the value 196 MPa was assumed
because it was not reported by Bachmann et al.);
Es* strain hardening modulus

6. RESULTS AND DISCUSSION

The load deflection curves of Beams 1, 4 and 7 are shown in Fig. 6 a to c.
In all three cases analysis indicates good agreement with the load-deflection
curves in the experiment but the analytical response seems slightly stiffer,
especially for Beam 1. The reason may be the assumption in the analysis of
higher initial concrete modulus and/or higher compressive strength. The
failure loads in Table (3) corroborate this as the analysis gives 3.5 - 8%

higher values. The experimental and analytical deflected shapes of Beam 4
are compared in Fig. 7 for a load of 0.76 Pu, where Pu is the failure load.
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Table 3* Failure loads

Beam
No.

Failure Load Pu

kN
Pu Experiment

Experiment Analysis Pu Analysis

1 507.95 549.1 1.081

2 550. 12 568.7 1.033

4 549.10 568.7 1.036

7 549.10 568.7 1.036

In Fig. 8 the strain variation in the main longitudinal web reinforcement is
depicted. In the case of Beam 7, the experimental strain at P 549.1 kN
represent the failure stage, while analysis shows that failure is imminent
but has not occurred yet. Therefore, unlike the experimental results, the
analytical strains near the failure section are comparatively small, (Fig.
8b).

Another parameter in the analysis is the strain in concrete. Since the
experimentally reported concrete strains on the top and bottom faces of the
flange along the span represent average values over a base length of the
instrument used (200 mm), the analytical results are also averaged from appropriate

points where strains are computed. Fig. 9 illustrates the longitudinal
concrete strain variation in the flanges at service and ultimate loads.

The values indicated are average strains along a line at the center of the
overhang. It is worthwhile to mention that since in the analysis the stiffness

matrix may become singular at failure, indicating instability in the
structure, the results obtained from such a load step are not generally
indicative of the actual stress situation. For the analytical strains reported
here, the values at 97% of Pu are considered to be the ultimate strains.
This may explain the reason for the high measured strains at failure.

It is to be noted that when the flanges are subjected to transverse bending,
the longitudinal strain at the top face of the flange is a shortening caused
by the longitudinal bending moment of the beam as well as the shortening
caused by Poisson's effect from the transverse tensile stress caused by the
transverse bending of the slab in Beams 4 and 7. In the analysis Poisson's
ratio is assumed constant 0.15 while some investigators [15] observed much
higher values of Poisson's ratio at stresses close to f^. This may account
for the large discrepancy between measured and calculated strains near the
center of the span for case of loading close to Pu.

7. STRAIN IN TRANSVERSE REINFORCEMENT IN THE FLANGES

Figs. 10a and b show the variation along the span of the strain in the top_
transverse steel layer for Beams 4 and 7 which are subjectd to both P and p
loadings (see Fig. 3). The strains for Beams 1 and 2 are shown in Figs. 11a
and b. Analytical and experimental results are reasonably close except for
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(b) BEAM 7

Fig. 8 - Strain in main longitudinal web reinforcement
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Beam 2. This beam is not subjected to transverse bending and thus the
stress in the transverse steel is caused by the longitudinal shear.
Hence a close look at the way shear is accounted for in the constitutive
relation used for cracked reinforced concrete, Eq. 4, is necessary. In
particular, the coefficient 8 which accounts for the shear capacity of
cracked concrete has to be examined.

Beam 2 was analyzed using successively decreasing values of 8 starting
from 0.9. At 0 0.01, the beam failed prematurely at about 0.8 Pu, but
varying ß between these two limits had little effect on either the
failure load or stress in the transverse reinforcement.

Some authors have suggested the following expressions for the reduced
shear modulus G ßG for cracked concrete:

G — 0 • 1E 1 0 a

_ 0.004
G 0.4 eu)G (b)

_ e

G 50M)1.5 / £c (c)
c V 34.6

G M + b ] -1 (d)
G l (Kjj + bKD>

where

s fictitious strain normal to crack
£0 cracking strain
c crack Width in mm

f'c concrete strength in MPa

b constant
Kjj extensional stiffness of bars crossing the crack
KD dowel stiffness of bars crossing the crack
{. crack spacing
G shear modulus of uncracked concrete

Expressions (b) and (a) proposed by Al-Mahaidi [1] and Cedolin and Dei
Poli [7], respectively were used in the current study to analyze Beam 2

and gave results practically the same as when ß 0.1 in Eq. 4.
Expression (c) suggested by Houde and Mirza [13] cannot be used unless
crack widths can be determined accurately. The use of an assumed crack
width in this expression will make it equivalent to (a) and (b). It is
to be mentioned that expressions (a), (b) and (c) have been used, by
their formulators, in conjunction with special linkage elements to
account for bond stress-slip and crack opening. Since such elements
would involve inclusion of additional unknown parameters they have not
been adopted here.

Expression (d) was developed by Fardis and Buyukozturk [10]; and,
according to its authors, applies when cracks run in one direction. This
again purports knowledge of crack spacing, and gives a value of G 0

when and Kp are zero (concrete without reinforcement). Such a

value corresponds to ß =0.
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Thus it appears that unless crack spacing is know, the more sophisticated
expressions involve the same degree of approximation as' the original simple
approach of Suidan and Schnobrich (see Eq. 4).

Recently Bazant and Gambarova [6] and Chen and Schnobrich [8] have proposed
more comprehensive models which consider crack dilatancy and crack
displacement-stress non-linearity. However, while the first model still requires
advance knowledge of crack spacing, the latter involves a number of constants
to be determined by experiments yet to be done. Moreover both of these
models are based on limited experimental data.

8. CONCLUSIONS

Four reinforced concrete T-beams that have been previously tested are analyzed

by the finite element method using a non-linear iterative tangent stiffness
approach. The main purpose is to study analytically the shear transfer

at the web-flange connection and the interaction of this shear with transverse

bending. Once an analytical procedure is established, a wide range of
conditions not yet tested can be investigated.

From the study presented, it appears that although the constitutive relations
for reinforced concrete used in the analytical work described in this paper,
give accurate results in most situations, they are still inadequate in predicting

the stress in transverse flange reinforcement in some cases. This inadequacy

brings forth the exigency of developing suitable mathematical models.
Such models have been recently proposed, but they require knowledge of certain
parameters that are unknown a priori. Finally, it is not clear what effect
geometric nonlinearity may have at later stages of loading.
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