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The Damping Behaviour of R/C Cantilever Elements
Le comportement d'amortissement des éléments en porte a faux en béton armé

Das Dampfungsverhalten von Stahlbeton-Kragtragerelementen

R. FLESCH

Dipl. ing. Dr. techn.

Bundesversuchs- u. Forschungsanstalt Arsenal
Vienna, Austria

SUMMARY

Based on recent works of the author mathematical models for the calculation of the
energy dissipated during one cycle of loading by SDOF-systems, consisting of elasto-
dissipative R/C members and a mass, are presented. Material damping as well as
hysteretic slip damping between steel and concrete is taken into account. The energy
dissipated during one cycle of vibration is calculated and equated to that of an
equivalent viscous damping mechanism in order to evaluate an equivalent damping
ratio.

RESUME

Basé sur des travaux antérieurs 'auteur présente des modéles mathématiques pour la
détermination de I'énhergie d’amortissement pour une période de vibration. Ce cas est
traité en utilisant un modéle trés simple composé d’'une masse concentrée et une
poutre en encorbellement en béton armé. On tient compte non seulement de
I'amortissement interne mais aussi du frottement entre béton et acier. A I'aide du bilan
d’énergie on obtient des formules de coefficient d’amortissement visqueux equivalent.

ZUSAMMENFASSUNG

Basierend auf vorangegangenen Arbeiten des Autors werden mathematische Modelle
zur Berechnung der Damfungsarbeit pro Schwingungsperiode fur Einmassenschwinger,
die aus einem Stahlbeton-Kragtrager und einer Masse bestehen, aufgestellt. Es werden
hierbei die Materialddmpfung sowie die Dampfung zufolge Reibung zwischen Stah! und
Beton berlcksichtigt. Nach Aufstellung der Energiebilanz erhdlt man Gleichungen fur
aquivalente viskose Dampfungszahlen.
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1. INTRODUCTION

During the last years from a lot of dynamic insitu testis equivalent vis-
cous damping ratios of R/C structures were obtained. Moreover, R/C mem-
bers were tested by cyclic loading tests or resonance tests e.g. [7,8,12]:
giving in some cases empirical formulas for the energy dissipated e.g.

[7, 8]« In the aunthor's opinion too less attempts have been made to mo-
del damping mechanism. The stresses in a member (magnitude and distribu-
tion) are important parameters of damping, which was mentioned earlier by
Lazan [5] and Newmark [9]. Recently several demping mechanism active in
R/C members (mainly in R/C tension-compression members) were considered
in [10,11].

In the case of uncracked members material damping and hysteretic damping
due to slip and counterslip in the lead-in areas at the ends of the member
were taken into account. For cracked members an additional hysteretic dam-
ping mechanism due to slipping in the lead-in areas at both sides of each
main crack (total concrete area cracked) was considered. Material damping
was modelled by the formulas of Lazan [6]. For the hysteretic damping
four different slip models were developed by the author. The basic idea
is, that at least a great part of bomnd is due to slip, which was found by
several authors D,2,3,4], therefore during reloading counterslip must
take place, resulting in hysteretic damping. Formulas for twe of these
slip mechanism are given in capter 2.

In the case of smooth bars bond is nearly completely due to slip, there-
fore the mathematical slip models work very well. In practice only de-
formed steels are used, arising the question how far the models can be
still used. In éhe authors opinien the models can be adapted by some
additional coefficients. Some estimations about this problem can be found
in [10,11]. Dynamic tests are planned by the author to improve the models.
The problems are discussed in capter 3 together with restrictions resul-
ting from differenceg prototype ~ mathematical model,

In capter 4 the concept is applied to SDOF-systems consisting of an ela-
sto-dissipative R/C cantilever member and a mass, The bending stiffness
is assumed to be linear. For any nonlinear bending stiffness the probhlem
could be linearized by the use of the secant stiffness as it was done for
the R/C tension-compression members in [10,11]. The system is excited

by sinusoidal forces with the maximum force amplitude p, at resonance fre-
quency (for a nonlinear system at the resonance frequency of the equiva-
lent linear system). The energydissipated during one cycle of vibration
is calculated and equated to that of an equivalent viscous damping mecha-
mism in order to evaluate an equivalent damping ratio (fraction of criti-
cal damping). Formulas for ¢ are given for uncracked as well as cracked
members. In the second case a simple cracking mechanism is used giving
the number of cracks as a function of the maximum force amplitude p, .

In capter 5 the results of calculations are discussed.

2. SLIP MECHANISM

Model 4 and Model 3 BO,Ii] are shortly discussed in what follows. For
each of them the energy dissipated during one load cycle with F_ , = F
and Fo;,, = r.F (for 1> r = - 1) is evaluated where F is the total
spring force ., These models are used to simulate the damping in the lead-
in areas at the ends of the member as well as at every main crack.
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2.1 Model 1, used for B/C tension-compression members

The configuration of the model is similar to that of Panovko, Golzev and
Strakhov [6]. The bond stress T is assumed to be constant over the lead-
in length and independent of the load amplitude over the whole load cycle.
The steel force after the lead-in length is given by kFg, and the concrete
force by (1-k)Fa, where Q is the loading parameter (12a=2r). The energy
dissipated during one cycle of loading is given by

_ (k) (1or) g
T GrrdTE £

where d is the sum of all steel diameters, f, the sum of all steel areas
and E; the E-modulus of steel.

= h,F’ (1)

b,

2.2, Model 3, used for R/C tension-compression members

Based on an investigation of the test results of Kuuskoski [j] model 3
was developed. The bond stress T is assumed to be uniformly distributed
over the lead-in length and to depend on the load parameter Q. Depending
on the parameter ¢ of the bondstress - load relationship one can obtain
closed as well as open hysteresis loops. Open hysteresis loops will be
used in a forthcoming paper. The expression for the energy dissipated
during one cycle of loading for arbitrary values of c¢c and r is quite

lengthy and can be found in [10]. For elosed loops and r = -1 D, is of
the form
-2 3
_(1-k) ©0,9096 .2 _x F
D, " ndE, f, (a+DbF) o= b Gm (a)

and for r = 0
e
C(1-k) 00,1792 _» *»'F

Dv = 148, 1, (asbF) | = B Gomp) (3)

where a and b are coefficients of the bond stress - load relationship.

3. APPLICABILITY OF THE SLIP MODELS TG DEFORMED BALS

In the case of deformed bars only a part of the force is transmitted by
slip. Thus, the guestion arises, whether it is possible to separate the
two force transmission mechanism slip and normal siresses at Lhe ribs
especially during unloading and reloading. Counterslipping could be
largely influenced by the ribs. Furthermore local separalion of steel
and concrete surfaces due to the action of the ribs (mainly at the ends
of the bars) take place, which was reported e.g. by Hahn [3] and Lutz [4].
Moreover, local shear cracking of concrete at a cylinder surface with a
diameter corresponding to the maximum diameter of the bar (inlcuding the
rib height) will produce slipping or sliding between concrete surfaces.
The influence of these facts on the damping mechanism must be studied
more detailed.

A first investipgation of theapplicability of the models te deformed bars
was presented in [11], using the test results of Kuuskoski [1]. From two
tension-tension loaded samples with 1he same E-modulus of concrete and
smooth steel in the first and deformed steel in the second case the maxi-
mum concrete force in the second case is found to be about twice as much
as in the first case. Assuming that about half of the force is transmit-
ted by slipping in the case of the deformed bars, it was found that the
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permanent steel stresses at the end of each load cycle { A= 0) reported
in [I] fit the results obtained with model 3 very well. Later, a more de-
tailed investigation of the available data was carried out by the author
and was presented in [10] . It is concluded that bond due to slip lies
within 30 - 40 % of the total bond. As a first approximation it is assu-
med that the models can be used for deformed bars. The coefficient 1-k

as well as the bond stress T is reduced by the factor ry (0,3s ry =0,4).
%grgeems that 74 will be lower for ribbed bars and higher for torsteel

When using the formulas derived in capter 4 the following facts should be
considered for smooth bars as well as for deformed bars:

- the equations for T give probably too high values. In the slip model

a free front end of the bar is assumed. In practise there are hooks, bent
up's or at least embedments, This fact tends to reduce the hysteretic
loops coefficient r from r = -1 to r = Q.

- the coefficient (1-k) as well as the bond stress T decreaseswith increa-
sing number of load cycles. If the decrease ratio of (1-k) squared is

less than the decrease ratio of T then the energy dissipated will decreas
se with increasing number of load cycles. A decrease of T was considered
in model 4 EO,l] . Results of calculations with an improved model will

be shown in a forthcoming paper.

- the influence of stirrups on slip and counterslip must be investigated,
- it seems probable that the contribution of slip mechanism to the total
damping will decrease if the yield point of steel is approached.

4, DAMPING OF R/C CANT1LVER MEMBERS

The concept of [10,11] is now applied to the system shown in Fig. 1.
Possible influences of curvature on slip and counterslip are neglected.
The equations are derived for symmetrical longitudinal reinforcement. It
is assumed that no slip will occur at the fixed end.

4.1. Damping without cracks

The total force in the compression- and the tension area of cross section

E-E is given by
h &
l:t 2‘5 - h')"H'J
A

oF = Pel i h - & _Eii?_ (4)
- 45 4&"}-“' hx)z— » - cl
B "~ 2H
6 * h
The steel force is of the form
2(3 < w)ay, ta
G'Fs = hcz (5)

The parameters h', #i, h and Lfare defined in Fig. 1.
It is assumed that F; is transmitted from concrete to steel by bond
stress acting over the length 1 and that bond due to slip is within 30 -

40 % of the total bond (0,35-1}k5 0,4). The bond stress T now follows as
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i _
2(§—hwnﬁmga

T = T = bFa (6)

For model 3 in Ei} T was of the form
T= a + bFa (7)

Therefore now model_3 is used witha=0. As force is transmitted from con-
“crete to steel, (1—k) is given by

23 - wW)m

Foa he, (8)

h X\
2(5 - h )ntfrd
£

b = hdlo t9)

In equ. (2) E; is now replaced by the E-modulus of concrete, E., and f,
by ohf. Then equ. (4), equ. (8) and equ. (9) are inserted in equ. (2).
Two mechanism, each equivalent to the half of the slip damping of R/C
tension-compression members take place simultaneously {(in the compression
and the tension area of the member). Thus, the energy dissipated during
one cycle of load by slip damping is given by

3,6984 (& - 0 )wfe, pl Try ]
= : = E— = * 2
D, TR DE, h°4gl h, M (10)

where M is the bending moment p,1l. In another approach the total force in
cross section B-E is obtained using the net section of concrete.qF is
given by

;. Spol :
o F T (1)
It is assumed that a part of this force is transmitted to steel by slip
resulting in the some expression for (1-k) than given by equ. {8). Assu-
ming a linear bending stiffness K = SEGI/I3 with I = bh3/12,without ma-
terial damping the equivalent damping ration is given by

h Xy
0,4548 (5 - h )ip’e, hry
g = e, (12)
Material damping of concrete is modelled by the formulas of Lazan [5],
It is assumed that material damping of steel can be neglected below the
yield point. The energy dissipated during one cycle of load is of the
form

Ta,J k P
Ly h.F" (13)

D, = [bh (1-p)™" = s
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where J and n are material constants which must be evaluated from tests.
In this paper only rough estimations of these parameters can e used. The
coefficient @, ( «, < 1) depends on the stress distribution in the member
and is defined by Lazan [5]. Due to the uncertainties of J and n Q.= 1
is assumed. The total energy dissipated during one cycle of loading is
given by

D, = D, + D (14)

T

The total energy dissipated is equated to that of an equivalent viscous
damping mechanism. Thus, the damping ratio is given by

3
v 8l "t 4hs ,cal " _nd
g - thcbh'z\g + hé (2CL ) Po =0 (15)

The coefficient n will be within 2=n<3. Fop 2<n<3 equ. (15) has to be sol-
ved by an iterative procedure.

4.2. Damping with cracks

The situation is more complex than in the case of R/C tension - compres-
sion members [10,1i] . Therefore some simplifications are necessary. Té
show the contribution of cracks to total damping only this mechanism is
taken into account in what follows. In Fig. 2 a simple cracking mecha~-
nism and the coefficients used are shown. When the concrete force F.,

in cross section E-E has the value

- Dol _pox
Fc,e = 4c, = Fe (18)

in E-E the first crack will occur. FC; is the cracking temsile force of
concrete which is given by

x fcc bh
Fop, =25 (17)

where B, is the bending tension strength of concrete. Using slip model 3
at the instant of cracking the bond stress is of the form

T = BFg = bRaigad | 4bE,, c,& (18)

<,

Thus, tgfhi is given by
tgh =  4bF,, dme,a (19)

tghis of the form

X
c,.c

tgh = —3 (20)

The locations of the following cracks are now obtained under the simpli-
fying assumption, that on one hand T is constant and is given by equ.
(18) with & = 1 and on the other hand the lead-in length is constant.
The lead in length is given by

1 ;
lea = Fabe,l+a (21)
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The length 1: is of the form

¥ 1
L' = 4mdbe, (22)

The i-th crack will occur at the location x; if the concrete force approa-

ches the value F;, in x;. x; is given by
x; =1 - (i-1)1) (23)

The fictive concrete force in cross-section E-E is given by
X
Fee .1

Feo = I1-(i-1)1F (24)

The lead-in length is of the form

1 .

; = — 2
Le 41, dbe, + 4 (25)
where 1; is given by
1, = 1-(i-1)1." (26)

The maximum concrete strain for a cracked section is given by

—_-1 _
£, = ngs’ a(y-h")(h-20") + b7 (h-h" %)] &}%ﬂx (27)
[+
The steel tension force of the cracked section is given by

Fﬂﬂ €. (h-v-h")
s = —
b

For the i1-th crack the steel force is obtained from
T ) ¥
Fg, = u1[1-(1—1)1e] Po = Uy Py {29)

where i is an integer number within 0<ifn_. n.is the actual number of
cracks.The uncraclted region starts at the location x,

E £, = u M(x) (28)

*
x, = 1-(n. -1)1g - leg, (30)
At this point the steel force is of the form
X\
@2 - m ; ,
Es,ﬂ.r = hcz wl""(nr -‘1)16 - le'n'r po = u3p0 ((31)
The concrete force transmitted by slip is obtained from
| (T) r ¥ ]
R o R 1e,nr_J S (32)
Further, for the region between two cracks the steel force is given by
h X\ %
T (@) 2(5 - h)AY (— _ " 1L¥
l's,i = hcz I__ 1"‘(1"1)1e - -‘—-2 o = W50 D, (33)

and the concrete force transmitted by slip

_ (1) rd & iF
o P -, : e _ c.c
[c,i = ic, E—(L.l)le -5 D = ub,c P _ (34)
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with 0<1E(nr-1) Equ. {33) and (34) are only valid for F‘(ﬂ< co/g The

energy dissipated during one cycle of load at each crack is now calcula-
ted by equ. (3) with a = 0, It is assumed that all cracks will close
exactly at the instant 0 = 0., Thus,the energy dissipated due to slip at
the i-th crack is of the form

< W(E.‘Z‘ )2’
0 _ ) .0,1792 Ky —* 2 u (35)

v aE, f, br, = ki hylsy

For the point x, = 1—(nr-1)1¢ - lenr the coefficient Ezr is given by

N P (1)
k* . e T, _ b, (36)

e 31
nr I(S.n,- llanf

—*
For the region between two cracks the coefficient k is obtained from
— (I

~—% F. : i 3 F,
k=t - D~ for B ‘< _92*9— (37)
S,L lll.
and from ko= —-ﬂﬁ—k' S N for F > Fog (38)
S 2F T T 2u,,p, o c 2 |

During a step by step analysis one could check for each point whether
equ. %37) or (38) has to be used. To simplify the procedure the following
mean values are used:

5 x
ET _ 2ug P + Feg (39)
' ELW O
X
and il - 2uﬁ4(. _Po + FOLC A0
k; = (40)
4“L¢+4 Po

The total energy dissipated during one cycle of loading is given by

Ne-t Nt )Z,
P S PR UI)Z —xd (R o (T
3D, =2 (uw ) hF o s Hki LR AP Z:g. b, F ips (1)
1 = i=

From the equations (29), (39), (40) and (41) the following equation is
obtained

n.-_ Ne-{
; z
%DV.E = pol:(2uq Euﬁb )h:l Foo by zu +
L X2
+(E£:l)l££,_ﬂa= t v, v. = R__ o Do Vy + v

1 Po + PV, + V, = 4§ v, 2§ 3 (42)

Thus, from the energy balance the following equation for the equivalent
damping ratio £ is obtained

-1

. _ T Z
T (Polt o '
- ET @\ EE ] w s w

where K is the stiffness, K = 3 EI/1%and I = bk’ /12,
Equation (43) is now solved for increasing n,. starting with n. = 0 until
the following equation is valid '

.1
sgc1< Fe, i (44)
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where Fcﬂ+4 is given by equ. (24).

5. RESULTS

Results of calculations for cracked as well as uncracked members with
deformed hars arggiven in what follows.First a set of basic dimensions
is chosen.The single parameters are varied in Fig,3-8 for uncracked mem-
bers and in Fig.9-17 for cracked wembers,In some cases is given as a
function of twn parameters.As in the case of uncracked members it is
assumed that force is transmitted from concrete to steel and vice versa
in the case of cracked members,the tendencies are different.

uncraclked members:

-damping decreases slightly with increasing dimensions h and b of the
cross section.The decrease is less when also mat, damping is considered.
~damping increases slightly with increasing steel area

-thps,combining the first two statements,damping increases slightly
with increasing percentage of reinforcement

-damping decreases slightly with increasing E-modulus of concrete

-E is a linear function of the coefficient ry

-the coefficient J was evaluated from Lazan [5] and means only a rough
assumption

-the coefficient n has a strong influence on damping.In the case of un-
cracked members it seems that n will be within 2en=<2,2

-the influence of h‘on damping can be neglected

-Ppo and 1 have only an influence on material damping(small for 2<n=<2.2)
It is concluded thatg is within 0.012¥<0,02 for uncracked members.
cracked members:{slip damping only)

-damping increases strongly with increasing h and b

-damping decreases strongly with increasing steel area

~thus,damping decreases strongly with increasing perc.of reinforcement
The same tendency was observed by Dieterle [12]

~damping increases with increasing E-modulus of concrete

-ry within 0.3<1,<0.4 has only a small influence on the results

-the influence of 8. ,b,h"and 1 on damping can be neglected

-the influence of §i; is shown in Fig.13.The results show a max. for
low force levels which was also observed by Dieterle [1J] .In [12] also a
strong decrease of {for inereasing displacement is reported.This could
be due to the decrease of ktwith the number of load cycles.In a fothcom-
ing paper an attempt will be made to simulate this behaviour.

It seems that the values for obtained by equ.(43) are too high in some
cases but that Fig.9-17 show very well the tendencies.

6. CONCLUSIONS

In this paper the concept of [}0,1ﬂ is applied to SDOF-systems consi-
sting of a R/C cantilever element and a mass. As the situation is mere
complex than in the case of R/C tension-compression members, additional
simplifications are necessary. In the auvthor's opinion the slip models
can be adapted for ribbed bars and torsteel bars. First estimations are
discussed in capter 3. The author plans tests to improve the modelling
for deformed bars as well as to get the parameters of material damping.
In capter 4 equations for equivalent viscous damping ratios are deri-
ved. If these equations are used, the limitations discussed in capter 3
should be considered. In a forthcoming paper the decrease of bond and
of the coefficient (1-k) will be taken into account as a function of the
number of lcad cycles,
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