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Nonlinear Analysis of Reinforced Concrete as a Minimization Problem, by a Finite Element
Representation of the Stress Field

Analyse non-linéaire du béton armé comme probléme varationnel, pour les éléments finis qui
définissent le champ des contraintes.

Nichtlineare Berechnung von Stahlbeton als Minimierungsproblem, mit Finite-Elemente-
Darstellung des Spannungsfeldes

GIANFRANCO VALENTE
Prof. Ing.

University of Rome

Rome, Italy

SUMMARY

in previously published papers [4], [7], [8]. [9]. the approach to the limit analysis of reinforced
concrete bodies was formulated as a minimax problem, whose solution could be achieved by
means of an appropriate algorithm based on the discretization of the structure into finite
elements. This algorithm was implemented in a computer program including an incremental
method, where the steps amplitude is defined by crack development. In this paper, the problems
connected with the numerical performance of that procedure are taken into account. Finally, the
experimental data on concrete rings for determining tensile strength of concrete obtained by
Malhotra [5] are compared with numerical results of the proposed method.

RESUME

Dans les publications précédentes [4], [7], [8], [9], 'approche des états-limites de béton arme
était formulée sous forme d’'un probieéme variationnel, dont la solution pouvait étre approximeée
par éléments finis. La discrétisation dans le temps était definie par le développement successif
des fissures. Cette publication-ci prend la performance numérique de cette procédure sous la
loupe. Ensuite la méthode proposée est appliquée a la détermination de la résistance a la
traction de béton non-armé. Les résultats numériques correspondent aux données
expérimentales de Malhotra (5].

ZUSAMMENFASSUNG

Grenztragfahigkeitsanalyse von Stahlbeton wurde als Minimaxproblem behandelt auf der
Grundiage finiter Elemente. Diese Methode wurde in ein Computerprogramm implementiert,
wobei die Inkremente durch die Rissentwicklung bestimmt sind. In diesem Bericht wird die
numerische Behandlu~g beschrieben und auf das Beispiel der Betonringzugprifung angewandt.
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1. SYMBOLS
They are as follows:

NC number of concrete nodes,

NS number of steel nodes,

NEC number of concrete elements,

NES number of steel elements,

NVS number of aligned bars couples,

KK total number of equilibrium equationms,

NN number of linearly independent equations,
number of kynematic independent parameters,

LL number of static independent parameters,

MM total number of static parameters,

NF total number of failure functions.
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2. INTRODUCTION

The author have developed a finite element method for finding lower bounds on the
limit load for reinforced concrete with perfectly plastic steel and perfectly
brittle concrete. Let the two dimensional domain R be subdivided into elements
triangular for concrete and linear for steel bars.

Stress and velocity components relevant to the problem under consideration are
assumed to have linear distribution within each element, and to be continuous
across the elements boundaries. In this way a family of stress fields is consi=-
dered, whose generic member is identified by the values that the stress compo-
nents assume at the nodal points. The bound stresses between steel and concrete
and the dowel effect are taken into account., Let the stress values be collected
in a vector 0.

Vector 0 has MM = 3 NC + 5 NES components
(plane stress components Oys Uy and Txy for conerete nodes; normal, shear and bond

stresses 0j, Oj» Tj» Tj; and T4 for steel bars).
A family of velocity fields is also considered whose generic member is identified
by the values of the velocity components at the nodal point; values collected in
a vector u. The total number of equilibrium equations is KK = 2 NC + NVS + NES
and the dimension of vector u is NN = KK - NV,
Now a somewhat restricted equilibrium condition is imposed to the stress fields
previously defined, by means of the virtual work theorem, taking as a virtual ki
nematic field any member of the family of velocity fields previously defined, to
gether with the strain rate field kinematically consistent with it.
The virtual work equation may then be written as

uTqo-pulpy =0 (1)

~ ~

The first term in Eq. (1) is the internal virtual work, Q being the equilibrium
matrix, assembled as shown in Fig. 1, depending upon the assumed stress and velo
city distribution., The second and the third terms are the external virtual work
due to external load pj and to prestressing loads pj, p is the multiplier of
external load pj alone. ~
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Fig. 1 - Matrix 9
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Obviously, Eqs (1) are necessary, but not suffient conditions for equilibrium,
because all the virtual kinematic filed have not been considered, but only a
subset of them. Now let it be consider checking the yield condition (with analy-
tical representation of concrete experimental data by Kupfer, Hlsdorf and Rusch
[3], von Mises criterium and comparison with maximum bond strength for steel)

f; =w;(p0) <1, (L =1, .., NF), (NF = NC + 3 . NES) (2)

the limit analysis problem is solved by the unconstrained minimization of the
nonstrictly convex function

(o) = max; [fi(gp)] (k =1, .., LL) (3)

where o®are the LL = MM - NN undependent parameters. The irregular function ¢ is
replaced by a sequence of every-where regular approximation of this function:

I it

In this paper, the numerical problems are examined more accurately then in pre-~
vious papers [7], (8], [9].

3. EQUILIBRIUM MATRIX FOR A STEEL ELEMENT

It may be obtained by taking into account a rectangular element composite with
two triangular elements. If the equilibrium matrices for triangular elements ha-
ving linear distribution for stress and strain fields, and if a side of this rec
tangular element approaches to zero, then the equilibrium matrix for a linear e-
lement is obtained for the nodal stresses Oj, O3, T; and Ty-

4., FREE AND DEPENDENT PARAMETERS

The matrix Q has zero rows, for the boundary kinematic condition, and since the
problem: ’

Qo =rPp * P (3)
has solutions, such general solution can be obtained in the form
9= g +Q o* )
where
* * *
O =P Oyy * 962

where 9; is a particular solution, g* is linearly independent vecter and Q* are
arbitrary parameters.

The program is able to find the rank, designate the rows and the columns which
provide a nonsingular square submatrix of that rank, and give the value of the
determinant of that submatrix by using the Gaussian elimination process shown
by Ralston [2].

When any of the divisors gq;; (diagonal element in QS) is small in magnitude com
pared with other elements qi j of same matrix, then a serious round off error may
be incurred.

To avoid these divisions, a technique called positioning for size is used. At
the i-th stage of calculation (i =1, ..., NN) it consists of the following:
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- rows are interchanged to get nonzero rows in the first NN positions,

~ columns are interchanged in order to locate that element q;; of greatest abso-
lute magnitude.

- then the elements in the i-th row are calculated by the so-called back substi-
tution,

- the rows and columns interchangings are memorized in two vectors IROW and ICOL,

Finally, the matrix assembled as in Fig., 3 is obtained

=3 =5+NES
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NOQT;
KL NH2
gt o—t F 4t

Fig. 2 - Resclutive matrix Q

where, NN is the rank of Q; = L U and of the dependent parameters, LL = MM - NN
is the free parameters number. The triangular matrix at the right side of Fig.
3 represents the gradient coefficients for the free parameters and are computed
by partial derivatives of plastic power ¢(g*).

5. TESTS CHECKING

The tests (g), (i), (j) and (1) in the flow-chart of Fig. 2 are a very tiklish
and important elements of the computer program.

The test (1) in the loop 1 permits to find the new cracks pattern for the stres
ses field which minimizes the plastic power 9.

Let the following terms be considered:

€1 = | 1~ @y |y Ppax = maxj 5 (L =1, ..., NC) (6)
€ = max (€], €3) (8)

where ¢* is the maximum value of function ¢ computed between the not cracked no-
des with positive value of the first principal stress.

To take into account the value €, is very important because only the cracking in
the nodes subjected to tension may produce substantial variation of the stress
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field.

From a computational viewpoint, a new crack in a node produces a reduction of
the failure domain only in the tension~tension or tension-compression zones.
Then, if the point of the stress state was in this zone in the neigh-bouring of
the yield line, after the cracking it will shift brusquely causing a substantial
change in the whole stress field for the equilibrium of the same.

The value € is used to calculate the following prescribed small positive value

€ depending on the ratio between the two principal stresses

E =c; & for (op + 3 01) €0 (9)
- €9 = ig g2

£ = c;2+—2—§—--~l 8“1_ £y for o, > 0, 02<0 (10)
E =cy € for oy, Oy =0 (11)

A node will became cracked if it is:

p =1 - € (12)
It agrees to assume for cy, cp the following values

cy = 1,5+ 2,0 ; cp =316 (13)

In such a way, the biaxial tension stress states are penalized greatly than the
biaxial compression stress states with linear interpolation for middle states.
Smaller values will be selected for cj and ¢, parameters if it is deemed to fol-
low the cracking phenomencn with greater accurancy; obviously, this behaves much
more steps in the evolutive process.

The process i1s illustrated in the following Fig. 4

/e a* n &

Fig. 4 - Computation of the parameter c¢ (07, O))
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4

The test (h) for the loop 2 checks that two surface Yy and @ are enough close
between themselves. When the minimum on the surface J; has been ottained, the
collapse multiplier for the node i-th having ¥ ., = max ¢y (K =1, .., NC) is
computed. The failure function is a fourth order polinominial and the condition:

p; (pi0) =1 (14)

leads to four roots. Related to the Fig. 5 two kind of solution are possible:
— for the stress state represented by the point A, four real roots are obtained,
- for the stress state B, two real roots and two complex roots are obtained;
the true solution is the smaller real positive root (like points A2 and B4).

Fig. 5 =~ Solution of the fourth order polinomial

The error on this value of py is computed by the aim of the following Fig. 6.

X
-

Fig. 6 -~ Error on the collapse multiplier computation
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This error is deduced by the following relationships:

0y = %I £(d;) (15)
df d

Apa='&*a-'- Ad1=z5_" bdy (16)
1 1

My = (p - Yy) (d1 - d)/ (¥ - 1) (17)

BDpy = Py (P~ ¥y (1 = pg)/(p - 1) (18)

The test (h) consists in the checking:
Doy /P | Epgl (19)

Where €451 is a prescribed small positive quantity. The test (i) in the loop 3
checks that the minimum position of the surface Y, has been ottained, this happen
when between the initial and final values Y ,, Y¥; is

2 (by - V1)/ Wy + Y1) < S1in (20)

This condition, in spite of its simplicity, displays itself to like better than
other more complex, like gradient modulus. ‘

The test (g) in the loop 4 checks that the minimum of the line has been attai-
ned; it is admitted that this test is satisfied when a value Yy, less then all
the preceding values on the line is obtained. The loops 2 , 3 and 4 are
better shown by the paper of Fletcher and Powell [1]

The value $;.. is a prescribed small quantity; for €¢o1 = 1072 10'3, the bet-
ter computational value was:

-7

Siim = 1078 = 10 (21)

6. RUNNING TIME FOR THE EVOLUTIVE PROCESS

This computer time necessary to the program running may be subdivided into three

parts: ‘

- data memorization,

- computation of equilibrium and non singular matrices Q and [Q; Q" 03] respec-
tively b

- minimization times for each step.

The first two computer times represent a derisive part of the total time, then

the third part is the more important time.

In the following Fig. 7 the computer times for a single minimization in absence

of cracked nodes is represented.

This time is placed near the relationship:

t =1072 (1 + 75 a) LL NC (22)

where €401 = 10™%* is the prescribed small value for Py in the minimization,
If cracked node exist, and if NCl is the number of the nodes having the tensile
first principal stress before the cracking, the minimization time is greather
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Fig. 7 =~ Minimization time in absence of cracked nodes.
then the aforementioned time according to the relationship:

t = 1002(1. + .75 @) LL NC(1l. + 3.5 NC1/NC) (23)
These relationships are obtained:
~ by the numerous computer solutions of analogous problems for bodies with mate-
rial according to Von Mises yield criterium,
- by the numerical solution of the famous beam tested by Bresler and Scordelis
and of the concrete ring specimen numerical solved.
These computer times are related to UNIVAC 1100.

7. STORAGE USED

By the aforementioned notations this computer storage is defined by the following
relationship:

55 ¢ NC + 4 « NEC + 37 ¢ NES + 5« LL + 22+« NL + Bo NCe NL + (2+NC +

2 eNS) (3+NC + 4+ NES + 2 *NL) + LLZ/2 + 2+ NF + 20.000 (22)

8. NUMERICAL EXAMPLE

- In the Malhota paper [5] regression analysis were carried out to establish corre-
lation between inside diameter ring tensile strength and 4x8 in. (10x2Q0 cm) cy-
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linder compressive strength. All the reported data had been carried out using two
kind of specimens like in following Table 1:

Table 1 - Ring specimens data

fpcimen) Tl | vide b | o | ¢
1 6 in (15cm) | 14 in. (3.8cm)| 14 in (3.8cm){ 21.040| 54.704 | 9.408
2 12 in (30em) | 3 in (7.5cm) § 3 in (7.5cm) 20.960 | 54.496 | 8.992
kg/cm? kq/cmz' Z
™,

The Author found the following relationship:
Y = ,063X + 17.5 kg/cm?

where Y and X are the inside diameter ring tensile strength and the cilinder com
pressive strength, respectively. Besides this the Author says that the tensile
stresses in the ring section vary linearly from a maximum of 2.6 P; at the inter
nal periphery to 1.6 P; at the outside periphery, where Pj is the applyed hydro-
static pressure.

In the subsequent discussion, Pandit [6] says that none of the existing methods
for the determination of the tensile strength of concrete campare favorably as
regard reproducibility or reliability with the compression test.

The aforementioned specimens have been represented by the finite element mesh in
the following Fig. 8.

|

Fig. 8- Finite element mesh
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For these specimens the tensile and compressive strengths were 50. and 500. kg/cm2
respectively and the ultimate hydrostatic pressures were those shown in Table 1.
By admitting that the maximum tensile stress in the ring section is 2.6 Pj, at

the inside periphery, there is the tensile stresses in the Table 1,
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