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inelastic Analysis of Reinforced Concrete Shear Wall Structures - Material
Modelling of Reinforced Concrete -

Analyse inélastique de la structure asismigue des refends en béton armé - Un essai
pour obtenir la formule modeéle mathématique pour le béton armé -

Inelastische Berechnung von erdbebenfesten Stahibetonwandkonstruktionen -
Maodellierung von Stahlbetonmaterialien -

NOBUAKI! SHIRAI TOSHIO SATO

Assistant Professor

Department of Architecture, College of Science and Technology, Nihon University,
Tokyo, Japan

SUMMARY

A finite element formulation capable of clarifying inelastic behavior of reinforced
concrete shear wall structures is presented. Inelastic effects such as tensile cracking
of concrete, nonlinear stress-strain response ot concrete and steel, bond between steel
and concrete, aggregate interlock between cracked concrete surfaces and dowel
action of reinforcing bars are considered and particular attention is given to a
constitutive modeilling of these effects which have an important effect upon hysteresis
characteristics of reinforced concrete structures. Finally, an incremental self-correcting
approach used as a numerical procedure is briefly explained.

RESUME

On présente une formule par la méthode des éléments finis capable d’'éclairer le
comportement inélastique de la structure asismique des refends en béton armé.
Compte tenu des effets inélastiques tels que de la fissuration dans le béton due a la
traction, de la contrainte non-linéaire et de la réponse de déformation du béton et de
I'acier, de l'adhérence entre 'acier et 'armature, de 'effet d'engrénement des faces en
béton fissurées et de l'effet goujon, plus particuli€rement on a essayé d’obtenir la
formule modéle mathématique de constitution desdits effets qui donnent une grande
influence sur les caractéristiques d’hystérésis des structures en béton armé.
Finalement, on explique en bref le mode d’ accés auto-correction incrémental employé
comme un procedé numérique.

ZUSAMMENFASSUNG

Es wird eine Formel nach der Methode der finiten Elemente zur Kldrung des
inelastischen Verhaltens von erdbebenfesten Stahlbetonwandkonstruktionen
prasentiert. Es werden inelastische Effekte wie Zugrissbildung im Beton, nichtlineare
Spannungsdehnungslinie von Beton und Stahl, Verbund zwischen Stahl und Beton,
Rissverzahnung zwischen Betonrissoberflachen, Dibelwirkung des Armierungsstahls
betrachtet. Der Modellierung dieser Effekte, die eine wichtige Auswirkung auf die
Hysteresecharakteristiken von Stahlbetonkonstruktionen haben, wird besondere
Aufmerksamkeit gewidmet. Abschliessend wird kurz eine inkrementelle,
selbstkorrigierende Methode erlautert, die als numerische Analysemethode verwendet
wurde,
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1. INTRODUCTION

The reinforced concrete shear strucrure is a structural system being composed of
columns, beams and wall panels and is the most efficient earthquake resistant
element. Therefore, it is necessary for investigating inelastic behaviors of
reinforced concrete shear wall structures subjected to cyclic loads such as sei-
smic forces to consider all sorts cof inelastic effects including ecyclic beha-
viors. Attempts to model inelastic effects have been carried out by many
investigators so far, but it is felt that simple and effective models for a fi-
nite element formulation have not been proposed yet.

The inelastic effects included in this paper are l)brittle fracture of concrete
(tensile cracking), 2)nonlinear stress-strain response of concrete and steel,
3)bond between concrete and reinforcing bar, 4)aggregate interlock and 5)dowel
action. Particularly, the bond model based upon a new concept of bond beha-
viors and the modelling of aggregate interlock and dowel action evaluated as
equivalent shear moduli by introducing crack spacing and width are described in
detail.

An dincremental initial stress approach or an incremental self-correcting app-
roach which is able to minimize computational time is used as a numerical pro-
cedure and here the latter approach, which has not been applied materially non-
linear problems, is briefly explained.

2. MATERIAL IDEALIZATION

Reinforced Concrete is a composite material being made of concrete and steel,
and mechanical properties of each component material are idealized as follows,

2.1 Concrete

Uncracked concrete is assumed as a homogeneous isotropic material, and on the
other hand cracked concrete is considered to be anisotropic and capable of resi-
sting normal stress parallel to average crack direction.

The uniaxial stress-strain relationship for uncracked concrete is assumed to be
elasto-plastic of tri-linear type including strain-softening with a negative
slope in compression, and elastic up until to the tensile strength and there-
after concrete changes to a brittle material as shown in Fig.l. In order to
simulate compressive behaviors, the yield criterion for plasticity in compre-
ssion is assumed of either the Von-Mises's formula[l] or the Drucker-Prager's
formula[l] and associated flow rule(see Section 3.1),

= - + .—-= ________ .
F Al cm A2 o A3 (2.1)
2
where oy = (CIx + o‘y + Oz)/3 ;a = [( s, + S; + Si Y/2 + T:y + T:z + -1-2 ]1,2 Opr Oy Oy Txy'
Tyz!T : the stress components in the orthogonal coordinates X, Y and Z ;Sx.Sy,

8, ¢ the deviatoric stresses of % Oy 4 0, and the coefficients &p A, and A, are
défined in Table 1.

The fracture criterion of Mohr-Coulomb{1l] is applied to tensile failure in order
to take a reduction of tensile strength due to lateral compressive stresses into
consideration,

F =(fc—ft)(0m - 081n¢b’3)/(fc+ft) + Scos ¢ - fcft/(fc+ft) = (0 === (2.2)
where ¢ = —?‘; sin-ll-3J3'J3/263l with -1/6 Lé<n/6 5 g, - $,8,85, + M T T, - sxr:z - SyT:x
-sszy N S the uniaxial compressive strength; and f : the uniax1a1 tensile
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strength. Fig.2 shows the assumed fracture and yield surfaces in the two-
dimensional principal stress plane. The direction of concrete cracks is de-
fined to be perpendicular to principal tensile stress in uncracked concrete just
prior to crack formation. In order to be able to pursue behaviors under cyc-

lic loading excursions, six different cracking modes[2] representing the opening
and closing of cracks are considered in the present study as shown in Fig,3,

2.2 Steel Reinforcement

The reinforcing bar is regarded as one-dimensional continuous medium in which
the area of reinforcing bar distributes uniformly within any concrete element
and therefore it is in uniaxial stress state. The stress-strain relatiomship
for reinforcing bar is assumed to be elasto-plastic of bi-linear type with the
strain-hardening effect as shown in Fig.4.

The subscripts of 0, E, etc. in the left hand side shall indicate the correspon-
ding materials, and the subscript s is used for steel and ¢ for concrete is

omitted in this paper.
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3. MATERTAL STIFFNESS FORMULATION

The material stiffness for reinforced concrete is assumed to be obtained by a
linear superposition of component stiffnesses of concrete, reinfercing bar, bond
, aggregate interlock and dowel ation to be bescribed below.

3.1 Concrete

The material stiffness for elastic uncracked concrete shall fellow Hooke's Law
for plane stress in an isotropic material. The relation between the incre-
mental stress A{o} and the incremental strain A{e} for palstic uncracked con-
crete was derived on the basis of the Theory of Plasticity along with the yileld
conditions defined in Eq.{(2.1) and associated flow rule[3},

Ao} = (1D, = [P] )ble} = D] Ale}  ——-m (3.1)

where 0}, :the elastic matrix for corxcrete;m]ep : the elasto-plastic matrix and
the plastic matrix [D]p for plane stress is defined as follows,

) diz 442 444
E 1
D] = e n o d M| s (3.2)
. Y A 22 23
SYM. s
B = E[282/9(1- V) + 0 A,A./3(1- VT +{o> + 2(1- v)J,}A%/45%G (1-v2)]
1 ml 2 m 3°7°2 m
2 2 _ 2 ) } _
dyp T Dy s dyp =Dy 5 dyg =Dy, dy, =DyD, , dyy = DyD;, dyy = DD,
D, = (1+ U)A1/3 + (Sx+ usy)Azlza " D2 = (1+ U)A1/3 + (st+ Sy)AZ/ZO .
D, = (1- U)TxyAz/ZG

where E : the initial Young's modulus ; U : the Poisson's ratio ; m' = AY/Ae_for
the Von-Mises's formula and (1-/3a)“AY/Ae_ for the Drucker-Prager's formula ;

AY : the increment of uniaxial yield stress ; and Aep : the increment of uniaxi-
al plastic strain.

Cracked concrete is subjected to the normal stress gy parallel to crack direc-
tions and thus the uniaxial stress-strain relation in the U-direction, as indi-
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cated in Fig.5, is written as follows,

o, = Ee, with Y@y Lo <f - (3.3
If the crack direction makes an angle of B¢y with the X-axis, the stiffness ma-
trix in the local coordinates U,V is converted into that in the global coordi-
nates X,Y by using a appropriate transformation[2],

{GX} = [D]cr{Ex} ————— (3.4)
. . T _ T
in which {Gx} = {Ux’ 0y, Txy} {ex} = {Ex, Ey, ny} and
4 2 i 2 3 .
cos ecr cos ecrs1n ecr cos ecr51n8cr
= 4 3., 0
[D]cr = E sin ecr cosecrsin ecr (3.5)
SYM, c0326 sinza
cr cr

The stiffness formulation for cracked concrete in the plastic range(UuS;Y(k),
where k = 1, 2 and 3) is to be done in the same way as the case for elastic
cracked concrete(Y(l)S;(ﬁls;ff) by using the tangential moduli E¢l and E o on
the uniaxial stress-strain curve corresponding to the strain induced in the
crack direction instead of E in Eq. (3.5).

3.2 Steel Reinforcement

Since the reinforcing bar is one-dimensional element, a derivation of the elas-
tic stiffness matrix for reinforcing bar inclined by an angle of g6 with the X-
axis is similar to the case of cracked concrete. The stress-strain relation
for reinforcing bar in the X-direction, as indicated in Fig.6, is written as
follows by assuming the compatibility of deformation,

op = pg. Ee- with - el Il B, (3.6)

where gE : the Young's modulus of steel ; gAx : the area of one bar reinforced
in the X -direction ; A : the cross sectional area of concrete between reinfor-
cing bars ; and hereafter the subscript s shall indicate steel.

The stiffness matrix of Eq.(3.6) in the global coordinates X,Y takes the follow-
ing form[2],
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{c. } = [D]e{ex} ——————— (3.8)
: 5 2 2 3 :

in which cos 9 cos  BOsin” B cos” DOsin 6

'8 s 5 s s

_ 4 3

S[D]e = p;.SE sin SG cossesin SS ————— (3.9

SYM. cos2 Bsin2 6
s s

The stiffness formulation for reinforcing bar in the plastic range is to be done
in the same way as the case for reinforcing bar in the elastic range by using
the tangential Young's modulus gEgt on the stress-strain curve corresponding to
the strain instead of gE in Eq.(3.9).

3.3 Bond between Concrete and Steel Reinforcement

It has been already known that bond between concrete and reinforcing bar after
crack formation gives some resistance to concrete(tension stiffening effect) and
its resistance gradually deteriorates with an increase in number of cracks, that
is, an increase of strain as shown in Fig.7{4 and 5].

Reffering to experimental results on tensile bond tests[4 and 5],bond effect was
replaced by the equivalent stress which indicates the nominal concrete stress,
without idealizing it into the discrete element such as the linkage element, and
the equivalent stress due to bond is modelled as shown in Fig.8.

It is assumed that the equivalent stress under monotonic loading is represented
by the 3rd orders of polynomial function,

- 2 3
Gﬁ,eq = ft.( a, + alX + aZX + 33X )
with O S Oi'{,eq S ft » €.p S e;{ gsBu and ———=—= {3.10)
X = (Ei T Eer )/(EBu T Ber )

where 9% oq : the equivalent stress(kg/cmz) of concrete in the reinforcing direc-
tion X and the subscript eq indicates an equivalence to the stress o, T, etc.;
ex (or gex): the average strain of concrete(or reinforcing bar) in the X-direc-
tion ; €qr! the cracking strain ; €py: the strain at which bond over the element
length disappears; and the coefficientsao.al,a21nm a, are 1.0, -2.748, 2.654 and
~-0.906 respectively.

1070 = 2 }
oy REINFORCEMENT PRISM_ SECTION x’efo‘{ ..... Og,eq (otaik+azki+aXOf,
H —o— D1 125x125°" '
MOS A" - D19 95x 95
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Furthermore, the hysteresis for unloading from an arbitrary point A on the curve
of Eq.(3.10) was assumed on the basis of a line AC connecting a point A{0y ,e3)
and a point C(Bf, , 0) on the zero-strain axis as follows,

.for region AB (Ob'< o

Y i,equ 0a )

(o = E €= + = o Pre e N e e 3.11
X,eq eq( X Ea) Ga * qu O:E b 0 (Ga+ ft)/EEa ( )

where Egq: the equivalent Young's modulus(kg/cmz) and the equivalent stress
Ub of the point B is set equal to an average of Ga and OC.

.for region BC (B.f_ § 9%, eq éab)

Gi,eq = Eeq'Ei + B.ft s Eeq (Ga - Bft)/2€b ______ —

- 0.5

€y = (Bft - Ga)/2aE +te, B

Nextly, the hysteresis for reloading from a point C or C', where C' is an arbi-
trary point in the compression range, takes either a path(C+D-~A) before the
closing of cracks or a path(C'»> 0->A) after the closing of cracks,

.for region CD (Bft < g - <:Gd)
Gi,eq = Eeqei + Bft . Eeq =a.E ————— (3.13)

where the equivalent stress 0d of a point D is set equal to an average of 0, and
Cc.

.for region DA (Gd Sgci,eq <:Ga)

Gi,eq = Eeq(ei - ea) + O, Eeq = (Ua - Bft)/ZEb —————— (3.14)
.for region 0A ( O <0§ e <Ga)
>R, N
Gi,eq = Equi , Eeq = Ga/Ea ——————— (3.15)

The equivalent stress‘&,eqdefined in the above is converted into the stresses

{ Ui,eq’oi,eq’Tii.eq} in the orthogonal coordinates X,Y as follows,
o] cos2 0 sin2 9 -2cos Bsin 6] Jo_
X,eq s s s s X,eq
a — sin2 0 cos2 §) 2cos Bsin 6 0 -——~ (3.16)
v,eq = s s s s
a cos Bsin 6 —cos Bsin 6 c032 8- sin2 6 0
Xy, eq s s s s s s

3.4 Equivalent Shear Stiffness due to Aggregate Interlock

In order to evaluate the shear stress induced along cracked surfaces of concrete
due to aggregate interlock after crack formation, Paulay et al.[6] conducted the
test on aggregate interlock whose variable factors were concrete strength and
crack width, and proposed the shear stress-relative displacement relation.
However, since their predicting equation gives a rather high evaluation, it is
modified to the following,

=(0.141/W -1.0)(1.526\/%2 -7.365)(6S -0.0436W) =—=~=—m (3.17)

Tuv,eql

where T4y eq1:the shear stress acting along cracked surfaces of concrete(kg/cmz) 3
W : the crack width(em) ; 8g : the relative displacement across cracked surfaces
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(cm) ; and the subscript s in the right hand side indicates slip.
The strain of cracked concrete yyy is considered to be a sum of the elastic

shear strain and the shear strain due to the relative displacement as shown in
Fig.9,

Yoo = Ty’ + ssle —————— (3.18)
where G : the elastic shear modulus(kg/cm2) ; Tuy : the elastic shear stress in
the local coordinates U,V(kg/cm?) ; and e : the crack spacing(cm).

Assuming that the first term in Eq.(3.18) can be negligible as compared with the
second term, then Eq.(3.18) can be reduced to,

Yuy © 65/e with Yylf;;YuVIS:YBl _______ (3.19)

Substituting Eq. (3.19) into Eq. (3.17) and arranging it, then the following equi-
valent shear stress-—strain relation is derived (see Fig,10),

Tyv,eql = CeqlMuy ~|Yy1|) + Yyp = 0-0436W/e

et = (0.141/W - 1.0) (1.526\/_‘1'_—- 7.365)e
where Ggq1 = 0 for Yy Vuy <Yy1 ; Tuv,eql the equivalent shear stress(kg/cm?) ;
Geql the equivalent shear stlffness(kg/cm ) ;3 and Yyl: the shear strain at
which aggregate interlock becomes effective.

The limit shear strain at which aggregate interlock disappears is assumed as
follows on the basis of the experimental result{6],
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Yg1 = (0.01799 + 4.1857W) /e = ——~———- (3.21)

The equivalent shear stiffness of cracked concrete becomes maximum when crack
just occurs and is roughly equal to 0.1 E.

Now, the equivalent shear stress in the local coordinates U,V defined in the
al?ove is converted into the stresses {ox'eql, Oy eql’ Txy,eql} in the global coor-
dinates X,Y as follows,

o cosze s1n28 -2cos8 _sinf 0
x,eql cr cr cr cr
o 2 2
Uy,eql —[sin ecr cos Gcr 2cosecrsin6cr 0 (3.23)
T cosf _sinf -cosf _sinf cos26 -sin26 T
Xy,eql cr cr cr cY cr cr uv,eql

Fig.1ll shows the reduction of shear modulus due to cracking which is evaluated
from Eq.(3.20) and those which have been used by different investigators[7], and
a discrepancy among them is considerable, ranging from ablout 40 to 3 percents
for very wide cracks. Fig.12 shows a comparison between the equivalent shear
stress-strain relation calculated from Eq.(3.20) and that observed by the exper-
iment[6] for several crack widths and constant concrete strength.

3.5 Equivalent Shear Stiffness due to Dowel Action

Dulacscka[8) conducted the dowel test whose variable factors were concrete stre-
ngth and diameter and angle of reinforcing bar, and he proposed the relative
displacement-dowel force relation,

6

5, = 4 (358Ty/D/f"c) x 10 ° = —m———- (3.24)
A= (T/Ty)/tan[(T/Ty) (m/2y]  -————- (3.25)
'.ry = O.ZDzsoy{/pzsinsecr + pfc/0.03scy - psinsecr} ----- (3.26)

where o= 1"(501,0,)2 ; Ty : the dowel strength of one reinforcing bar(kg) ; T :
the dowel force(kg) ; 50 : the steel stress(kg/cm2) ; g0y : the yield stress of
steel(kg/cm2) ; D : the diameter of reinforcing bar(em); and gBecr : the angle
between the axis perpendicular to the crack direction and the reinforcing bar.

A in Eq.(3.25) is a function of the non-dimensional dowel force T/Ty and gives
the curve as shown in Fig.13. This curve is approximated by the elasto-
palstic relation,

.for elastic case ; T/Ty =a,A @ ——m——- (3.27)
/Ty
10— ———
o8}
os} /
ost / /
02 ,\u
00 i

% :

~
S S L BN

Fig.13 Non-Dimensionized Dowel

Fig.14 Idealization for Dowel Force
Force Curve
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.for plastic case ; Geq2/ G
0.06
B C¢-1:010 P =0.018
T/Ty = 1.0 (3.27) - e C-2:D10 P ~0.0053
5 C-3:
where o indicates the elastic yd \ B o
slope and is set equal to 0.2. 8.03 /////,z’ 2 \\\\
In the next place, in order to 0@ l//’ \\\\
evaluate the equivalent shear // e T~ N\
stiffness due to dowel action, 0.01 - ~J
the dowel force is replaced by -
the equivalent shear stress g 0 3 o o o g
as shown in Fig.14, «Bcr
Fig.15 Equivalent Shear Stiffness due to
Lo, a2 P Tcossecr/sA —===(3,28) Dowel Action

Substituting Eqs. {3.19), (3.27)
and (3.28) into Eq. (3.24) and arranging it, then the following equivalent shear
stress-strain relation is obtained,

.for elastic case ( lYnVIS;YYZ )

Tuv,eq2 ='Gqu'YuV —————— (3.29)

_ 6
Geq2 = (a.DJf;.e.picossecr) x 107/358 A

.for plastic case (IYUV|>>Y 2 )

T = p_.T cos 6 [/ A
[ uv,eq2| y s cr' s (3.30)

[y 2= 358T x 10 /u.DfJ‘:.e

A transformation of the equivalent ﬁhear stress 'uv,eqzin the U,V-coordinate
system to that 0 ,eq2® © eqz- } in the X,Y-coordinate system is to be done
in the same way as Eq. (g The relation between ratloscmﬂ/Gof equiva-
lent shear stiffnesses eqz of Eq.(3.29) to the elastic shear stiffness G and
angles gOcx of reinforcing bars is plotted in Fig.l1l5 for several steel ratios,
and it is found that an effect of dowel action is relatively small.

4. CRACK SPACING AND CRACK WIDTH

It is necessary for evaluating aggregate interlock and dowel action described

in the previous section and also checking up the opening and closing of cracks
in cyelic analysis to determine crack spacing and width.

Morita et al.[9] found from theilr own experiment that there was a linear rela-
tionship between average minmum crack spacing emin and ratios D/p of bar dia-

meters D to steel ratios p. Thus, assuming that when steel yields average

crack spacing eazy becomes epin, the equation predicting ei,aV'iS proposed,

ei,av = 0,1476 + 0.19.D/pi + 0'0023/862 ______ (4.1)

where ®%,av indicates average crack spacing in the reinforcing direction X, and
note that this is a nominal crack spacing for any one of cracked concrete
element. ‘

Fig.1l6 shows a comparison between crack spacings of the experiment[10, 11 and
12] and those calculated from Eq.(4.1) for sevearl ratios D/p, and they have



N. SHIRAI - T. SATO 207

D/P |Experiment [Calculated | =300 8 o o
300} a 47.6] © : € o o
: 41.5 a [ == £ a o
\\\ 751 A s e § 6
€ - x o
2200 L200f o 00 pgoo
&
© = - ﬁ,
Q
e &100 a _
o Y.GOTO et al.
el a H. MUGURUMA et al.
& A P.CLARK
00 - 0.0 * 30.0 * 300 a MICHAEL CHi et at,
sdmax 12107 kg/cm?)
00 100
Fig.16 Comparison between Assumed and Cav (CmM) f&ﬁ’mmeﬂ, ne

Observed Average Crack Spacing-Steel

SEEESS Relation Fig.1l7 Comparison between Calculated

and Experimental Crack Spacings

e/2We/2,
o, |
300 -
X 2 a0
2 "g 2
% 2x5Emin § nnu °
E L’JZOO-I ]
L7} 7/ =
= IsEto
% 2.5Emax E
wsE &
100
o f ® Y.GOTO et al.
@ A P.CLARK
a W]V z & MICHAEL CHI et al,
" 1S 2. Smax
S s= e/2 e(x)dx 00 100 200 300
‘/° . W x10*cm  (Cakulated)
Fig.18 Distributions of Steel
Strain and Slip along Rein- Fig.19 Comparison between Calculated and
forcing Bar in Cracked Con- Experimental Crack Widths

crete

some scatters at low stress levels but they fairely agree to each other with an
increase of steel stresses.

Fig.17 shows plots of experimental crack spacings{9, 11, 12 and 13] against cal-
culated values by Eq.(4.1) and it can be seen that although a discrepancy bet-

ween them exists for big crack spacings, they coilncide as crack spacings become
smaller.

In the next place, a derivation of crack width based upon the conventional bond
theory is presented. The slip increment dS over the interval dX is generally
defined as a difference between elongations of concrete and reinforcing bar, and
assuming that concrete strain after crack formation is negligible as compared
with steel strain, then the slip is approximately expressed as follows,

S(x) =ﬁ)‘ O (4.2)

The maximum slip is obtained from Eq.(4.2) as follows, provided that distribu-
tions of steel strain and slip over crack spacing e are given as shown in Fig.18,
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e/2

Therefore, crack width W is defined as a function of maximum slip S, and steel
strain g€pax at the cracking part,

W= 2'Smax(1 + o — ) e (4.4)
However, it is hard to evaluate Sy,y since strain distribution of reinforcing
bar along its length is unknown, so the average strain .95 defined in Section
3.3 is adopted in this paper. But since strain at the cracking part is in-
cluded in this average strain, it needs to redefine the net average strain
excluding that strain,

&R T 8w wx<s€max - e  mmmmem- (43

Thus, Spax is derived by using Eq. (4.5) instead of ge(x) in Eq.(4.3) as follows,

S = a, E_‘I") - W- £ _ £ 3 :2 ______ ,4'6.
max s %' x(s max s % 7/ { )

An introduction of Eq.(4.6) into Eq. (4.4) results in the following crack width,

w§ - e’sgi(l * semax)/{l * (1 Semax)(semax T s i)} —————— (47

where £ = e_+ O /p_.

S max § X X,eq
Fig.19 shows plots of experimental crack widths observed in the tensile test
(black circles)[13] and the flexural test of beams[1l1l and 12] against calculated
values by Eq. (4.7).

Although the proposed equations for crack spacing and width give an evaluation
on each reinforcing direction, it is useful from an analytical point of view to
define crack spacings and widths normal to crack directionms.

Consider the general case in which concrete is reinforced in the orthogonal di-
rections X,Y.

Letting e,—‘ av’ °5,av’ "z 2nd ¥z be average crack spacings and crack widths evaluated
by Eq. (4. l) and (4 7), then the average crack spacing ezy perpendicular to the
crack direction shall be either smaller one between the following two equations

(see Fig.20),

Fig.20 Representation of Crack Fig.21 Representation of Crack
Spacing Width
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e =-e_ cos © or e =e. sinB = ————- (4.8)
av X,av s cr av y,av s cr

and crack width normal to the crack direction is given as follows(see Fig.21),

W= W.cos(® - L. > (4.9)
W=/w+w § = tan t(u_/u_)
X y y X

5. NUMERICAL PROCEDURE
5.1 Finite Element

In order to improve accuracy and reduce number of degrees of freedom, the com—
posite element with four nodes and eight degrees of freedom is developed from
four constant strain quadrilaterals with nine nodes and eighteen degrees of
freedom through the conventional condensation process as shown in Fig.22 and we
refer this to as the Super Element[14].

5.2 Solution Procedure

An incremental initial stress approach or an incremental self-correcting app-
roach is used to solve governing nonlinear equations, However, the latter
approach is suitable from a viewpoint of a stability and a computatiomal time
when cyclic behaviors are to be followed.

Now, the incremental self-correcting approach proposed by Stricklin et al.[15]
in which a nonlinear analysis is performed by using the initial stiffness all
over the computaional process without iterations is briefly described.
According to this approach, the incremental deflection A{8} is calculated from
the following equations for materially nonlinear problems,

A{S} = [KO]'l(AP{?} + Q) + APz {£} )  --mom (5.1)
{£} = -[KO]{G} + P{P} + {Qp} —————— (5.2)

where {f}: the force in unbalance induced by the deflection {8} which does not
satisfy equilibrium ; [K.] : the initial stiffness ; {Q_} : the fictitious load
due to material nonlinearities ; P : the load parameterp; {P} : the normalized
load vector ; Z : the correcting factor ; and APZ is conventionally set equal
to 1.2,

Fig.22 Composition of
Super Element
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