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A Constitutive Model for Concrete in High Rate of Loading Conditions
Un modéle constitutif pour le béton sous sollicitations rapides

Ein Stoffmodell flr Beton flir grosse Beanspruchungsgeschwindigkeiten
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Associate Professor
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Luled, Sweden

RONNY GLEMBERG

Research Associate
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SUMMARY ]

An elastic-viscoplastic-plastic-brittle constitutive theory is chosen for concrete. it is
capable of describing rate, strain history, and stress history effects, as well as the
ductile and brittle failure of concrete. The mode! accounts for nonlinearities both in
deviatoric and volumetric states of stress and strain. Comparisons with experimental
results are presented.

RESUME

Un modéle constitutif élastique-viscoplastigue-plastique-fragile est choisi pour le béton.
Il est capable de décrire les effets de la vitesse, de I'histoire de 'allongement, de
I'histoire de la contrainte et aussi la rupture ductile et fragile de béton. Le modéle
permet de tenir compte des propriétés non-linéaires dans les états de contrainte et
d'allongement déviatriques et volumétriques. Des comparaisons avec des résultats
expérimentaux sont présentées.

ZUSAMMENFASSUNG

Ein Stoffmodell flir Beton flr elastisches, viskoplastisches, plastisches und sprodes
Verhalten is gewahit. Es ist moglich, Wirkungen von Geschwindigkeit, Dehnungs-
Geschichte und Spannungs-Geschichte zu beschreiben. Auch spréde und duktile
Briche sind beschrieben. Das Modell kann nicht-lineare deviatorische und
volumetrische Spannungs- und Dehnungs-Zustdnde berlcksichtigen. Theoretische
Ergebnisse sind mit experimentellen Resultaten verglichen.
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L]

1. INTRODUCTION

In all inelastic deformation of concrete, as well as most other materials, the
response is highly dependent on the rate of stressing or straining. Further-
more, the inelastic deformation is to a large extent non-recoverable and path
dependent. A realistic material mode! must account for these effects.

The present material model uses a combined elastic-viscoplastic-plastic-brittle
theory previously presented in Nilsson [1]. This model can be motivated from

the physical observations of two main stages of crack propagation: the stable
crack propagation and the unstable crack propagation. Thus, the stable crack
propagation will be described by the theory of viscoplasticity, and the unstable
crack propagation by a combined viscoplastic-plastic, or alternatively, a
combined viscoplastic-brittle theory. By the use of rate-hardening functions,
the stress at failure will also depend on the strain rate.

The actual material behaviour is governed by the relative location of the

stress point to the plastic yielding, brittle failure, and the viscoplastic
loading surfaces in the stress space, see Figure 1,

93

brittle failure
surface

initial
viscoplastic
loading surface

elastic region

plastic yield

surface ///
v

elastic-viscoplastic -0,
region

Fig 1 Regions of elasticity, viscopTasticity, plasticity, and brittle
failure

2.  CONSTITUTIVE EQUATIONS

2.1 Loading, potential, and failure surfaces

From proportional true triaxial tests, it is possible (within the assumption
of isotropy) to construct the surface of elastic 1imit, the crack initiation
surface, and the failure surface. Most work on the mathematical modeiling of
these surfaces has been concerned with the failure surface. In contrast to the
failure surface, both the elastic 1imit surface and the crack initiation
surface are closed. In the present theory, their mathematical representations
are the static viscoplastic loading surface FV = 0 and the plastic yield
surface FP = 0, respectively. For tension or combined tension-compression
states of stress, the plastic yield surface is also utilized as a brittle
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failure surface.

In concrete and other granular materials, strain softening and dilatancy are
obtained for small hydrostatic pressures, while strain hardening and con-
tractancy are obtained for high hydrostatic pressures. A closed loading surface
and an associated flow rule are capable of modelling these effects.

A simple geometric surface, which can be made to fit the experimentally found
surfaces (i.e. both FY¥ = 0 and FP = 0) fairly well, is the generalized
ellipsoidal surface

2 o & =8 e
.. [( Hé; _ ;] ]>2-+( E;gy)2]1/2 o -

‘where o_, 1., and 8 are the octahedral normal stress, the octahedral shear
stress, and the angle of similarity, respectively, given by

o =,% tro, T, = (%'2535)1/2 , 6= %—arccos(/? det(g)/ro3) (2)

Here s is the deviator of the stress tensor o. The parameters gu, g], and b(6)
can be identified from Figure 2. ~

The rate-hardening parameter Hr’ which will later be discussed, approaches in
static loading condition the " value of fcu‘

The deviatoric semiaxis b(8) is approximated as a function of & (an ellipse).
Due to the symmetry conditions, it suffices to interpolate b in its values o
b1 and b2 for 'triaxial extension' (8 = 09) and 'triaxial compression' (8 = 60°)

-g,/f
T /f \ o3/ f ey
B A 0O cu
~F
\ %of"
£y
-0,/ f
. 2" cu
c1/fcu
(b)
Fig 2 Rendulic (a) and deviatoric section at vertex (b) of the generalized
ellipsoidal loading surface. (f_ = unjaxial compressive strength)

Ccu
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tests, respectively. Thus,

b(8) = [t(6) + u(e8)l/v(e) (3)
where

t() = 2b2(b§ - b%)cose (4a)

u(6) = b,y(2b, - b,) (4(b5 - bo)cos?s + b5 - ab,b,1'/? (4b)

v(0) ; a(6% - b2)cosPe + (b, - 2b))° (4¢)

where b1 = b(0°) and b2 = b(60°), respectively, ¢ f Figure 2(b). With the excep-
tion of the hardening and softening parameters, the generalized ellipsoidal
surface contains four parameters g1,€1, b1, and b2, which must be fitted to
experimental data. It is convenient to express some of these parameters in more
easily identified ones, which can be obtained from standard tests: the uniaxial
compressive strength fcu’ the unjaxial tensile strength ftu’ the biaxial
compressive strength fcb’ and the elastic 1imit in hydrostatic compression fct‘
Table 1 summarizes the four different test stress states.

TABLE 1 Identification of test stress states
(atu = fo'feur %eb = Tev/Teur 51 ° fct/fcu)
Principal
Test stresses Go/fcu To/fcu o b(8)
Uniaxial °1=ftu \
Lo, 1724 0° | b
tension 02=03=0 3%t t3 Ttu 1
Uniaxial c1=02=0 1 7 600 ;
. "3 B 7
compression o3=-fcu
Biaxial °q=0 ) 2a Jz N 0© :
compression 02=o3=—fcb 37cb 3 Teb 1
Hydrostatic e
0y=0p=03=-F ¢ | & 0 - -
compression
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The following substitutions for gu’ b1, and b2 are

2
_ “Eb‘§ P ~ E1)2 - u%u(g'acb " g])z } (“Eb ] 0‘12:u)£1 (5)
T 2 (2 )+l (2o o+ g - (o - af )E,]
[“cb 3 %y T 5 Atz %y * 5 %b tu’ =1
4

2 _2 2 I%p Y E T 211

b1‘§°‘cb[1'( —— )] (6)
u 1
2 2 -1

b2=2[1_/w)] (7)

2 _9— \gu‘g]

For many occasions a complete set of test data is lacking, and empirical rela-
tions must be relied on. With such empirical relations, however, the number of
model parameters can be reduced.

Figure 3 shows a fit of the generalized ellipsoidal surfaces to experimental
data. A remarkably accurate fit for this concrete is noted for the elastic
1imit surface. The poorer accuracy for the fit of the initial plastic loading

unjaxial

loading path experiment:

L2 —*—s—4— fajlure

— ——— onset of un-
stable crack

1. propagation or

o crack initiation

+++++ pglastic 1imit

dgeneralized ellipsoidal:

1. —.—.— initial plastic
loading surface

5 2 —— initial visco-
6 =10 plastic static
1 i f
Toading path oading surface
Fig 3 Fit of generalized ellipsoidal surfaces to experimental data of

Launay and Gachon [2]. Parameters of the initial plastic loading
surface: ay, = 0.15, a.p = 1.8, £y = -2.3 (gu = 0.05, b1 = 0.85,
b2 = 0.64). Parameters of the initial viscoplastic static loading

surface: gu = (.05, E] = -0.67, b1 = 0.24, b2 = 0.25
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surface is explained by the definite form of the ellipse. To obtain closer fits
more sophisticated types of loading surfaces are needed. Another possibility
for closer fits is to use two different types of loading surfaces; one of the
classical type, which conforms to the fajlure surface, and another which inter-
sects the hydrostatic compression axis.

2.2 Elastic response

For stress points inside the static viscoplastic loading surface, FY = 0 (elastic
limit surface), a hypoelastic stress-strain relation is assumed. Thus,

dg = $:dg (8)

where S is the fourth-order elastic tangential stiffness tensor and dg is the
elastiC strain increment tensor. Initially, a linear elastic stiffness is
assumed, in which case S contains elastic constants. For representation of
stiffness degradation due to micro- and macrocracking, a dependence of the
inelastic dilatance on the elastic stiffness § is introduced in the form

Ep €p
~{ 2y (2%
K=%e H;,G=°Ge'a§,eo>0 (9)

where °K and °G are the initial bulk and shear moduli, respectively, and
eP is the plastic volumetric strain. The parameters d4 and d, control the
rate of degradation. In general we have assumed that d1 = d2 = d.

2.3 Elastic-viscoplastic response

For stress points in the region between the static viscoplastic loading surface,
FV = 0, and the plastic yield surface, FP = 0, elastic-viscoplastic respOﬂse is
assumed. The total stra1n increment is add1t1ve1y resolved into elastic (de )
and viscoplastic (ds P} parts

de = det + de'P (10)

~ ~ ~

The elastic-viscoplastic stress-strain relation is thus

dg = S:(dg - £'Pdt) (11)

[t

The viscoplastic strain rate gYP is governed by a generalization of Perzyna's
{3] theory

&P = v(g.g) <o(F) > n. ‘ (12)

where the normalized grad1ent ne of the dynamic loading potential surface,
F¥(g, HY) = const., gives the direction of the viscoplastic strain rate. The
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hardening/softening function HY will be discussed in Section 2.6. The bracket

< +> indicates that only values of ¢ with argument FY > 0 are taken as

different from zero. The static viscoplastic loading surface is given by

FV(g, HY) = 0. In short-term static and dynamic loading conditions, the primary
nonTinearities of concrete are caused by microcrack growth and pore collapses.
Both these physical phenomena manifest themselves as nonrecoverable delay
effects. From a physical point of view, a relationship must exist between the
velocity of the growth of microcracks and the viscoplastic strain rate. One can
therefore interpret the accumulated viscoplastic strain as a measure of micro-
crack damage. Several proposals of the function ¢(FVY) have been given by Perzyna
[3]. They are all derived from fits to experimental data. The function

Mﬂ)=e%f (13)

is used in this analysis. The value FY of the dynamic loading function is
normalized against FY!_in order to give nondimensional values of ¢(FV). The
normalization value FV' has been chosen such that FV = FV1 at plastic yielding
for a specified test state of stress. The parameter a determines the curvature
of the stress-strain curve at constant rate of straining.

The parameter vy in Eq. (12) is assumed to be a function of the strain rate. This
renders it possible to fit stress and strain at failure according to specified
values. The following function was proposed in Nilsson [1]

éef
Y(é) - éEf e-r‘ 'ln|é—e—1,_= (14)
r

ef . . . . . eof,
where € is an invariant function of the strain rate, s$f1s a reference
value of the effective strain rate, and r is a material constant. In the

following numerical analyses
2, 1:2"/? (15)

¥ = (& + 7 7,

has been utilized.

2.4 Elastic-viscoplastic-plastic response

For a stress point on the surface FP =0 plastic yielding takes place. The
plastic strain increment qu gives a contribution to the total strain increment.
Thus,

dg = de® + dg"P + deP (16)

It is observed that a non-zerc viscoplastic strain increment always accompanies
the plastic strain increment, unless the static¢ viscoplastic loading surface at
the actual stress-point coincides with the plastic yield surface.
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Within the assumption of an associated flow rule the plastic strain increment
is obtained from

P,
deP = dx 2 (17)

~

where the scalar dA will depend on the states of stress, strain, and strain rate.
During plastic flow the consistency conditions

FPlg, HP) =0 and  dFP(g, HP) = 0 (18)

must be satisfied. If the hardening and softening of the plastic surface is
governed by a function HP, which is a function only of the plastic strain, we
find

dg = ée}a: (d’g - dEVp) (19)

where the elastic-plastic tangential stiffness tensor §Fp is given by

p p
ep _ g _ 1 (g, 3F ) (3F" . ) 20
§., _§, -ﬁ(é.'ag)(ag '§J ( a)
oo 2FP o oFP  aFP aHP ng (20b)
og = ug aHP agp <

2.5 Elastic-viscoplastic-brittle response

Brittle failure is assumed to occur whenever the failure criterion
Fc(ga Hc) = 0 (21)

is met and at least one principal stress is positive. Before failure, isotropy
is assumed, and the failure criterion (21) can be interpreted as a failure sur-
face in the principal stress space. The shape of the failure surface changes
according to the hardening and softening parameter H®. The same function has
been chosen both for the plastic yielding (ductile failure) and for the brittle
failure. Thus, it is assumed that

F(g. H®) = FP(g, HP) (22)
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Prior to failure the material can carry a certain amount of principal tensile
stresses in any direction. Whenever the failure criterion (21) is satisfied in
a spatial point, a crack plane is formed there. The crack plane induces
anisotropy, which will exist for all future time. The normal of the crack plane
is assumed to coincide with the direction of the maximal principal {tensile)
stress at failure.

After the brittle failure, the tensile strength across the crack plane is
assumed to be zero. The compressive strength across a crack plane is, however,
assumed to be independent of an existing crack plane. Depending on the rough-
ness of the crack surfaces and on the crack width (distance between the crack
surfaces), the shear strength in the crack plane can vary from full strength
to zero strength.

Secondary cracks may develop at a cracked point as long as a tensile strength
remains in any direction. For every new crack plane that is formed, the order
of the stress state will be reduced by one. Thus, prior to cracking the stress
state is three-dimensional. After one crack plane has formed, it is two-
-dimensional, etc.

In the present analysis, the 'tension cut-off' surface is utilized as a post
failure surface. Thus,

(o) = max (o)) i=1,2,3 (23)
where Oys Oos and gy are the principal stresses.
At failure the following relations are satisfied:

FPlg, ) =0 and  F'(g) = m (24)

where u > 0 is the largest principal stress. Immediately after failure, the
following relation must hold

Ff(g +dg) =0 (25)

where dc is a stress transfer or stress re1axat1on It is assumed that
the incremental strain due to brittle failure de s can be added to the
total incremental strain, Thus,

de = dge + dEVp + dgc (26)

In analegy with an associated flow theory of plasticity, it is assumed that the
incremental strain due to brittle failure follows from the normality rule
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de® = dr - | (27)
where dxc is dependent on the stress and strain state. Some algebra yields

dg = éc s (deg - dEVp) - dgc (28)

where the tangential stiffness tensor §F for the material with one crack plane
is given by

fo zopf
§C=§-JE(S:§F )(g—F~:§) (29a)
pE w92 1
f f
c _9oF _ o, ,oF
D dfa’%,ag (29b)

and the incremental stress dgF due to brittle failure is given by

oFf

56 (30)

c u .
do” =+~ §S:

The derivation of the tangential stiffness tensor écc and the incremental
fracture stress do“C due to a secondary crack plane is analogous.

Finally, when the third crack plane is formed, the tangential stiffness tensor
for tensile states of stress is reduced to the zero tensor,

2.6 Strain hardening and softening

A11 four parameters of the generalized ellipsoidal loading surface can be func-
tions of damage measures. This renders it possibie to model complex hardening
and softening behaviour. Unfortunately, much experimental results on triaxial
hardening and softening of concrete are lacking, and the choice of hardening
and softening functions must mainly be based on hypotheses.

Experiments show that plastic contractance hardens the material, while plastic
dilatance softens the material. Thus, it is natural to use the inelastic
volumetric strain as an internal variable (measure of material damage).

The parameter €, (Eq. (1)) of the generalized ellipsoidal surface is assumed
to be a master hardening and softening parameter. The hardening function is
obtained by identifying the inelastic strain components of experimental data
obtained from hydrostatic compression tests. The exponential hardening function

—apP
g = g e % (e <0) (31)
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has been found to fit test data of Green and Swanson [4] fairly well. In Eq.
(31) °gq denotes the initial hydrostatic stress at plastic yielding and a
is a material parameter,

The softening function can be chosen in a similar manner from tests which ex-
hibit softening behaviour. The following function has been chosen

eP

)
g = (%5 +g) e - & (0 > 0) (32)

where g, and &, can be identified from Figure 2 and b is a material parameter.
The par;meter g controls the rate of softening. It has been found that b =

= 5.107"% yields a good fit to uniaxial compression tests by Linse [51, [6].
Experimental data for the hardening and softening of the elastic limit surface
seem to be Tacking at present. For this reason very simple hardening and
softening rules have been chosen. In the case of viscoplastic dilatancy, the
relation between the parameters of the plastic yielding and the static
viscoplastic loading surfaces is constant. However, plastic contractancy

is assumed to affect this relation in such a way that £¥p tends to £y- Thus

v
o,VP H vp vp
S SR
v
E.Ip = (333)
€1 otherwise

where it has been assumed that

vp _ v v v
°61" = K&y, °b1p = Kb1,0b2p = kb,, gup =g, (33b)

and k is a proportionality constant. The viscoplastic hardening can be explained
by the observation of relatively elastic unioading paths from stress states with
high hydrostatic pressure components. Furthermore, the existence of creep or
relaxation even after excessive cracking can be observed in experiments.

2.7 Strain rate hardening and softening

Experiments have clearly indicated the dependence of the rate of loading or
the rate of straining upon the failure. The general observation is that the
ultimate stress increases significantly with the rate of loading or straining.

In the present analysis the rate effects upon the ductile yield and brittle
failure surfaces are introduced in the form of a single rate hardening parameter
H., which is a function of an effective strain rate, Eq. (15). It was proposed
in Nilsson [7] that the rate hardening can be approximated as the function

H. = flep *+ ¢ 1n(éEf) + c3[1n(éef)]2} (34)

where the parameters Cys Cos and Cq are obtained by fitting Hr to experimental
data, c¢ f Figure 4.
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Ho/ oy A
20 /A £ 220-30 MPa
// cu
1.8 5
' f_ =40-60 MPa
£ = 10-20 Mpa.,V/ﬁV/ /e
1.6 1 = 7 J Hughes & Gregory [8]
/s / e ;
1.4 1 /{;/’ A:; Watst?1n [9]
o7 i m40-60 MPa —-— Equation (34)
1.8 1 g
‘//6/ éef
1.0 './ + i} + —t >
1072 107 1073 1021071 100 102 /s
Fig 4 The effect of average strain rate upon compressive strength of

concrete. Parameters of Eq. (34): c, = 1.6, ¢
= 0,0045

9 = 0.104, and

€3

The introduction of the hardening parameters H,. into the plastic yield and
brittle failure function Eq. (1) yields an 1so¥ropic rate hardening or
softening. Due to the rate effect, the failure surface can be interpreted as
'breathing'.

3. VERIFICATION OF THE CONSTITUTIVE THEORY

In this section some experimental test results found in the literature are
compared to numerical results obtained with the present constitutive model.
The simulations are carried out directly on the constitutive equations. Con-
sequently, homogeneous states of stress and strain are assumed in the experi-
mental test specimens.

In general, it is extremely difficult to perform an experimental test with all
components of the strain vector prescribed according to a specified history.
Most strain controlled tests have been performed with just cne pre-determined
strain component.

The verifications have been conducted under conditions of controlled strain
rate in the smallest principal stress direction, and with a given ratio between
the principal stresses. Two types of triaxial tests have been simulated: the
triaxial compression test (two principal stresses equal) and the true triaxial
test with constant ratio between the principal stresses.

The triaxial compression tests performed by Green and Swanson [4] were con-
ducted on high strength concrete. According to the experimental test

fcu = 48,4 MPa and ftu = 5.6 MPa, The biaxial strength was not tested. The
following parameters have been used: fcb = 1.15, fcu = 65,7 MPa, E] = -1.5,

E, = 38.8 GPa, v, = 0.18, « = 0.4 (Eq. (33b)}, a = 80 (Eq. (31)), b = 1.0-10"

(Eq. (32)), H = 24.0 £, (Eq. (332)), o = 0.8 (Eq. (13)), &7 = 2.0-107® 5~"

3
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and r = 0.0625 (Eq. (14), and d = 0.5-‘|0-3 (Eq. (9)). The rate of straining

is assumed to be 2.1070 5'1.

Figure 5 shows the fit of the hydrostatic compression test. With the proposed
parameters the deviation between the experimental and the mathematical curves
is small.

Figure 6 shows the fit of different triaxial compression tests. The hydro-
static pressure was applied in accordance with the prescribed rate of straining.
When the prescribed level of lateral pressure o; = o, was reached, the lateral
pressure was fixed and only the axial stress was increased according to the
specified rate of straining. It is noted that relatively good fits are obtained
for g4 = gp = 0 and g4 = 0, = -6.9 MPa, Due to the lack of independent devia-
toric hardening of the plastic surface, the plastic dilatance according to the
model appears to be too abrupt at material instability. The disadvantage of

the ellipsoidal shape of the plastic loading surface at higher hydrostatic
pressures appears for g, = 0, = -13.8 MPa. Furthermore, the shear compaction

of the proposed model is too small.

The true triaxial tests performed by Linse [5], [6] were conducted with a

constant ratio between the principal stresses. The rate of straining in the
smallest principal stress direction was 2.0-‘10*6 5_1. The following common
parameters have been used: fcb = 1.15 fcu’ ftu = 0.1 fcu’ £1 =-2.0, E, =

= 30.0 GPa, v, = 0.18, « = 0.4 (Eq. (33b)}, a = 100 (Eq. (31)), b = 0.5-10"

Eq. (32)), HY =50 £ (Eq. (33a)), o = 0.8 (Eq. (13)), eefs 2.0 1078 571,

(
r = 0.625 (Eq. (14)), and d = 0.5-107° (Eq. (9)).

3

g,/f
AL 5 A 3" ‘cu

- 4 ¥ + + + + 4 t t > 3800/0

present model

| ———- experiment:
Green and Swanson [4]

Fig 5 Fit of hydrostatic compression curve
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A 0o/fcu
-q -4, —%. \»360
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9179,=0 4
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-// ' =*=* axperiment: Green and
// Swanson [4]
Ve 1-0.8
0,=0,=-13.8 MPa .~
110
0,=0,=0
177273 |
Fig & Fit of triaxial compression curves

Figure 7a shows the fit of a uniaxial compression curve. Some deviations
between the mathematical and experimental lateral strains are observed. Figure
7b shows the corresponding fit to the biaxial loading curve. The deviations

are shown to be small throughout the tested range of strains. Linse did not
present any uniaxial tension test. The results from the present model, with the
same material parameters as for Linse's compression tests, are shown in

Figure 7c.

Figure 8a shows the performance of the present model under different Toading-
-unloading-loading conditions conducted under constant magnitude of strain

rate in the direction of maximal load (o3). The change of straining direction
is assumed to be instantaneous. In its current version, the present model fails
to describe the hysteresis loop commonly observed in cyclic tests on concrete.

Figure 8b shows uniaxial compression curves at different constant strain rates
as obtained by the present model.
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\ UB/fcu U3/fcu _
-6, -4. -2. 1 2. 4, strain -6. -4, -2, A & 4, strain

e 4 £ v Y k- : i 3 2 ~
' L3 B v > ¥ T T \d L -

0/00 o/00

3 €172 €27 €3
-1.2
-1.6 -1.6
(a) (b)
' A c’1/fcu
0.2 1
_ present model
0.1 4 ————  experiment, Linse [5], [6]
€ 0/ 00
0.2 0.4
(c)
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4, CONCLUDING REMARKS

The stable crack propagation and the unstable crack propagation generally
observed in experiments have been modelled by the viscoplastic and plastic-
brittle theories, respectively. Rate effects are included in the model both in
the sense of viscoplasticity and in the form of strain rate dependent plastic
loading and brittle failure relations.

From a number of verification tests, it is concluded that the present consti-
tutive model yields results which qualitatively agree with experimental tests.

Experimental results indicate a degenerated ellipsoidal shape of the loading
surface in the principal stress space. Experimental data for hardening and
softening of concrete in multi-axial states of stress and strain are still

not available. Thus, not much can be said about the appropriate choice of
hardening and softening functions. The failure of concrete in tensile states
of stress appears as a continuous softening rather than a perfect brittleness.
In the present model, the directions of anisotropy of the stiffness tensor are
memorized only in the case of a brittle failure. However, every kind of micro-
and macro-faiiure of concrete introduces anisotropy into the stiffness tensor,
and the directions of this anisotropy should be memorized by the material for
future time.
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