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Non-linear Finite Element Analysis of Deep Beams

Analyse non-linéaire par éléments finis de poutres de petite portée
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SUMMARY
A non-linear finite element method of analysis was applied to predict the behavior of reinforced
concrete deep beams The behavior of concrete including strain softening tendency and
anisotropy was modelled by the total strain theory and combined with non-linear analysis The
analytical results were compared with the experimental results The techniques for the non-linear
method of analysis and the capability to predict the behavior of deep beams were investigated

RÉSUMÉ
Le comportement non-linéaire de poutres en béton armé de petite portée est analysé par
éléments finis Le comportement du béton, comprenant l'anisotropie et le "strain-softening", est
simulé par la théorie de la déformation totale combinée à l'analyse non-linéaire Les résultats
analytiques furent comparés aux résultats expérimentaux Les techniques d'analyse non-linéaire
et la capacité de prédiction du comportement de poutres à petite portée sont analysées

ZUSAMMENFASSUNG
Eine nichtlineare Finite-Elemente-Methode wurde auf die Berechnung von hohen Tagern aus
Stahlbeton angewandt Das Verhalten mit Einschluss von Steifigkeitsabnahme und Anisotropie
wurde mit einer nichtlinearen Berechnung kombiniert Theorie und Experiment an hohen Tragern
wurden verglichen
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1. INTRODUCTION

The behavior of reinforced concrete structures under applied loads
is complex due to numerous internal load paths. Such load paths
vary a great deal due to the distribution of stiffness in the
structure, and that variation in stiffness arises from variable
pattern and sequence of crack occurrence and plastification of
materials. On the other hand the whole picture of the
constitutive law of concrete is not yet apparent particularly when
the combination of applied stresses changes as they are increased.
The various factors influencing the behavior of reinforced
concrete structures are interlaced and therefore, any devised
methods of analysis need be scrutinized in the lights of
experimental observations [1]

A finite element method of analysis with a few techniques to
overcome the difficulties characteristic to nonlinearlity was
presented to predict the behavior of reinforced concrete deep
beams and the analytical results were compared with the
experimental results specially tested for this purpose.

2. NUMERICAL METHOD

In the analysis step iterative procedure for non-linear finite
element method was used. In applying the analysis to deep beams,
enforced displacements were imposed because of the easier
evaluation of the ultimate strength. The general flow of the main
routine is as shown in Fig.l.
At the first iteration of each step, the equivalent nodal forces,
which appear when constraint displacements are applied to the
structures, are calculated using the updated stiffness matrix in
the preceding step. During iterative routine, the stiffness
matrix was formed at each iteration. The increments of nodal
displacements are then calculated.

K : global stiffness matrix F : equivalent nodal force
F : total external nodal forces, F=0 in this analysis
B : strain displacement matrix 0": stresses

In each iteration, the unbalanced forces are calculated by
equation 2. If unbalanced forces are not as small as required,
the next incremental displacements are calculated by setting the
equivalent nodal forces as the unbalanced forces. When the value
of unbalanced force differs from that of previous iterative
routine significantly or the direction of the force changes, the
nodal force increment for correction is made one half the
corresponding unbalanced force. The selection of one half is
arbitrary, but by this procedure, the risk of divergence or a

great leap beyond equlibrium points was avoided to some extent.

(1)
(2)
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Enforced Displacement U»=Ul+aU» J

Q Equivalent Nodal Force aF, —Kl8aU2

^Stiffness Matrix K=K(e)^

/Displacement ^llû^1
| p U,=U.+AU,
\ Strain £ £ 4" BaUy

Q Stress o—a{e) ^

^Unbalanced Nodal Force flaF,= -jfjf/V,dv)

End

Fig. 1 General Flowchart of Non-linear Iterative Routine
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3. CONSTITUTIVE EQUATIONS OF CONCRETE

3.1 Stress strain relationship of concrete

There exist two families of constitutive formulations according to
the method of stress evaluation, namely differential and total
strain formulation. The former evaluates stresses by integrating
stress increment at each step. The total strain formulation
calculates stresses by total strains and constitutive equations
which contain invariants with regard to coordinate transformations
as parameters. In the analysis the total strain formulation was
used for evaluating stresses for the following reasons.
(a) Strain softening tendency under multiaxial stress states is
easily modeled.
(b) No accumulation of errors in estimating the stresses occurs so
that the step size can be set relatively large.
(c) Experimental data are directly used for making the
constitutive equations.

The constitutive law used for the analysis of deep beams is two
dimentional, and the following scalar values named equivalent
stress and equivalent strain which are indicated by stress and
strain invariants with regard to coordinate transformations are
defined.

-v - <3'

e - e< Cs) e( 6,, E»> -
6 .2x10^^° 141

where s : equivalent stress, e : equivalent strain
fc : uniaxial compressive strength, assumed as 90% of the
cylinder strength [2]
0; C5.: principal stresses 01 > QL £, £z: principal strains

These two invariants represent the degree of stress and strain
level respectively, and are introduced in order to allow the
actual biaxial stress-strain curves to be expressed in an
one-to-one relationship as in the case of uniaxial conditions, so
that a family of uniaxial concepts of stress-strain relationships
is to be used. This equation was determined by a least squaresfit of biquadratic polynomial from the reported experimental data
[2,3,4,5]

s f(e) (5)

1.042 e - 2.083 e + 0.42 e + 2.0 e : e < e2

-0.25 e + 1.25 : e > e2

The relationship of each stress and strain components in the local
coordinate system whose axes coincide with the principal stress
axes is developed, in consideration of anisotropic characreristics
of concrete due to microcracking and void formation. These
characteristics of concrete are dependent on the strain level, and
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Fig. 2 Proportional Loading Pathes on Principal Strain Surtace

the relationship of two principal strains under constant principal
stress ratio is modeled as tri-linear one as shown in Fig.2. The
relation is developed based on the reported experimental data [2]
[3] ,[4]
In the low level of strain, concrete can be assumed an isotropic
material [5] and the relation of two principal values, stresses
and strains, is reasonablely assumed as the one for elastic
materials.

P (q +V )/(l + V*q) (6)

where p : stress ratio Of/O^ ,q : strain ratio ,/£x
y : Poisson's ratio

On increasing the strain to a high level, a stage is reached where
the microcracking between aggregates and mortar starts to
propagate and the anisotropic behavior appears gradually. This
boundary between the isotropic and the anisotropic is assumed to
depend on the value of the equivalent strain, and is assumed as
0.6 in the calculation (see Fig.2). After this stage the slope of
the line which shows the relationship of the two principal strains
is changed to express the anisotropic behavior of concrete. When
the strain-softening level is attained (e=l), the effect of
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anisotropic behavior and drastic void formation becomes
significant, and the slope is changed again.
When two principal strains are given, the corresponding strain
ratio at the isotropic stage is obtained by using the tri-linear
relation as shown in Fig.2. Then, the stress ratio is calculated
by equation 6. Using this stress ratio and the equivalent stress,
which can be calculated by equation 5, each principal stress is
calculated by using equation 3.
s.2 Cracking

In non-linear finite element method of analysis, there are two
methods for representing the behavior of cracked concrete;
discrete crack and smeared crack model. The former simulates a
crack by releasing the connection of each element. The latter
represents a crack by modifying the constitutive equations.
The smeared crack model can simulate the total responses of
structural systems in which crackings occur, and was used for the
analysis of deep beams.

Criterion of cracking is determined by stresses, and cracking is
defined to occur when the principal stresses make the following
crack index equal to unity.

Ci (Oi/ft) -3/( 1 + Qî/fc) : under compression-tension
(07/ft) - 1 : under biaxial tention (7)

where ft : uniaxial tensile strength
The orientation of crack is considered to be normal to the major
principal stress, and the stress component normal to a crack is
reduced to zero. The condition, where the crack index is zero,
represents the failure envelope at compression-tension and
tension-tension stress states. When the value of crack index is
between zero and one, stress normal to the direction of a crack is
maintained constant although the stress calculated by the above
mentioned method exceeds the value corresponding to zero of crack
index.

Shear transfer across the crack is simply simulated by changing
the shear stiffness along the crack as shown in equation 10.
Calculations were made by zero stiffness in general and half of
the uncracked stiffness in some case. When the strain normal to
the crack is compressive, the crack is closed and the condition is
assumed to be the same as that of uncracked concrete. If concrete
at an evaluation point has previous experiences of cracking, the
stress component normal to the crack is calculated and the crack
is assumed to open again when the stress is tensile.

3.2 Stiffness of iterative calculation
In the non-linear iterative procedures a stiffness for each
evaluation point is necessary. The stiffness matrix is formed by
superposing the isotropic stiffnesses of uncracked concrete and
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the anisotropic stiffnesses of cracked one. The assumption of
quivalent stress-strain relationship permits the evaluation of
incremental elastic moduli as in equation 8.

ds/deie=0
where EO is the initial tangent stiffness moduli

Witn the tangent moduli and effective Poisson's ratio, the
isotropic tangent stiffness matrix of uncracked concrete is
obtained by equation 9. The anisotropic tangent stiffness of
cracked concrete is written in equation 10, using the tangent
moduli parallel to crack direction. The effective Poisson's ratio
is also assumed as in equation 12 in consideration of the
equivalent strain level.

l-V3

1 V 0

V l 0

0 0 \-v
2

0 0 o"

0 E 0

0 0 otG

V 0.2
1.75 e - 0.85
0.9

e < el
el < e < e2
e > e2

(9)

(10)

where oL 0 or 0.5, G E/(2( 1+V) (11)

(12)

A lower limit is set for the possitive tangent stiffness, because
the global tangent stiffness matrix becomes numerically unstable
when diagonal terms approach zero. One hundredth of the initial
tangent stiffness was used for the lower limit, after some trial
calculations were executed.
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4. APPLICATION TO THE ANALYSIS OF DEEP BEAMS

Reinforced concrete deep beam is one of the problems which need
the help of a suitable non-linear finite element method of
analysis for understanding the behavior. The applicability of the
analytical method to deep beams is investigated. Deep beams used
in the comparison with the analytical results were particularlytested for this purpose.
The characteristics of
eight specimens are shown
in Table 1. The
parameters such as
concrete strength 13 MPa
- 67 MPa reinforcement
ratio 3 % - 6 % shear
span 150 mm - 200 mm

and height of beam 300
mm - 600 mm are widely
and systematically varied.
To ensure the anchorage,
main reinforcing bars were
bent up as shown in Fig.4.
No shear reinforcement is
used.

Fig. 4 Deep Beam Specimens Tested

Table 1 Characteristics of Deep Beam Specimens

Beam a(mm) d (mm) a/d r (mm) h(mm) P(%) fy(MPa) fc'(MPa)

T1 200 228 0.88 140 300 6.0 364 35.8
T2 200 507 0.39 100 600 3.0 3 89 54.7
T3 200 228 0.88 100 300 3.0 364 13 .1
T4 150 507 0.30 140 600 3.0 3 89 13 .1
T5 200 507 0.39 140 600 6 .0 3 89 66.6
T6 150 507 0.30 100 600 6 .0 389 35.8
T7 150 228 0.66 100 300 6.0 364 59.9
T8 150 228 0.66 140 300 3 .0 364 58.8

Considering the flow of stresses in the beam, a finite number of
skew quadrilateral elements as shown in Fig.5 were used for the
analysis of plane stress conditions. The same topological shapes
and number of elements were used for all the eight beams.

The assumption of the plane stress is considered to be reasonable
for most portions of the beam. But, concrete near the bearing
plate is obviously stressed triaxially and the effect on the
behavior of the beam is not negligibly small, especially in the
concrete mainly stressed in compression by bending moment.
Therefore, five elements hatched in Fig.5 were to have an apparent
higher compressive strength 1.8 times that for other elements.
However, the concrete strength for the element at the span center
was made normal, so that the increase of concrete strength

a=L/3 V L/3 V L/3,
I—JL ±—1

900

CM
V//

V
'm czl

L V

b=100

As

P=
lOOAs
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in triaxial compression zone might
not affect the flexure dominant
strength of the beam.

Eight nodes isoparametric elements
were used taking into account that
the strain distribution in the beam
is more or less linear. Two by two
stress evaluation points, or Gauss
points, were arranged in each
element. This number of Gauss
points may ordinarily be sufficient.
However, five by five Gauss points
were arranged in four elements where
strains have the possibility of Fig. 5 Idealization of
changing from a very small magnitude Finite Elements
to softening level within the element.
The elements are marked with character 5 in Fig.5. For this kind
of element, two by two points were insufficient for the evaluation
of stresses.

Totally, 40 concrete and 12 steel elements with 174 nodes and 292
Gauss points were used. The CPU time to calculate ten steps with
two iterations in each step was about 70 seconds using a HITAC
M-200H system at the computer center of University of Tokyo, and
the computation fee for one case was about 500 yen $ 2.50

A perfect bond of steel and concrete was assumed at the selected
nodes and no bond was assumed in other places. In order to effect
this particular bond behavior, the nodes of steel elements were
connected to the nodes of concrete elements that were located at
the same level as the center of steel elements.

5. EVALUATION OF THE ANALYTICAL RESULTS

5.1. Failure Mode and Ultimate Load

Failure modes predicted by the analysis, when the shear stiffness
along the cracks is assumed to be zero, otherwize shear transfer
across the cracks is ignored, are classified into three types :
(a) diagonal compression failure of concrete above the support,
(b) flexural compression failure of concrete at the section in the
center of the span, and (c) flexural failure due to yielding of
main reinforcing steel.
Four beams classified in diagonal compression failure have small
shear span-depth ratios equal to 0.30 and 0.39 Analytical
results of these cases showed that the principal compressive
stresses in the elements above the support were maximum among all
elements. Stresses increased with applied enforced displacements
and the elements gradually became plastic and softened. As a
result, stress redistribution occurred. Stresses in adjacent
elements increased and stress distribution became more uniform and
the load carrying capacity of the beam became the maximum. When
strains of softened elements above the support became very large
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and stresses decreased extremely, stresses of other elements that
had not yet been plastic began to decrease.

In the experiment, four beams, T2,T4,T5 and T6, which belonged to
case (a) indeed failed in diagonal compression above the support.
Observed failed portions of the specimen T5 is shown by shadow in
Fig.6(a). Predicted results are very similar to observed results
in failure mode and failed portions.

Analytical results of case (b) showed that the most critical
stress state existed in the element of the top surface and at the
span center where the moment is maximum. With an increase of
applied displacement, stresses of the element increased and the
element became plastic and softened. On the other hand, adjacent
elements of top surface, which have the higher strength, nor the
elements above the support did not become plastic.
In the experiments, three beams, T1,T3 and T7, which belonged to
case (b), did not fail at the sections in the maximum moment
region. Observed failed portions of the specimen T7 is shown by
shadow in Fig.6(b). When cracks possessing an angle steeper than
already existing diagonal cracks developed towards the edges of
the bearing plate, slip occurred along this crack and the beam
failed. This type of slip failure mode was not predicted by this
analysis. This was considered to be due to the ignorance of the
shear transfer. Therefore, trial calculations were executed on
the assumption that the shear stiffness along the crack is made
half of the uncracked one o< =0.5 in equation 11 The results
of calculations for T1 and T7 conformed that the secondary crack
occurred in the point above the support at lower load than the
ultimate load predicted by the analysis without shear transfer.

(a) T5, predicted to be failed
in diagonal compression

(b) T7, predicted to be failed
in flexural compression

Fig. 6 Crack Formation and Failed Portions
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This will suggest that the proper modeling for shear transfer is
extremely important for the analysis of this type of beams.

Results of analysis of case (c) showed that the beam failed in
flexural mode governed by yielding of steel. The observed failure
of T8, which belonged to case (c), was also in flexural mode.

Predicted failure modes and loads are given in Table 2 in
comparison with the experimental values. The average ratio of the
experimental ultimate load to the analytical one is 0.96 with the
coefficient of variation of 0.18.

Table 2 Failure Mode and Ultimate Load

Beam
Failure Mode Ultimate Load (KN)
expt. anal. expt. anal. exptanal.

T1 SL FC 629 506 1.24
T2 DC DC 1028 1373 0.75
T3 SL FC 228 235 0.97
T4 DC DC 425 484 0.88
T5 DC DC 1763 1930 0.91
T6 DC DC 1155 996 1.16
T7 SL FC 892 1221 0.73
T8 FT FT 941 888 1 .06

DC:Diagonal
Compression

SL:Slip
FC rFlexural

Compression
FT rFlexural

Tension

5.2 Diagonal Cracking

According to the analysis two types of diagonal cracking mode was
recognized. Four specimens, which had small a/d and belonged to
case (a), and the rest, which had large a/d and belonged to case
(b), showed different tendencies.

The analysis of small a/d specimens predicted that diagonal cracks
developed dominantly while the development of flexural cracks was
limited. On the other hand, in the analysis of large a/d
specimens, diagonal cracks were
distributed and developed
uniformly in larger areas.
Further, flexural cracks developed
extensively. In Fig.7, predicted
crack development of T5 as an
example of small a/d specimens and
T7 as an example of large a/d
specimens are shown by broken
lines. The load level in these
figures is about 70% of analytical
maximum load.

In the experiments, development of
dominant and long diagonal cracks
were indeed characteristic of all
small a/d beams and distributed Fig. 7 Predicted and Observed
diagonal cracks characterized Crack Pattern
large a/d beams. In Fig. 7,
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development of observed cracks are superposed by bold lines. In
both small and large a/d beams, positions of predicted and
observed diagonal cracks are not necessarily coincident to each
other. However, in consideration of the fact that crack
evaluation points are discrete, the locations of cracks may be
said to be similar. Moreover, directions of diagonal cracks are
similar both in the prediction and in the observation. Therefore,
it is deduced that this analysis can predict the actual
behaviors reasonably accurately with regard to positions and
directions of diagonal crack development for all the specimens.

5.3. Displacement and Strains of Concrete

The displacement of beam was satisfactorily predicted by the
analysis. Fig.8 shows an example of the relationship between
applied shear forces and the relative displacements of T5 specimen
with the experimental values.

Fig.9 shows an example of the relationship between applied shear
forces and the compressive principal strains of concrete just
above the support. The tested values were obtained from the
gauges attached to the surfaces of specimen T5. Fig.10 shows
examples of strain distributions of Gauss points located at the
same level of the concrete strut. These figures clearly show that
strains of concrete and the displacement can be satisfactorily
predicted by the analysis for the beams failed in diagonal
compression mode.

V
KN

1000 \ Vkn Shear-

500

T 5

0 0.5 1 1.5 d mm o -1000 - 2000 H-

Fig.8 Shear-Displacement
Fig.9 Shear-Compressive

Strain
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5.4. Evaluation of the Finite
Element Analysis
Three types of failure mode were
predicted by this analysis.
In case (a), that is, diagonal
compression failure mode of concrete
above the support, the observed
diagonal cracking pattern, stress
distribution and failure mode were
predicted reasonably accurately.
Therefore, it is admitted that this
analysis can estimate the actual
behavior, on the whole, of this type
of failure mode.

0 6 Vm 0.9 V, T5

Fig.10 Strain Distribution
in Concrete Strut

Secondly, in case (b), that is, flexural compression failure mode
of concrete at the center span, the observed diagonal cracking
pattern was predicted reasonably accurately but the variation of
crack directions with load and failure mode could not be predicted
by ignoring the shear stiffness along inclined cracks. Without
shear transfer along the inclined crack surfaces, the stress
condition in diagonal concrete struts bordered with diagonal
cracks is almost uniaxial compression. When the shear stiffness
is considered, there are additional shear stresses along the
cracks and the resulting stress condition is severer provided
the existing compressive stress remains constant Hence, the
additional shear stress at crack surface results in undesirable
stress condition in the diagonal concrete struts. The estimation
of shear transfer along cracks is an important problem in order to
predict the slip failure mode along a new surface inclined to the
earlier cracks.

In case (c), that is, yielding of main reinforcement, the observed
behaviors were adequately predicted.

6. CONCLUDING REMARKS

The behavior of reinforced concrete deep beams under increasing
load was analyzed by a non-linear finite element method of
analysis and the results were compared with experimental
observations. For the loading tests of reinforced concrete deep
beams the influencial parameters such as geometrical
configuration, concrete strength and reinforcement ratio were
varied so that various load carrying mechanisms can be observed.
The bi-axial stress-strain relationship of concrete was expressed
by a relation between stress and strain invariants developed
herein. The following remarks appear to be relevant regarding the
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techniques for non-linear method of analysis and capability of
behavior prediction of deep beams.

(1). A step-iterative procedure of imposed displacement analysis
was effective for solution of the behavior of structures where the
portions were in strain softening region.

(2). The three failure modes observed on deep beam test specimens
were, (a) crushing near the bottom of diagonal concrete struts,
(b) slip along diagonal crack and (c) yielding of main
reinforcement. The analysis was capable of predicting the two
failure moaes (a) and (c) described in (2). However, the failure
mode (b), the slip along diagonal crack, was not predicted by the
analysis. This may be due to the finite element idealization
where the shear transfer resistance along the cracks was not
assumed correctly, and thus resulting in different stress
conditions in the diagonal struts which are vital load carrying
member.
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