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A Calculation of Reinforced Concrete Beams Under Bending and Torsion Using Three-
Dimensional Finite Elements

Le calcul des poutres en béton armé soumises à la flexion et à la torsion, utilisant les éléments
finis tridimensionnels

Berechnung von Stahlbetonbalken unter Biegung und Torsion mit dreidimensionalen Finiten
Elementen

GERHARD MEHLHORN GÜNTER SCHMIDT-GÖNNER
Professor of Civil Engineering Research Assistent
Institut für Massivbau, Technische Hochschule Darmstadt
Darmstadt, Federal Republic of Germany

SUMMARY
The problem of solid prestressed or reinforced concrete members under pure torsion or under
combined loading is pointed out. The solution with the help of three-dimensional finite elements
and a coordinating 3d-concrete-material model is shown. A comparison of calculation with a test
result is given.

RÉSUMÉ
L'auteur a examiné le problème d'éléments massifs en béton précontraint ou béton armé,
soumis à la torsion pure ou à un chargement combiné. Il montre la solution utilisant des
éléments finis tridimensionnels et le modèle polyaxiale pour le matériau béton. Il donne une
comparaison de calcul avec le résultat d'un essai.

ZUSAMMENFASSUNG
Die Problemstellung von massiven Bauteilen aus Stahlbeton oder Spannbeton unter reiner
Torsion oder kombinierter Beanspruchung mit Torsion sowie die Lösungsmöglichkeit mittels
räumlichter finiter Elemente werden aufgezeigt. Ein hierzu erforderliches Materialmodell auf der
Grundlage schrittweiser elastischer Ansätze wird vorgestellt. Die Vergleichsrechnung eines
Testbeispiels wird ebenfalls gezeigt.
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1. A SURVEY OF PREVIOUS WORK DONE AT THE TECHNISCHE HOCHSCHULE DARMSTADT
CONCERNING PROBLEMS OF BENDING AND TORSION ON REINFORCED CONCRETE BEAMS

In his thesis (13 the first named author of this paper examined the influence
of material behavior on the lateral buckling of reinforced and prestressed
concrete beams. With regard to concrete pressure zones, the torsional stiffness
was determined with the help of the Boundary Element Method (BEM). The
influence of warping torsion on reinforced concrete was referred to, and for
the I-cross-section, a simple method for determining the warping stiffness
was given. It was also shown, however, that for the combined stresses of
bending, shear and torsion on a reinforced concrete beam, with a arbitrary
cross-section, no suitable calculating method was available. For this reason,
researchers of the Institut für Massivbau at the Technische Hochschule
Darmstadt have been working on this problem for the past ten years.

Bertram [23 following the tests of Lampert and Thürlimann [3] which used
reinforced concrete beams with rectangular cross-sections and T-sections,
developed a method for calculating the ultimate moment and the interaction
between the ultimate bending moment and torsional moments. Information was
also given for determining the torsional stiffness. However, the procedure
proved to be too cumbersome and not general enough. (For example, determining
torsional stiffness, influenced by the position of the neutral axis, using
only the bending moment).

In his thesis [4 J Rützel developed a procedure for thin-walled reinforced
concrete beams, with and without prestressing, with which one could ascertain
the stresses and deformations caused by bending, normal force,
shearing force and torsion in relation to material non-linearity. He showed
that for thin-walled beams, especially in State II, the portion of the
warping torsion at the torsion carrying behavior should not be neglected.
Rützel took into consideration the alteration of the torsion resistance
after cracking by changing the position of the neutral axis. Since the strains
from the various loads were determined separately - and after the superposition
- there had to follow in each case a reconsideration of the assumptions, which
resulted in subsequent revisions and improvements in them. Because of this,
the procedure is also relatively cumbersome.

Bertram's L2] and Rützel's [4] methods, in addition, are not well suited for
implementation into a general computer code, because the numerical processing
is too costly and the prior assumptions used are too specific. Therefore, a
new way had to be sought out, and the Finite Elemement Method (FEM) proved to
be especially suitable for this purpose.

With the help of the FEM, Maurer [ 5 3 developed a computational procedure for
box girders under random loads. He used layered plate elements. With it, the
stresses of the cross-section could be determined; distinct not only from the
overall loads, but also from the cross-sectional deformation or the transverse
bending. The FEM-program has manifold applications: it is able to take into
account the non-linear stress-strain relationship of the concrete in compression,
the cracking in tension, the influence of prestressing, as well as the yielding
of the reinforcement. In his thesis, Maurer showed that with his program, there
was good conformity between his calculation results and test results.

Subsequently, following the course set by [ll, Sauer [6} developed the theoretical
fundamentals for applying the BEM to the solution of shear and torsion problems
for elastic beams, and wrote a computer code for determining St. Venant's
torsional stiffness, warping resistance and position of the shear center as well
as the shear stresses, that could be used for beams with arbitrary, polygonal-
sided cross-sections.
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Röder1s thesis [73 investigated the lateral buckling of reinforced and pre-
stressed concrete beams in consideration of non-linear material behavior:
nonlinear stress-strain behavior of the concrete in compression, cracking in
tension and the yielding of the reinforcement. In contrast to [l 1 where the
bifurcation problem was dealt with, Röder treated the investigation of
stability as a problem in accordance with "Sedond Order Theory", but to do so,
he had to presume there were imperfections in the beam or excentricity of
the loading. For the given loads, the state of strain was determined for various
points on the beam and verified with the conditions of equilibrium. From the
state of strain, the stiffness was figured, and the calculations were
performed repeatedly. This iterated method of calculation was terminated if the
deformation did not differ essentially from the preceding step. The torsion
stiffness was determined by the procedure for the concrete area under
compression, in accordance with Sauer [6], and for the cracked area, he used a
truss model. The procedure used various prior assumptions about the cracked
area, and because of this it was not suitable for making calculations
concerning beams primarily loaded by torsion.

Finally, it should be mentioned that a combination of the FEM and the "BEM

promises distinct advantages, especially with regard to computation time.

2. CALCULATIONS WITH THREE-DIMENSIONAL FINITE ELEMENTS

As the preceding discussion illustrates, the calculation of torsion carrying
behavior has led those of us at the Technische Hochschule Darmstadt along a
path of steady progression from simple "beam statics", through a consideration
of geometric and material non-linearity in the beams toward spatial models of
box girders, with plate elements considering realistic material behavior. The
last cited procedure, however, provides no method for analyzing solid beams.
Since under pure torsion the carrying mechanism is fairly clear (and assuming
"hollow cross-sections, with presumed wall thicknesses, useful results are
derived not only relative to the ultimate load, but also to deformation
behavior for State II), one could say the research is extensively finished.
However, under combined stress (torsion, bending, shear, normal force),
especially as related to deformation behavior, there is still a gap to be
closed. Because the afore mentioned problem generally concerned with conditions
of three-dimensional stress and deformation, three-dimensional (spatial)
finite elements should be used.

After test computations, we decided upon using hexahedral elements, with a
variable number of nodes (8 to 21 nodes) and isoparametric displacement
function.

For calculations with non-linear material specifications, however, relatively
simple elements appeared to us to be the most suitable (we use the element-
type mainly with eight nodes (corner nodes)), and thereby we reached a linear
displacement function.

In essence, the questions to be asked, subsequent to the idealization of the
reinforcement, are about the bond behavior and non-linear stress-strain
relationship of the concrete, here too, cracking must be taken into consideration.
To consider a practical and realistic comprehension of beam behavior for
reinforced concrete structural members under torsion there are still several
detailed problems to be examined:
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a. Questions of load carrying in.
b. Local tension problems at the stirrup corners.
c. Splitting of the concrete layers outside the reinforcement.

2.1 Idealization of the Reinforcement

For calculating the beam segments, the reinforcement rods were individually
idealized using truss elements with linear displacement function, only normal
force are considered. The possible yielding of the reinforcement was taken
into account by considering a bi-linear stress-strain relationship.

2.2 Idealization of the Bond

To calculate the bond behavior, a bond element was developed [9] for the
computer code ADINA. The theoretical work and experimental certification was
performed largely by Dörr [loi and mi. The element is compatible with the
concrete and steel elements used. It possesses no geometrical dimensions, but
the element connects the concrete and steel, so that the forces parallel and
perpendicular to the reinforcement can be transmitted.

A bi-linear relationship between the relative displacement (concrete-reinforcement)
A and the bond stress % was supposed. This procedure represented an approximation
and neglected the dependence of the bond stress upon the transverse pressure Q.

(Fig. 2).

2.3 Idealization of the Concrete

2.3.1 Elements

Three-dimensional continuum elements were used in cubic
form (hexahedron), with eight nodes and three degrees
of freedom per node. The element in this form is based
on the linear displacement function.

Test calculations with elastic material behavior and with cross-sectional types
frequently found in real structures, gave us information about the necessary
refined grid for the required precision. Figure 1 shows a few of the F.E.
idealizations utilized. (The comparative precision was calculated according
to Sauer (6]).

Since we want to confine ourselves, relatively short parts of real structures
are to be modelled and analyzed, and the required computer time remains, even
with grid refinement, justifiable. Using short structural members, in which
the loadings along the beam axis is constant, we want to analyze the influence
of torsion carrying behavior under normal force and bending moments. The
calculations are done using the computer code ADINA {8].

For our presumptions to be valid, and compatible with the previous test results,
we have to use realistic material models.

The material models used were selected and developed not only with regard to
the problem to be analyzed, but also relative to F.E. idealization.
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Fig. 1 F.E. Mesh for solid beams

The stiffness of the elements was formed of at least eight integration points.
On these integration points, the state of stress and strain was also
determined. In the event of cracking, the cracks were not supposed to be
discrete, but rather "smeared" over the integration area. In this way, the
conditions of stress or cracking at the integration point were determined, and
the formation of element stiffness ascertained by using the integration points.
Such a methodology can produce a great amount of information about the non-
linearity of material.

t (N/mrrïl

////A'
Q 5.0 N/mm2
Q Q0 N/mm2
approximation

AlmmJ

Fig. 2 Bond-Behavior
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2.3.2 Multi-Axial Strength
The dependence of the concrete's strength on the state of stress was taken into
consideration. We used a principle-stress-related representation of multi-axial
strength. Figure 3 shows the multi-axial compression strength, which is normalized
by the uni-axial compression strength (6 )•

Figure 3 Concrete strength under multiaxial compression

The sets of curves, whose lowest (5^ =0) represents the bi-axial strength,
shows quite visibly the increase of the compression strength with increasing
transverse pressure (the smallest principle compressive stress). In the program,
the sets of curves were replaced by six polygons, between which we interpolate
in the linear form. Current values for the multiaxial compressive strength
were determined by the results of the international comparative test program,
for example [12], and already published in [13J. For a specific condition of
stress (62,» j) a value was determined, that gave us the greatest bearable
compressive strength ßfor these conditions of stress, in comparison to a
uni-axial compressive strength: min ®c'^"
For the tensile strength with regard to the conditions of stress, a simple
prior assumption, corresponding to Figure 4, was used. It means: in tri-axial
tension, everywhere the uni-axial tensile strength is valid; in the compression-
tension regions, dependent upon 6^ and 6 ^• the value for the tensile strength
was determined through linear interpolation. If the greatest compressive stress
approaches the compressive strength, then the tensile strength is set to zero.
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Figure 4 Tensile strength under multiaxial conditions

2.3.3 Multi-Axial Stress-Strain Behavior

The material model is compiled in an incremental form; that means: we considered
the non-linear material relationship during a load step as a linear-elastic
material relationship. However, it was ensured through a process of iteration,
that for the respective states of strain, the corresponding tangents and secant
stiffness were used.

We employed an orthotropic, linear-elastic material model, by which the material
characteristics varies correspondingly to the strains. The directions of the
orthotropic axes are identical with those of the principle stress axes. The
values of the tangents or secant moduli of the orthotropic axes were determined
from the distorted uni-axial stress-strain relationship. For the uni-axial case,
we used the simple relationship:

with

a= Eo • £Jac

„ E(C)

For the multi-axial region, the curve was distorted for all principle stress
axes, with the factor /-defined by using the multi-axial strength. Its value
B / • Ï £ t' "t etc-c • c **e * *- c
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2.3.4 Post-Cracking Behavior

From a reinforced concrete test, the total stiffness, after the development of
the first cracks, is still clearly greater than the stiffness of the reinforcement
alone, meaning: the concrete between the cracks is still carrying a load. If
the carrying effect of the concrete after cracking is not considered in a
computational model, then one mathematically obtains, after the appearance of
the first cracks, incontinuity in the deformation plot - although in reality
this is not clearly observed. In order to avoid this after cracking we set the
remaining concrete tension perpendicular to the crack not to zero, but reduced
the stresses step-wise, as indicated in Figure 6, with regard to the unit
elongation perpendicular to the crack.

Figure 6 Stresses in the concrete after cracking

At the beginning of cracking, the stresses parallel to the crack are zero,
because the crack was defined as perpendicular to the principle tensile stress.
Through load re-arrangement and alteration, however, deformations parallel to
the crack can occur. As a consequence, the crack inter-lock can, dependent upon
the width, still transfer shear forces. Defining the resistance against the
displacement parallel to the crack (corresponding to the elastic shear modulus
(G as G and plotting the relationship G /G0f depending upon the width of
the crack, results in a plot like that shown in Figure 7. The dependence upon the
width of the crack was approximated in the computer code in a step-wise manner.
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Figure 7 Shear-stiffness of cracked concrete

2.3.5 Loading - Unloading
The stress-strain behavior described in 2.3.3 was only used for the virginal
load (1). For unloading (2) and re-loading (3) - as long as the structure still
showed no cracks - the original stiffness was used (see Fig. 8). If re-loading
reached a point over the first load (4), then the virginal loading curve again
was taken.

Figure 8 Loading - Unloading

2.4 Special Problems

With regard to local stress concentration at the corner of the stirrups, and
the problem of splitting of the concrete layer outside of the reinforcement,
we are now working on a detailed, computational analysis, also with a 3-D-model.
With such an analysis, the corner of a stirrup, the longitudinal reinforcement
truss and the surrounding concrete can be represented. We expect from it
information about the carrying behavior of this area. Furthermore we would like
to mention the results of the analysis in the overall computational models.

2.5 Example

With the aforementioned procedure, the various cross-sections and varying loads
should be able to be analyzed. At the present time, we have the first results of
the calculation for the tests IUI.

Fig. 9 illustrates an F.E. idealization with 3x4x5 elements for concrete. The
reinforcement is modelled by means of truss elements at the beam surface.

The comparison of the distortion and the stirrup stress from calculations and a
test is shown in Fig. 9.
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Figure 9 F.E.-Model and a comparison of calculation and test results
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3. OUTLOOK

Through parametric studies of concrete members, under combined loadings,
using the described computational models, the interaction between the individual
types of loading should be able to be determined and demonstrated.

We believe, however, that the computational model can also be a useful tool for
analyzing a series of wider problems concerning reinforced concrete structures
- especially for the researcher.
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