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Computational Models for Reinforced Concrete Slab Systems

Modèles de calcul par ordinateur pour des systèmes de dalles en béton armé

Rechenmodelle für Stahlbetonplattensysteme

E. HINTON H.H. ABDEL RAHMAN O.C. ZIENKIEWICZ
Lecturer Research Assistant Professor
Department of Civil Engineering, University College of Swansea,
Swansea, Wales, United Kingdom.

SUMMARY
This paper discusses the finite element computational models used in program
PLASAN for the nonlinear analysis of reinforced concrete slab systems. A layered
Mindlin plate model is adopted and the discretisation is based on quadrilateral Mindlin
elements. Some examples are presented and the relative efficiency of various
nonlinear solution schemes is highlighted.

RÉSUMÉ
Dans cette publication on discute des modèles de calcul par la méthode des éléments
finis, qui sont utilisés dans le programme PLASAN pour l'analyse non-linéaire des
systèmes de dalles en béton armé. Un modèle de dalle multicouche MINDLIN est
accepté et est basé sur des éléments MINDLIN quadrilatéraux. Certains exemples sont
présentés et l'efficacité relative de différents schémes de solutions non-linéaires sont
mises en valeur.

ZUSAMMENFASSUNG
Dieser Beitrag behandelt die Finite-Elemente-Rechenmodelle, die im Programm
PLASAN für die nichtlineare Berechnung von Stahlbetonplatten verwendet werden. Ein
Mindlin-Schichtplattenmodell wurde angenommen, während die Diskretisierung auf
viereckigen Mindlin-Elementen beruht. Einige Beispiele werden gezeigt, und die relative
Leistungsfähigkeit von verschiedenen nichtlinearen Lösungswegen wird beleuchtet.
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1. INTRODUCTION

The present studies are motivated by the need to develop finite element
computational models suitable for the accurate and efficient nonlinear analysis of
reinforced concrete bridge decks and other flexural systems. Research work
sponsored by the Highway Engineering Computer Branch CHECB] of the Department of
Transport has resulted in the development of the computer program PLASAN [1].
This paper discusses the general approach in PLASAN and highlights the discretisation

and equation solving techniques adopted therein. Results of some
numerical experiments are also presented.

The present formulation is based on a layered reinforced concrete Mindlin plate
model in which the plate is represented as a series of concrete and smeared
unidirectional steel layers. Nonlinearities due to cracking, yielding and crushing
of the concrete and yielding of the steel are taken into account. In PLASAN,

the discretisation is based on a selectively integrated Heterosis quadrilateral
plate element [2]. Experiments (not reported here] have been performed on other
Mindlin elements. Two other useful elements emerge: a new 4-noded quadrilateral
element developed recently by Hughes [3] and the 1S-noded selectively integrated
quadrilateral element [4]. Only the results obtained using the Heterosis
element are discussed in this paper.

An accurate, reliable and efficient solution algorithm is of vital importance
for the nonlinear analysis of reinforced concrete structures where cracking of
the concrete forms a major problem. Although an elaborate modelling of the
behaviour of the concrete and steel is essential, the solution algorithm plays
an important role in the production of accurate results. In PLASAN, various
incremental-iterative solution schemes are adopted. In the standard Newton-
Raphson method (NR) the Jacobian (tangential stiffness matrix) is evaluated at
each iteration. In the related methods various approximations to the Jacobian
are used. In the Modified Newton-Raphson CMNR) methods, the approximation is
updated only once for each increment and not for each iteration. Here the
tangential stiffness matrix is formed and factored either at the beginning of each
increment (KT1) or at the second iteration (KT2) Alternatively, the initial
elastic stiffness matrix may be used throughout the entire analysis. This is
known as the initial stress method (KO). Unfortunately NR and MNR methods have
a tendency to diverge during elastic unloading and they sometimes lead to
singular or ill-conditioned matrices near the limit load. The initial stress
method provides a suitable solution to these problems but the convergence is
slow particularly when fine convergence tolerances are used. The use of coarser
tolerances with KO leads to faster convergence but at the expense of accuracy.
Alternative computational strategies based on Quasi-Newton (QN) methods [5-7]
offer a reasonable solution to this difficulty. In the present work, the BFGS

Quasi-Newton updates are performed with the initial stiffness matrix (QNKO) and
also in conjunction with MNR methods (QNKT1 and QNKT2). Line searches are also
included in the MNR and QN methods. Various Secant Newton [8] and arc length
methods [8-10] are also incorporated in PLASAN.

2. MINDLIN FORMULATION

In the usual Mindlin plate formulation the main assumption is that normals to
the plate midsurface (xy-plane) before deformation remain straight but not
necessarily normal to the midsurface after deformation. Thus the displacements u, v
and w at any point with coordinates (x,y,z) can be expressed as
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u(x,y,z) u (x,y) - z0 (x,y)0 X

vC x,y,z) v Cx,y) - z0 (x,y)o y
(1

w(x,y,z) w (x,y)0

where u v and w are the displacements at the plate midsurface in the x, y
and z direction an8 0 and 0 are the rotations of the normal in the xz and yz
plane respectively, fable I^shows the main features of the Mindlin formulation.

3. MATERIAL MODEL

3.1 Concrete in compression

When failure is dominated by concrete cracking and steel yielding, a relatively
crude plasticity model suffices. In PLASAN, the concrete is treated as an
elasto-plastic material. In biaxial compression the Von Mises ellipse is used
to define the elastic limit and the flow function. After yielding, the concrete
is assumed to be crushed and lose all of its strength when the failure envelope
(in^strain space) is exceeded.

3.2 Concrete in tension

Cracks are assumed to open perpendicular to the higher principal stress direction
when the tensile strength of concrete is exceeded. The stress level in the

cracked concrete is interpolated using a tension stiffening curve and depends on
the degree of straining in the concrete. Concrete cracked in two directions is
assumed to lose all of its strength.

3.3 Steel reinforcement representation

In the uniaxial stress-strain relationship for the reinforcement steel a
plasticity formulation is adopted in which linear isotropic strain hardening is
assumed after initial yielding. Elastic unloading is allowed.

4. DISCRETISATION

The selectively integrated, 8-9 noded Heterosis element is used in the discretisation.

In PLASAN, a hierarchical formulation is ^deppted to Represent all
degrees of freedom. Thus for typicaj. element e, N^ to N0 are the 8-node
Serendipity shape functions and Ng is the bubble function C1-Ç2)(1-n2)
associated with the ninth central node. Thus the hierarchical degrees of freedom

at node 9 are perturbations from the associated Serendipity interpolants.
The 8-node Serendipity representation can be obtained if all degrees of freedom
at node 9 are constrained to zero. If they are left free then an element
equivalent to the 9-node Lagrangian representation is obtained. For the
Heterosis representation, only the hierarchical lateral displacement at node 9

is restrained to zero. In this element selective integration procedures are
adopted [2]. Unlike most other Mindlin elements, the Heterosis element is free
from major defects. It does not give overstiff solutions in limiting thin plate
situations Clock) nor does it have any transmittable mechanisms. The only other
Mindlin elements which are considered worthy of further attention are the
recently developed 4-noded quadrilateral [3] and the 16-noded quadrilateral [4].
Both of these elements have been successfully implemented within the present
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Table I Plindlin plate formulation

Virtual work equation

I 6 dV + I S £2 ÖV - I 6 uT b dV - I 6 uT

where

displacements _u »

m-plane strains «
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in-plane stresses
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is a modification factor (usually a - 1.2)

Incremental stress/strain relationships
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Plastic
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A is the proportionality constraint
H is the hardening parameter
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Finite element discretization
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Stiffness Matrices

Residual forces
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framework but results are not reported here.

5. SOLUTION SCHEMES

5.1 Standard and modified Newton-Raphson methods

Various incremental-iterative solution schemes are incorporated in PLASAN. In
all of the methods the aim is to reduce the residual forces to small values.
The residual force may be expressed as

d.) [ B. ,T er,, dv + B Tcr~ dv - f. C2)
—i —1i —1i J —2i —2 —iif.

where _f, A.^f is the applied load vector and A., ci., —21' —ii anc'
—21 are

the loaàing parameter, displacement vector and strain-displacement matrices and
stress vectors respectively. The vector f is a reference load vector and
subscripts 1 and 2 refer to inplane and transverse shear quantities respectively.

In incremental-iterative solution schemes a sequence of corrections Sd_. to the
displacement vector are produced. Using the expression

6d. - [K.r1 ip. (3)
—l L—lJ xi

where JÇ is an approximation to the Jacobian matrix which may be expressed as

341.

JCd.] -s-ri
1 3d

C 4)
d=d.

—l

The new estimate to the displacement vector is then given as

d..=d.+r|.6d. (5)
—1+1 —i 'i —i

where q. may be found from a line search along direction 6c[. which satisfies the
condition

U^]1 ii + 1M 0-5 |[ôd.]T Jfeil C61

where is found using the estimate Often no line search is performed
and ni is taken as unity.

Various solution schemes are implemented in PLASAN using different approximation
to the Jacobian matrix:

- KO is the initial elastic stiffness matrix
- NR

- KT1 K^" J(dh
- KT2 for i1> 1, K. JCd)

—l —2

5.2 Quasi-Newton BFGS Methods

In PLASAN various Quasi-Newton BFGS methods are adopted in the form given by
Matthies and Strang [5]. These methods seek to satisfy the secant condition

K. [d. - d. é. - ü).
—l —l —1-1 xi xi-1

C 73
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The BFGS update which does not destroy the banded nature of the stiffness matrix
is given in the form

where
Kx

1 {I + u± v1T}[K1_1]
1

{!_ + v^ w^}

Hi ii-! V + Vi 6^i-i it
ô^i-i ii-i ii

C 8)

and

w. 6d. /Côd. y.—l —1-1 —1-1 —i

Y. til. - ill.
—i % -=-1-1

Equation (8) may be expanded and written in the form
1

K.
—l

[ n {i
j=i-1

vI}]Ki -1 (9)

i-1
[ n {j + v. w. }]

j=i 3 3

In PLASAN the following variations are available

- QNK.0 K. is the initial elastic stiffness matrix
- QNK.T1 K J_(d
- QNK.T2 K.j J_Cd2)

Thus in QNK.T2 the updates begin after the first iteration.

Crisfield [8] has suggested various Secant-Newton CSIND methods. In one of these
equation (8) is used and is always taken as J_( d^ A major attraction of
this method is that no previous values of and w^ need be stored.

5,3 Arc length methods

Recently arc length methods have gained much popularity due to their ability to
deal with geometrically nonlinear problems involving snap-through and snap-back
behaviour [8-10]. The normal plane CNP) and spherical path [SP) variants are
both implemented in PLASAN. In the normal plane method within a given increment
the solution is constrained to lie in a plane normal to the tangent to the
equilibrium curve at the beginning of the increment. In the spherical path
method the solution is constrained to lie on a sphere of radius equal to the arc
length which is defined as

SL [Ad^ Acfj [AX „T
1 f _£]" (10)

In both the NP and SP methods it is necessary to evaluate updates SA. which
adjust the total load level for the increment. The arc length may be updated
from increment to increment and Ramm [9] suggests the use of the equation in
which the current arc length at load step n is given as

(n) I (n-1) (ID/ICn 1))"

where 1^ is the desired number of iterations per load step and
actual number of iterations required in the previous load step,
of the methods are given elsewhere [8-10].

[11)

,[n-1)I is the
Further details
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5.4 Convergence and final failure

Displacement, residual force and energy norms are used to check, convergence in
PLASAN. Final failure is assumed to occur when the current stiffness parameter
[11] [which is a parameter that characterizes the overall stiffness of the slab]
is less than some specified value.

Table II Solution time comparisons for Mueller slab

ALGORITHM
CPU

1.0% 0.1% 0.01%

Ko 41 123* 73*

NR 67 88* 146*

KT1 35 79* 101*

(34) (71) (109)

KT2 30 37* 46*
(35) (45) (61)

QNKO 29 49 64

QNKT1 32 37 44

(35) (52) (66)

QNKT2 32 34 42

(35) (41) (59)

* Failed to converge after 50 iterations
Values with line search

* Premature structure failure
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6. EXAMPLES

6.1 Mueller slab

This section is devoted to a comparison of different solution schemes for
reinforced concrete plates. All methods are implemented in the same computer
program so that all tasks - apart from those peculiar to the particular algorithm
adopted - are accomplished in exactly the same way.

A corner supported doubly reinforced concrete slab tested by Mueller [12] is
analysed using a 3x3 mesh in a symmetric quadrant. Numerical experiments are
then carried out to test the accuracy and efficiency of the different solution
algorithms suggested in this paper. Large load increments have been used and

only 6 nonlinear increments are required. A summary of the results is given in
Table II, while the load-central deflection curves of the slab are given in
Figure 1. A study of the results shows that the use of KO with a coarse
convergence tolerance (1.0%] results in over-stiff behaviour in the final stages of
loading and an overestimation of the failure load. The rest of the algorithms,
when they work, predict practically the same displacements regardless of the
convergence tolerance used (< 1.0%]. However, it should be noticed that the
convergence of the solution when KO is adopted is very slow and that the
solution fails to converge within the specified number of iterations at a lower
load level when a tighter convergence tolerance is used. Newton-Raphson and
Modified Newton-Raphson - KT2 - methods indicate premature failure when fine
convergence tolerances are used. The convergence of KT1 is also very slow at
the later stages of loading. However when line searches are used with these
methods reliable solutions are obtained. Methods based on BFGS updates always
converge to the required convergence tolerance at a minimum cost. The use of
BFGS updates with KO and a convergence tolerance of 1% renders the cheapest
analysis for this slab and also retains all the advantages of using KO such as
the possibility of elastic unloading, etc. If a finer convergence tolerance is
required the BFGS - KT2 algorithm may be chosen. In the present example, the
tension stiffening effect of reinforced concrete is exploited and on cracking
the concrete is only allowed to release its tensile stresses gradually according
to the tension stiffening curve shown in Figure 1. However, if the tension
stiffening of reinforced concrete is not considered, or if only a small amount
of stiffening is allowed, then the cracking of the concrete becomes severe
resulting in large residual forces and the value under the square root in (8)
may become negative preventing the use of the BFGS update. This situation
occurred during another numerical experiment on a simply supported plate tested
experimentally by Taylor et al [13]. Here a line search helps the BFGS updates
to be applied and reduces the analysis cost considerably.

6.2 McNiece slab

Another numerical experiment is carried out using the well known corner
supported McNiece slab [14] which has been tested numerically by many analysts.
In this experiment a comparison is made between MNR, KT1 method and other
methods used in conjunction with it, such as the Secant-Newton (SN2], the Quasi-
Newton CQNKT1] and the spherical path CARC-SP] methods. The automatic load
incrementation is used first with the arc method, then the other techniques are
used with the same prescribed increments. The displacement norm is used to
check for convergence with a tolerance of 0.1%. The displacements predicted by
the different techniques are almost identical and in good agreement with the
experiment, see Figure 2. The cost of the analysis differs dramatically. In
the KT1 method the solution fails to converge within the specified number of
iterations and the Secant and Quasi-Newton methods do equally well. The
superiority of the arc method in this problem is clear. However, it must be noted



CENTRAL DEFLECTION (mm)

Figure 1 Load-central deflection curve for the Mueller slab

ALGORITHM KT1 QNKT1 SN2 ARC-SP

CPU > 146 108 102 72

CPU TIME FOP. DIFFERENT ALGORITHMS

Tension Stiffening

Figure 2 Load-central deflection curve for the McNeice slab and comparison of
various algorithms
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that when the tension stiffening effect of reinforced concrete after cracking is
not fully exploited, and there is an instantaneous loss of strength, numerical
difficulties may be anticipated. The use of line searches and relatively
coarser convergence tolerances, together with some restart criteria to safeguard
against divergence of solution, could be advantageous.

7. CONCLUSIONS

From the results discussed in the previous section and from other experience, it
can be concluded that the use of the initial stress method in the nonlinear
analysis of reinforced concrete plates with coarse convergence tolerances may
result in an overestimation of the failure loads. The use of BFGS updates with
the initial stiffness method, or Modified Newton-Raphson methods, is suggested
for a reliable and relatively inexpensive nonlinear analysis of reinforced
concrete plates if tension stiffening of concrete is considered. The use of line
searches with methods based on BFGS updates is recommended if the tension
stiffening of reinforced concrete is not considered. The arc length and Secant
Newton methods also show promise.

REFERENCES

1. ABDEL RAHAMN, H. H. and HINTQN, E.j "User manual for program - PLASAN",
Report Dept. of Civil Eng., Swansea, June 1981.

2. HUGFIES, T. J. R. and COHEN, M.; "The Heterosis finite element for plate
bending". Computers and Structures, Vol. 9, 1978, pp.445-450.

3. HUGHES, T. J. R. and TEZOUYAR, T. E.j "Finite elements based upon Mindlin
plate theory with particular reference to the four-node bilinear isoparametric

element", to appear in J. Appl. Mech.

4. WONG, T. K.; "Nonlinear analysis of reinforced concrete slab systems using
cubic Mindlin plate elements", M.Sc. Thesis, University College of Swansea,
Jan. 1981.

5. MATTHIES, H. and STRANG, G.j "The solution of nonlinear finite element
equations". Int. J. Num. Meth. in Engng., Vol. 14, 1979, pp.1613-1626.

6. BATHE, K. J. and CIMENTO, A.j "Some practical procedures for the solution
of nonlinear finite element equations". Comp. Meth. in Appl. Mech. Eng.,
Vol. 22, 1979.

7. ENGELMAN, M. S., STRANG, G. and BATHE, K. J.; "An application of Quasi-
Newton methods in fluid mechanics", to appear in Int. J. Num. Meth. in
Engng., 1981.

8. CRISFIELD, M. A.; "Incremental/iterative solution procedures for nonlinear
structural analysis", Proceedings of the Int. Conf. on Numerical Methods
for Nonlinear Problems, University College of Swansea, Pineridge Press,
1980, pp.261-290.

9. RAMM, E.; "Strategies for tracing nonlinear response near limit points",
Institut fur Baustatik der Universität Stuttgart, W. Germany, 1980.

10. HINTON, E. and LO, C. S.; "Large deflection analysis of imperfect Mindlin
plates using the modified Riks method", MAFELAP 1981, May, 1981. Proceedings

to be published by Academic Press.



E. HINTON - H.H. ABDEL RAHMAN - O.C. ZIENKIEWICZ 313

11. BERGAN, P. G.j "Solution algorithms for nonlinear structural problems",
Computers and Structures, Vol. 12, 1900, pp.497-509.

12. MUELLER, G.; "Numerical problems in nonlinear analysis of reinforced con¬
crete", UC-SESM Report No. 77-5, University of California, Sept. 1977.

13. TAYLOR, R., MÄHER, D. R. H. and HAYES, B.; "Effect of the arrangement of
reinforcement on the behaviour of reinforced concrete slabs", Magazine of
Concrete Research, Vol. 18, No. 55, June 1966, pp.05-94.

14. JOFRIET, J. C. and McNIECE, G. M.; "Finite element analysis of reinforced
concrete slabs", J. Struct. Division, ASCE, Vol. 97, No. ST3, 1971,
pp.785-007.



Leere Seite
Blank page
Page vide


	Computational models for reinforced concrete slab systems

